79 research outputs found

    Study of Apollo water impact. Volume 7 - Modification of shell of revolution analysis Final report

    Get PDF
    Numerical solution of combined hydrodynamic and shell equations for hydroelastic response of flexible shell

    Study of Apollo water impact. Volume 10 - User's manual for modification of shell of revolution analysis Final report

    Get PDF
    Analysis of linear elastic thin shells of revolution subjected to arbitrary temperatures and loads - computer program users manua

    Study of Apollo water impact. Volume 11 - User's manual for unsymmetric shell of revolution analysis Final report

    Get PDF
    Users manual on static and dynamic computer programs on linear elastic thin shell theory - Apollo command module water impac

    Structural and Functional Evaluation of C. elegans Filamins FLN-1 and FLN-2

    Get PDF
    Filamins are long, flexible, multi-domain proteins composed of an N-terminal actin-binding domain (ABD) followed by multiple immunoglobulin-like repeats (IgFLN). They function to organize and maintain the actin cytoskeleton, to provide scaffolds for signaling components, and to act as mechanical force sensors. In this study, we used transcript sequencing and homology modeling to characterize the gene and protein structures of the C. elegans filamin orthologs fln-1 and fln-2. Our results reveal that C. elegans FLN-1 is well conserved at the sequence level to vertebrate filamins, particularly in the ABD and several key IgFLN repeats. Both FLN-1 and the more divergent FLN-2 colocalize with actin in vivo. FLN-2 is poorly conserved, with at least 23 IgFLN repeats interrupted by large regions that appear to be nematode-specific. Our results indicate that many of the key features of vertebrate filamins are preserved in C. elegans FLN-1 and FLN-2, and suggest the nematode may be a very useful model system for further study of filamin function

    Molecular Biomechanics: The Molecular Basis of How Forces Regulate Cellular Function

    Get PDF
    Recent advances have led to the emergence of molecular biomechanics as an essential element of modern biology. These efforts focus on theoretical and experimental studies of the mechanics of proteins and nucleic acids, and the understanding of the molecular mechanisms of stress transmission, mechanosensing and mechanotransduction in living cells. In particular, single-molecule biomechanics studies of proteins and DNA, and mechanochemical coupling in biomolecular motors have demonstrated the critical importance of molecular mechanics as a new frontier in bioengineering and life sciences. To stimulate a more systematic study of the basic issues in molecular biomechanics, and attract a broader range of researchers to enter this emerging field, here we discuss its significance and relevance, describe the important issues to be addressed and the most critical questions to be answered, summarize both experimental and theoretical/computational challenges, and identify some short-term and long-term goals for the field. The needs to train young researchers in molecular biomechanics with a broader knowledge base, and to bridge and integrate molecular, subcellular and cellular level studies of biomechanics are articulated.National Institutes of Health (U.S.) (grant UO1HL80711-05 to GB)National Institutes of Health (U.S.) (grant R01GM076689-01)National Institutes of Health (U.S.) (grant R01AR033236-26)National Institutes of Health (U.S.) (grant R01GM087677-01A1)National Institutes of Health (U.S.) (grant R01AI44902)National Institutes of Health (U.S.) (grant R01AI38282)National Science Foundation (U.S.) (grant CMMI-0645054)National Science Foundation (U.S.) (grant CBET-0829205)National Science Foundation (U.S.) (grant CAREER-0955291

    Low pH induces an interdigitated gel to bilayer gel phase transition in dihexadecylphosphatidylcholine membrane.

    Get PDF
    We have investigated the influence of pH on the structures and phase behaviors of multilamellar vesicles of the ether-linked dihexadecylphosphatidylcholine (DHPC-MLV). This phospholipid is known to be in the interdigitated gel (L(beta)I) phase in excess water at 20 degrees C at neutral pH. The results of X-ray diffraction experiments indicate that a phase transition from L(beta)I phase to the bilayer gel phase occurred in DHPC-MLV in 0.5 M KCl around pH 3.9 with a decrease in pH, and that at low pH values, less than pH 2.2, DHPC-MLVs were in L(beta') phase. The results of fluorescence and light scattering method indicate that the gel to liquid-crystalline phase transition temperature (T(m)) of DHPC-MLV increased with a decrease in pH. On the basis of a thermodynamic analysis, we conclude that the main mechanism of the low-pH induced L(beta)I to bilayer gel phase transition in DHPC-MLV and the increase in its T(m) is connected with the decrease in the repulsive interaction between the headgroups of these phospholipids. As pH decreases, the phosphate groups of the headgroups begin to be protonated, and as a result, the apparent positive surface charges appear. However, surface dipoles decrease and the interaction free energy of the hydrophilic segments with water increases. The latter effect dominates the pure electrostatic repulsion between the charged headgroups, and thereby, the total repulsive interaction in the interface decreases
    • …
    corecore