

Rusa CR 6 5-862

LIBRARY COPY

NOV 24 1967

MANNED SPACECRAFT CENTER HOUSTON, TEXAS

SID 67-498

STUDY OF APOLLO WATER IMPACT FINAL REPORT

VOLUME 10

USER'S MANUAL FOR MODIFICATION OF SHELL OF REVOLUTION ANALYSIS

(Contract NAS9-4552, G.O. 5264)

May 1967

Prepared by

A.P. Cappelli S.C. Furuike (Authors)

Approved by

F.C. Hung Program Manager Structures and Materials

Assistant Manager Science and Technology

NORTH AMERICAN AVIATION, INC. SPACE DIVISION

PRECEDING PAGE BLANK NOT FILMED.

FOREWORD

This report was prepared by North American Aviation, Inc., Space Division, under NASA Contract NAS9-4552, for the National Aeronautics and Space Administration, Manned Space Flight Center, Houston, Texas, with Dr. F.C. Hung, Program Manager and Mr. P. P. Radkowski, Assistant Program Manager. This work was administered under the direction of Structural Mechanics Division, MSC, Houston, Texas with Dr. F. Stebbins as the technical monitor.

This report is presented in eleven volumes for convenience in handling and distribution. All volumes are unclassified.

The objective of the study was to develop methods and Fortran IV computer programs to determine by the techniques described below, the hydro-elastic response of representation of the structure of the Apollo Command Module immediately following impact on the water. The development of theory, methods and computer programs is presented as Task I Hydrodynamic Pressures, Task II Structural Response and Task III Hydroelastic Response Analysis.

Under Task I - Computing program to extend flexible sphere using the Spencer and Shiffman approach has been developed. Analytical formulation by Dr. Li using nonlinear hydrodynamic theory on structural portion is formulated. In order to cover a wide range of impact conditions, future extensions are necessary in the following items:

- a. Using linear hydrodynamic theory to include horizontal velocity and rotation.
- b. Nonlinear hydrodynamic theory to develop computing program on spherical portion and to develop nonlinear theory on toroidal and conic sections.

Under Task II - Computing program and User's Manual were developed for nonsymmetrical loading on unsymmetrical elastic shells. To fully develop the theory and methods to cover realistic Apollo configuration the following extensions are recommended:

- a. Modes of vibration and modal analysis.
- b. Extension to nonsymmetric short time impulses.

c. Linear buckling and elasto-plastic analysis

These technical extensions will not only be useful for Apollo and future Apollo growth configurations, but they will also be of value to other aeronautical and spacecraft programs.

The hydroelastic response of the flexible shell is obtained by the numerical solution of the combined hydrodynamic and shell equations. The results obtained herein are compared numerically with those derived by neglecting the interaction and applying rigid body pressures to the same elastic shell. The numerical results show that for an axially symmetric impact of the particular shell studied, the interaction between the shell and the fluid produces appreciable differences in the overall acceleration of the center of gravity of the shell, and in the distribution of the pressures and responses. However the maximum responses are within 15% of those produced when the interaction between the fluid and the shell is neglected. A brief summary of results is shown in the abstracts of individual volumes.

The volume number and authors are listed on the following page.

The contractor's designation for this report is SID 67-498.

INDEX FOR FINAL REPORT DRAFT

"Apollo Water Impact"

<u>Volume No</u> .	<u>Volume Title</u>	Authors
1	Hydrodynamic Analysis of Apollo Water Impact	T. Li and T. Sugimura
2	Dynamic Response of Shells of Revolution During Vertical Impact Into Water - No Interaction	A.P. Cappelli, and J.P.D. Wilkinson
3	Dynamic Response of Shells of Revolution During Vertical Impact Into Water - Hydroelastic Interaction	J.P.D. Wilkinson, A.P. Cappelli, R.N. Salzman
4	Comparison With Experiments	J.P.D. Wilkinson
5	User's Manual - No Interaction	J.P.D. Wilkinson
6	User's Manual - Interaction	J.P.D. Wilkinson and R.N. Salzman
7	Modification of Shell of Revolution Analysis	A.P. Cappelli and S.C. Furuike
8	Unsymmetric Shell of Revolution Analysis	A.P. Cappelli, T. Nishimoto, P.P. Radkowski and K.E. Pauley
9	Mode Shapes and Natural Frequencies Analysis	A.P. Cappelli
10	User's Manual for Modification of Shell of Revolution Analysis	A.P. Cappelli and S.C. Furuike
11	User's Manual for Unsymmetric Shell of Revolution Analysis	E. Carrion, S.C. Furuike and T. Nishimoto

PRECEDING PAGE BLANK NOT HUME

ABSTRACT

The shell of revolution program described in this report was developed as a basic tool to be used in the elastic, load-deflection analysis of shell structures subjected to arbitrary loads and temperatures. The program is applicable to most aerospace-type shell elements (e.g., boosters, reentry vehicles, etc.) as well as ground-based shells.

The computer program is based on the numerical analysis presented in Reference 1 and is restricted to linear-elastic thin-shell theory. The analysis utilizes Fourier series expansion technique to separate circumferential variation of problem variables. A reduced set of shell field equations for each Fourier harmonic of load results from using Fourier approach. The finite difference form of the reduced shell equations are solved by a direct matrix elimination procedure. Solutions for various Fourier harmonics can then be summed to obtain the general solution for arbitrary unsymmetric loads.

In using the program it is necessary to select a mathematical model to represent a physical shell problem. By introducing fictitious subdivisions called shell regions, it is possible to analyse complicated shell configurations as a series of shell regions of simple shapes. The procedures for connecting shell regions require the satisfaction of boundary and junction conditions in the program.

The computer program, which was written in FORTRAN IV and applicable to the IBM 7090/7094 systems, was developed in a general fashion to permit the consideration of variety of shell problems. Wherever possible, time and space-saving techniques have been employed to simplify and reduce the amount of input data to be supplied by the user. Various option techniques have been used to permit more generality and still keep data input at a respectable minimum. The solutions obtained from the program yield deformations, forces, moments, stresses, etc., at each station of a shell region. This output is presented in tabular form with an option for graphical plotting of results.

The users of this program should be forewarned that the program is only a tool and considerable insight must be used in relating results to an actual physical shell problem. In turn, the results obtained are only as good as the mathematical model selected for the problem. The numerical procedure used in the solution of differential shell equations is an approximate one (finite differences) and results must be interpreted in terms of round-off errors that are inevitable when using approximate numerical techniques.

This report is intended to supply the information necessary for the best utilization of the shell of revolution computer program. Considerable detail has been incorporated in this report to aid not only the engineer but also the programmer in understanding the program. It is hoped that this information will permit the modification and extension of this program to handle various other types of shell response problems (e.g., dynamics, buckling, etc.).

This user's manual has been organized in three basic sections. The first section (I) presents the theory used as a basis of the shell of revolution computer program. For ease of reference, much of the numerical procedure developed in Reference 1 is repeated together with modifications and improvements that have been developed at S&ID. A general description of the computer program is given in Section II. This section is intended to serve as an aid to the user in establishing a mathematical model for a physical shell problem in terms of the program format. Limitations and general program characteristics are given. Section III gives information for the detailed use of the program. Included are input data shell format, flow diagrams, sample data sheets, example problem, etc. As one becomes familiar with the program, this section will probably be the most used since it gives detailed instructions and characteristics of the program.

CONTENTS

							Page
I . T	HEOR	Y	•				1
	1.1	Introduction	•	•	•		1
	1.2	Scope and Limitations of Theory	•		•	•	1
	1.3	Surface Geometry and Coordinates	•	•	•	•	2
	1.4	Equilibrium Equations		•	•	•	3
	1.5		•	•	•	•	4
	1.6		•	•	•	•	5
	1.7	Fourier Expansions and Nondimensional Equ	atio	ns		•	7
	1.8	Reduction to Four Second-Order Differential	ons	•	11		
	1.9	Boundary Conditions	•	•	•	•	13
	-	Singular Points (Apex Condition)	•	•	•	•	16
	-	Discontinuity Conditions	•	•	•	•	16
		Finite Difference Formulation	•	•	•	•	19
		Matrix Solution of Difference Equations .	•	•	•	•	24
			•	•	•	•	26
		Remark Concerning the Reference Surface	•	•	•	•	28
		Branching of Shell Regions	•	•		•	29
		ndix IA - Formulas for Coefficients	•	•	•	•	34
TT	CENI	CRAL DESCRIPTION OF COMPUTER PROGR	ΔΜ				41
11.	2.1	Introduction			•	•	41
	2. 2	Program Capabilities and Limitations .	•	•	•	•	42
	2.3	Sign Conventions and Dimensions	•	•	•	•	43
	2.4	Reference Inner and Outer Surfaces .	•	•	•	•	43
	2.5	Shell Regions: (EKK)	•	•	•	•	44
	2,6	Fourier Components: (SUM, ENFO, ENFI,	ENI	FOR		•	
	2.0	THETA)			,		45
•	2.7	Stations in Regions: (EN)	•	•	•	•	47
	2.8	Geometry of Regions	•	•		•	48
	4. 0	2, 8, 1 Cone-Cylinder Option (GMI = 1, 0)	•	•	•		48
		2.8.2 Sphere-Toroid (GMI = 2.0).		•	•	•	49
		2.8.3 Discrete Point Option (GMI = ± 3.0)		•	•	•	50
		2.8.4 Conics Options (GMI = 4.0, 5.0, ± 6 .			-	•	51
			~ /	•	•	•	

ı.

Page

2.9	End Conditions: (BCTP, BCIBM)	52
2, 10		54
. IV	2. 10. 1 Discontinuity Junction	54
		56
		57
2 11	2. 10. 3 Discontinuity Loads	58
		• -
2.12	Temperature Distributions: (TBOT, TTOP, TITP, TIBT)	59
2 1 2		50
	Multilayer Shells: (ELAY, ENMAT, EMAT)	,
2.14	Material Properties: (POIS, ENE1, TMPE1, YM1, ENA1,	61
2.15	TMPA1, ALF1, ENE2, etc.)	01
2.15	Stiffness Properties: (EIFH, ENOTH, THSTA, TH, D,	61
~ • • •	EK)	01
2, 16	Internal Spring Support: (GSPRL, GUK, GVK, GWK,	()
	GEMK)	62.
	Reference Quantities: (SIGO, EO, HO, AO)	62
	Graphical Plots: (PIXI)	62
2.19	Special Indicators: (EX, PTHI, PFLAG)	63
2.20	Curve Fitting	63
2.21	General Comments	64
III. DET	TAILED USE OF THE PROGRAM	65
3.1	Introduction	65
3.2	Deck Set-Up	66
3.3	Program Flow Description	74
	input Data Format	74
	3.4.1 Introduction	74
	3.4.2 DECRD Subroutine	79
	3.4.3 Data Deck Set-Up	82
	3. 4. 4 Title Cards and Call DECRD (DA)	82
	3. 4. 5 Call DECRD (GDA)	84
	3. 4. 6 Call DECRD (SDA)	87
	3. 4. 7 Call DECRD (DLD)	89
	3. 4. 7.1 Tab Set Up	90
	3. 4. 8 Call DECRD (DAL)	92
3.5	Output Format	96
	•	115
3,6	Sample Problem	115
	3. 6. 1 Problem Set-Up	117
	3.6.2 Regional Data	111

Page

3.	6.3	Sam	ple D	ata	Sheet	R .	_			_				120
			-		olem O		, t	•	•	•	•	•	•	143
			•			•	••••	•	•	•	•	•	•	
3.	0.5	Sam	ple P	rot	olem C	RT	•	•	•	•	•	•	•	161
3, 7 Util	lity S	Subra	outine	×.		•	•		•	•	•	•	•	177
3.	7.1	MAI	D, MS	5U,	MMY,	, IN	V	•	•	•			•	177
3.	7.2	DIN	TRP,	El	NTERF	>	•	•	•	•	•	•	•	177
3.	7.3	COL	IMA	•	•		•	•		•	,	•	•	178
3.	7.4	STC	омв	•	•	•	•	•	•	•	•	•		178
3.	7.5	CRI	G	•	•	•	•	•	٠	•	•	•	•	179
3.8 Er	ror	Indic	ation	,	Pitfall	s, I	Recor	nme	ndat	ions	•	•	•	179
Appendi:	× III.	A.F	rogr	am	Listin	gs	•	•	•	•	•	•	•	181
Appendi	× III	B. F	rogr	am	Nome	ncla	ture	•	•	•	•	•	•	275
REFERENC	CES	•	•	•	•	•	•	•	•	•	•	•	•	301

I. THEORY

1.1 INTRODUCTION

The general numerical procedure developed in Keference 1 for the analysis of unsymmetrical bending of shells of revolution forms the basis of the computer program. Included in the program are extensions and improvements to the basic analysis that were developed at S&ID and are reported in References 2 and 3.

The analysis is based on the general first-order linear shell theory of Sanders (Reference 4), which has been assessed (Reference 5) as the "best" of the many competing thin-shell theories in the literature. All pertinent variables are expanded into Fourier series in the circumferential direction which permit decoup ed sets of ordinary differential equations in terms of the individual Fourier components. Finite difference approximations to these differential equations in the meridional coordinate then are solved using a direct matrix elimination technique (Potter's Method) (Reference 6).

This section will present the general theory which forms the basis of the computer program. Nomenclature and approach similar to that of Reference 1 will be used together with appropriate modifications.

1.2 SCOPE AND LIMITATIONS OF THEORY

The shell theory on which the program is based is restricted to linear, elastic, thin-shell theory. Implied by the above statement and other assumptions introduced in the analysis are the following:

- a. The thickness of the shell at any point is small compared to the other dimensions of the shell.
- b. Deformations of the shell are small compared to the dimensions of the shell.
- c. All portions of the shell deform elastically, obeying Hooke's law.
- d. The shell is "complete" as well as axisymmetric, i.e., its only boundaries are at meridian ds and inner and outer surfaces.
- e. Each layer of shell material is asr and o have two-dimensional elastic isotropy with respect to the stangent to its surface,

but Young's modulus is permitted to be variable (and discontinuous) through the thickness as well as in the meriodional direction.

- f. Poisson's ratio is assumed constant in each shell layer.
- g. Arbitrary loads and temperature distributions are permissible. However, the present analysis is inapplicable when circumferential variation of temperature is sufficiently great to produce appreciable circumferential changes in Young's modulus. In such cases, average values of Young's modulus can be used to obtain approxmate results.
- h. Redundant shell structures can be analysed only indirectly using the program.
- i. The effects of transverse shear distortion are neglected in the analysis. A procedure for including these effects is described in Reference 7.
- j. Instability is not considered.

1.3 SURFACE GEOMETRY AND COORDINATES

Material points in the shell can be specified by means of the orthogonal coordinates (s, θ , ζ), (see Figure 1-1) where s is the meridional distance measured from a boundary along an axisymmetric reference surface, θ is the circumferential angle, and ζ is the normal, outward distance from the reference surface. In homogeneous shells, the middle surface always is used as the reference surface; but when, more generally, the Young's modulus E is variable, the reference surface is best chosen so that

$$\int \zeta \mathbf{E} \, \mathbf{d} \, \zeta = 0 \tag{}$$

1)

Figure 1-1. Surface Geometry and Coordinates

where the integration is through the thickness. (This choice, as will be seen later, simplifies the constitutive relations of elastic shells.) If the shape of the reference surface is given by r(s), where r is the distance from the axis, the principal radii of curvature are

$$R_{\theta} = r \left| 1 - (dr/ds)^{2} \right|^{-1/2}$$

$$R_{s} = - \left| 1 - (dr/ds)^{2} \right|^{1/2} / (d^{2}r/ds^{2})$$
(2)

Introduce the nondimensional meriodional coordinate $\xi = s/a$, where a is a veference length; then, with P = r/a, the nondimensional curvatures $\omega_{\xi} = a/R_{s}$, and $\omega_{\theta} = a/R_{\theta}$ can be found from the formulas

$$\omega_{\theta} = \left| 1 - (\rho')^2 \right|^{1/2} / \rho \tag{3}$$

$$\omega_{\xi} = -(\gamma' + \gamma^2)/\omega_{\theta}$$
⁽⁴⁾

where

$$Y = P' / P \tag{5}$$

In these equations, and henceforth, ()' $\equiv (d/d\xi)$ (). Finally, note the Codazzi identity

$$\omega_{\theta} = Y(\omega_{\xi} - \omega_{\theta}) \tag{6}$$

and the relation

$$\rho^{\bullet}/\rho = -\omega_{\rm E}\omega_{\rm H} \tag{7}$$

1.4 EQUILIBRIUM EQUATIONS

The components of membrane force per unit length, transverse force per unit length, moment (about the reference surface) per unit length, and load per unit area (assumed to be applied at the reference surface) are as shown in Figure 1-2.

Figure 1-2. Forces, Moments, and Loads: a) Membrane Forces per Unit Length, b) Transverse Forces per Unit Length, c) Moments per Unit Length, d) Loads per Unit Area

In the Sanders theory, the shearing forces $N_{\xi\theta}$ and $N_{\theta\xi}$, as well as the twisting moments $M_{\xi\theta}$ and $M_{\theta\xi}$, are not handled separately but are combined to provide the modified variables

$$\overline{N}_{\xi\theta} = \frac{1}{2}(N_{\xi\theta} + N_{\theta\xi}) + \frac{1}{4}\left(\frac{1}{R_{\theta}} - \frac{1}{R_{\xi}}\right)(M_{\xi\theta} - M_{\theta\xi})$$
(8)

and

$$\overline{\mathbf{M}}_{\boldsymbol{\xi}\boldsymbol{\Theta}} = \frac{1}{2} (\mathbf{M}_{\boldsymbol{\xi}\boldsymbol{\Theta}} + \mathbf{M}_{\boldsymbol{\Theta}\boldsymbol{\xi}})$$
(9)

With the elimination of the transverse forces Q_{ξ} and Q_{θ} , the equilibrium equations of the Sanders theory (reference 4) can be written, for shells of revolution, as

$$a\left[\frac{\partial}{\partial\xi}\left(\rho N_{\xi}^{\prime}+\frac{\partial}{\partial\theta}(\bar{N}_{\xi\theta})-\rho^{\prime}N_{\theta}\right]+\omega_{\xi}\left[\frac{\partial}{\partial\xi}\left(\rho M_{\xi}\right)+\frac{\partial}{\partial\theta}(\bar{M}_{\xi\theta})-\rho^{\prime}M_{\theta}\right]+\frac{1}{2}\left(\omega_{\xi}-\omega_{\theta}\right)\frac{\partial}{\partial\theta}(\bar{M}_{\xi\theta})+a^{2}\rho q_{\xi}=0 \qquad (10a)$$

$$\frac{\partial}{\partial \theta} (N_{\theta}) + \frac{\partial}{\partial \xi} (\rho \overline{N}_{\xi \theta}) + \rho' \overline{N}_{\xi \theta} \left| + \omega_{\theta} \left| \frac{\partial}{\partial \theta} (M_{\theta} + \frac{\partial}{\partial \xi} (\rho \overline{M}_{\xi \theta}) + \rho' \overline{M}_{\xi \theta} \right| + \frac{\rho}{2} \frac{\partial}{\partial \xi} \left| (\omega_{\theta} - \omega_{\xi}) \overline{M}_{\xi \theta} \right| + a^{2} \rho q \theta = 0$$
 (10b)

$$\frac{\partial}{\partial \xi} \begin{bmatrix} \partial \\ \partial \xi \end{bmatrix} (PM_{\xi}) + \frac{\partial}{\partial \theta} (\widetilde{M}_{\xi \theta}) - P'M_{\theta} + \frac{1}{P} \begin{bmatrix} \partial \\ \partial \theta \end{bmatrix} + \frac{\partial}{\partial \theta} \begin{bmatrix} \partial \\ \partial \theta \end{bmatrix} (M_{\theta}) + \frac{\partial}{\partial \xi} (P\widetilde{M}_{\xi \theta}) + P'\widetilde{M}_{\xi \theta} \end{bmatrix} - aP(w_{\xi}N_{\xi} + w_{\theta}N_{\theta}) + a^{2}Pq = 0$$
(10c)

1.5 DISPLACEMENTS, ROTATIONS, AND STRAINS

The displacements and rotations of the reference surface (Figure 1-3) are related by the equations

$$\Phi_{\xi} = \frac{1}{a} \left[-\frac{\partial W}{\partial \xi} + \omega_{\xi} U_{\xi} \right]$$
(11)
$$\Phi_{\theta} = \frac{1}{a} \left[-\frac{1}{\rho} \frac{\partial W}{\partial \theta} + \omega_{\theta} U_{\theta} \right]$$

The membrane strains of the reference surface are given by

$$\epsilon_{\xi} = \frac{1}{a} \left[\frac{\partial U\xi}{\partial \xi} + \omega_{\xi} W \right]$$

$$\epsilon_{\theta} = \frac{1}{a} \left[\frac{1}{\rho} \frac{\partial U_{\theta}}{\partial \theta} + \gamma U_{\xi} + \omega_{\theta} W \right]$$

$$\epsilon_{\xi\theta} = \frac{1}{2a} \left[\frac{1}{\rho} \frac{\partial U_{\xi}}{\partial \theta} + \frac{\partial U_{\theta}}{\partial \xi} - \gamma U_{\theta} \right]$$
(12)

where ${}^{\varepsilon}_{\xi\,\theta}$ is half the usual engineering shear strain.

Figure 1-3. a) Displacements; b) Rotations

Finally, the measures of bending distortion used in the Sanders theory are

$$\kappa_{\xi} = \frac{1}{a} \frac{\partial \Phi}{\partial \xi} \xi$$

$$\kappa_{\theta} = \frac{1}{a} \left[\frac{1}{\rho} \frac{\partial \Phi}{\partial \theta} + \gamma \Phi_{\xi} \right]$$

$$\kappa_{\xi\theta} = \frac{1}{2a} \left[\frac{1}{\rho} \frac{\partial \Phi}{\partial \theta} \xi + \frac{\partial \Phi}{\partial \xi} \theta - \gamma \Phi_{\theta} + \frac{1}{2a} (\omega_{\xi} - \omega_{\theta}) \left(\frac{1}{\rho} \frac{\partial U_{\xi}}{\partial \theta} - \gamma U_{\theta} \right) \right]$$
(13)

Then, by the usual Kirchhoff hypothesis ("normals remain normal") and the neglect of terms of order ζ/R_s and ζ/R_θ relative to unity, the longitudinal, circumferential, and shear strains at a distance ζ from the reference surface are

respectively.

1.6 CONSTITUTIVE RELATIONS

Neglecting, as usual, the effects of stresses normal to the shell permits the stress-strain-temperature relations to be written as

$$\epsilon_{\xi} + \zeta_{\kappa} = \left[(\sigma_{\xi} - \nu \sigma_{\theta}) / E \right] + \alpha T$$

$$\epsilon_{\theta} + \zeta_{\kappa} = \left[(\sigma_{\theta} - \nu \sigma_{\xi}) / E \right] + \alpha T$$

$$\epsilon_{\xi\theta} + \zeta_{\kappa} = \left[(1 + \nu) / E \right] \sigma_{\xi\theta}$$
(15)

where the temperature change T may vary with ζ , as well as with ξ and θ . The Young's modulus E and the thermal expansion coefficient α will, however, be permitted to vary only with ξ and ζ . The (modified) forces and moments are approximated closely in the shell by the following integrals through the thickness:

$$N_{\xi} = \int \sigma_{\xi} d\zeta \qquad M_{\xi} = \int \zeta \sigma_{\xi} d\zeta$$

$$N_{\theta} = \int \sigma_{\theta} d\zeta \qquad M_{\theta} = \int \zeta \sigma_{\theta} d\zeta$$

$$\overline{N}_{\xi\theta} = \int \sigma_{\xi\theta} d\zeta \qquad \overline{M}_{\xi\theta} = \int \zeta \sigma_{\xi\theta} d\zeta \qquad (16)$$

Then, with the use of the defining relation (Equation 1) for the reference surface, together with the assumption of constant Poisson's ratio, it is found from (Equations 14 through 16) that

$$\epsilon_{\xi} = \frac{N_{\xi} - v N_{\theta}}{\int Ed \zeta} + \frac{\int E \alpha Td \zeta}{\int Ed \zeta}$$

$$\epsilon_{\theta} = \frac{N_{\theta} - v N_{\xi}}{\int Ed \zeta} + \frac{\int E \alpha Td \zeta}{\int Ed \zeta}$$

$$\epsilon_{\xi,\theta} = \frac{(1 + v)\overline{N}_{\xi,\theta}}{\int Ed \zeta} \qquad (17)$$

and

$$\kappa_{\xi} = \frac{\mathbf{M}_{\xi} - \mathbf{v}\mathbf{M}_{\theta}}{\int \zeta^{2} \mathbf{E} d\zeta} + \frac{\int \zeta \mathbf{E} a \mathrm{T} d\zeta}{\int \zeta^{2} \mathbf{E} d\zeta}$$

$$\kappa_{\theta} = \frac{\mathbf{M}_{\theta} - \mathbf{v}\mathbf{M}_{\xi}}{\int \zeta^{2} \mathbf{E} d\zeta} + \frac{\int \zeta \mathbf{E} a \mathrm{T} d\zeta}{\int \zeta^{2} \mathbf{E} d\zeta}$$

$$\kappa_{\theta} = \frac{(\mathbf{I} + \mathbf{v}) \mathbf{M}_{\xi\theta}}{\int \zeta^{2} \mathbf{E} d\zeta} \qquad (18)$$

The complete set of field equations for the 17 independent variables N_{ξ} , N_{θ} , $\overline{N}_{\xi\theta}$, M_{ξ} , M_{θ} , $\overline{M}_{\xi\theta}$, U_{ξ} , U_{θ} , $W, \Phi_{\xi}\Phi_{\theta}$, ξ , ϵ_{θ} , ϵ_{ξ} , ϵ_{θ} , κ_{ξ} , κ_{θ} , κ_{ξ} , now is given by the equations (10-13, 17, and 18).

1.7 FOURIER EXPANSIONS AND NONDIMENSIONAL EQUATIONS

The independent variables now will be expanded into Fourier series, with appropriate normalization to provide nondimensional Fourier coefficients of roughly comparable magnitudes for the different variables. Letting σ_0 be a reference stress level, E₀ a reference Young's modulus, and h₀ a reference thickness, solutions of the field equations will be sought in the following forms:

$$N_{\xi} = \sigma_{0}h_{0}\sum_{n=0}^{\infty} t_{\xi}^{(n)} \cos n\theta$$

$$N_{\theta} = \sigma_{0}h_{0}\sum_{n=0}^{\infty} t_{\theta}^{(n)} \cos n\theta$$

$$\overline{N}_{\xi\theta} = \sigma_{0}h_{0}\sum_{n=1}^{\infty} t_{\xi\theta}^{(n)} \sin n\theta$$
(19)
$$M_{\xi} = \frac{\sigma_{0}h_{0}3}{a}\sum_{n=0}^{\infty} m_{\xi}^{(n)} \cos n\theta$$

$$M_{\theta} = \frac{\sigma_{0}h_{0}3}{a}\sum_{n=1}^{\infty} m_{\theta}^{(n)} \cos n\theta$$

$$\overline{M}_{\xi\theta} = \frac{\sigma_{0}h_{0}3}{a}\sum_{n=1}^{\infty} m_{\xi\theta}^{(n)} \sin n\theta$$
(20)
$$U_{\xi} = \frac{a\sigma_{0}}{E_{0}}\sum_{n=0}^{\infty} u_{\xi}^{(n)} \cos n\theta$$

$$U_{\theta} = \frac{a\sigma_{0}}{E_{0}}\sum_{n=1}^{\infty} u_{\theta}^{(n)} \sin n\theta$$

$$W = \frac{a\sigma_{0}}{E_{0}}\sum_{n=1}^{\infty} w^{(n)} \cos n\theta$$
(21)

$$\Phi_{\xi} = \frac{\sigma_{\varphi}}{E_{\varphi}} \sum_{n=0}^{\infty} \Phi_{\xi}^{(n)} \cos n\theta$$

$$\Phi_{\theta} = \frac{\sigma_{\theta}}{E_{\varphi}} \sum_{n=1}^{\infty} \Phi_{\theta}^{(n)} \sin n\theta$$

$$(22)$$

$$\epsilon_{\xi} = \frac{\sigma_{\theta}}{E_{\varphi}} \sum_{n=0}^{\infty} \Phi_{\xi}^{(n)} \cos n\theta$$

$$\epsilon_{\theta} = \frac{\sigma_{\theta}}{E_{\varphi}} \sum_{n=1}^{\infty} \Phi_{\theta}^{(n)} \cos n\theta$$

$$\epsilon_{\xi\theta} = \frac{\sigma_{\theta}}{E_{\varphi}} \sum_{n=1}^{\infty} \Phi_{\xi\theta}^{(n)} \sin n\theta$$

$$(23)$$

$$\epsilon_{\xi\theta} = \frac{\sigma_{\theta}}{aE_{\varphi}} \sum_{n=0}^{\infty} k_{\xi}^{(n)} \cos n\theta$$

$$\epsilon_{\xi\theta} = \frac{\sigma_{\theta}}{aE_{\varphi}} \sum_{n=0}^{\infty} k_{\theta}^{(n)} \cos n\theta$$

$$\epsilon_{\xi\theta} = \frac{\sigma_{\theta}}{aE_{\varphi}} \sum_{n=0}^{\infty} k_{\theta}^{(n)} \cos n\theta$$

$$(24)$$

These Fourier expansions are consistent with loadings of the forms

$$q = \frac{\sigma_0 h_0}{a} \sum_{n=0}^{\infty} p^{(n)} (\xi) \cos n\theta$$

$$q_{\xi} = \frac{\sigma_0 h_0}{a} \sum_{n=0}^{\infty} P_{\xi}^{(n)} (\xi) \cos n\theta$$

$$q_{\theta} = \frac{\sigma_0 h_0}{a} \sum_{n=1}^{\infty} P_{\theta}^{(n)} (\xi) \sin n\theta \qquad (25)$$

- 8 -

and a temperature distribution

$$T = \sum_{n=0}^{\infty} T^{(n)} (\xi, \zeta) \cos n\theta$$
 (26)

The various field equations now can be decoupled into separate sets for each Fourier index n; for convenience, the superscript (n) on Fourier coefficients will be omitted in the equations that follow. The equilibrium equations (Equation 10) lead to

where $\lambda = h_0/a$, and use has been made of the geometrical identities Equations 6 and 7). The relations (Equations 11 through 13) give

$$\Phi \xi = -w' + \omega \xi^{u} \xi \qquad (28a)$$

$$\boldsymbol{\phi} \boldsymbol{\theta} = (\mathbf{n}/\boldsymbol{\rho}) \mathbf{w} + \boldsymbol{\omega}_{\boldsymbol{\theta}} \mathbf{u}_{\boldsymbol{\theta}}$$
(28b)

$$e_{\xi} = u_{\xi}' + \omega_{\xi} w$$

$$e_{\theta} = (n/\rho)u_{\theta} + \gamma u_{\xi} + \omega_{\theta} w$$

$$e_{\xi\theta} = \frac{1}{2} \left[u_{\theta}' - \gamma u_{\theta} - (n/\rho)u_{\xi} \right]$$
(29)

$$k_{\xi} = \phi_{\xi}' \qquad k_{\theta} = (n/\mu) \phi_{\theta} + \gamma \phi_{\xi}$$

$$k_{\xi\theta} = \frac{1}{2} \left(-(n/\mu) \phi_{\xi} + \phi_{\theta}' - \gamma \phi_{\theta} + \frac{1}{2} (\omega_{\theta} - \omega_{\xi}) \left[(nu_{\xi}/\mu) + u_{\theta}' + \gamma u_{\theta} \right] \right\}$$
(30)

and finally, the constitutive relations (Equations 17 and 18), inverted to give forces and moments in terms of strains and bending distortions, lead to

$$t_{\xi} + b(e_{\xi} + v e_{\theta}) - t_{T}^{(n)} \qquad t_{\theta} = b(e_{\theta} + v e_{\xi}) - t_{T}^{(n)} \qquad (31)$$
$$t_{\xi\theta} = b(1 - v)e_{\xi\theta}$$

and

$$\mathbf{m}_{\boldsymbol{\xi}} = d(\mathbf{k}_{\boldsymbol{\xi}} + \mathbf{v}_{\boldsymbol{\theta}}) - \mathbf{m}_{\mathbf{T}}^{(\mathbf{n})}$$
(32a)

$$\mathbf{m}_{\theta} = \mathbf{d}(\mathbf{k}_{\theta} + \mathbf{v}\mathbf{k}_{\xi}) - \mathbf{m}_{T}^{(n)}$$
(32b)

$$\mathbf{m}_{\boldsymbol{\xi}\boldsymbol{\theta}} = \mathbf{d}(1 - \boldsymbol{\nu})\mathbf{k}_{\boldsymbol{\xi}\boldsymbol{\theta}} \tag{32c}$$

where

$$\mathbf{b} = \frac{\int \mathbf{E} d\boldsymbol{\zeta}}{\mathbf{E}_{o} \mathbf{h}_{o} (1 - v^{2})}$$
(33)

$$d = \frac{\int \zeta^2 E d\zeta}{E h_0^3 (1 - v^2)}$$
(34)

$$t_{T}^{(n)} = \frac{\int E_{\alpha} T^{(n)} d\zeta}{\sigma_{o} h_{o} (1 - v)}$$
(35)

$$m_{T}^{(n)} = \frac{a \int \zeta E \alpha T^{(n)} d\zeta}{\sigma_{o} h_{o}^{3} (1 - \nu)}$$
(36)

(Again, the superscript (n) on $t_T^{(n)}$ and $m_T^{(n)}$ will be omitted henceforth.)

For each n, the set of field equations for the 17 Fourier coefficients t_{ξ} , t_{θ} , $t_{\xi\theta}$, m_{ξ} , m_{θ} , $m_{\xi\theta}$, u_{ξ} , u_{θ} , $w_{,\theta}$, ϕ_{ξ} , e_{ξ} , e_{θ} , $e_{\xi\theta}$, k_{ξ} , k_{θ} , $k_{\xi\theta}$ now is given by the 17 equations (Equations 27 through 32):

It may be remarked at this point that the Fourier expansions (Equations 25 and 26), which are symmetrical about $\theta = 0$ for q, q_{ξ} , and T and antisymmetrical for q_{θ} are not the most general that could exist. For full generality, these expansions should be augmented by the additional series

$$\overline{q} = \frac{\sigma_0 h_0}{a} \sum_{n=1}^{\infty} \overline{p}(n) \ (\xi) \sin n\theta$$

$$\overline{q}_{\xi} = \frac{\sigma_0 h_0}{a} \sum_{n=1}^{\infty} \overline{p}_{\xi}^{(n)} \ (\xi) \sin n\theta$$

$$\overline{q}_{\theta} = \frac{\sigma_0 h_0}{a} \sum_{n=0}^{\infty} \overline{p}_{\theta}^{(n)} \ (\xi) \cos n\theta$$

$$\overline{T} = \sum_{n=1}^{\infty} \overline{T}(n) \ (\xi, \zeta) \sin n\theta \qquad (25a)$$

In this case, the form of the shell field equations can be obtained by setting the Fourier harmonics (n) to negative values in Equations 27 through 32. These effects have been neglected in this program but can be included with minor modifications of the program.

1.8 REDUCTION TO FOUR SECOND-ORDER DIFFERENTIAL EQUATIONS

The set of field equations obtained constitutes an eighth-order system that can be reduced, in a conventional fashion, to three equations in u_{ξ} , u_{θ} , and w. But a more attractive procedure is to derive four differential equations, each of secand order. in the variables u_{ξ} , u_{θ} , w, and m_{ξ} . In so doing, it is necessary to eliminate m_{θ} by means of the relation

$$m_{\theta} = v m_{\xi} + d(1 - v^2)k_{\theta} - (1 - v)m_{T}$$
 (37)

in order to prevent the ultimate appearance of derivatives of order higher than two. Then, substituting Equations 37, 32c, and 31 into Equation 27 and using Equations 28 through 30 to eliminate the membrane strain and bending distortion gives three of the desired equations; the fourth equation is given by Equation 32a, again with kg and kg expressed in terms of the displacements. The resultant set then can be written as

$$a_{1}u_{\xi} + a_{2}u_{\xi} + a_{3}u_{\xi} + a_{4}u_{\theta} + a_{5}u_{\theta} + a_{6}w_{\theta} + a_{7}w + a_{8}m_{\xi} + a_{9}m_{\xi} = C_{1}$$

$$a_{10}u_{\xi} + a_{11}u_{\xi} + a_{12}u_{\theta} + a_{13}u_{\theta} + a_{14}u_{\theta} + a_{15}w' + a_{16}w' + a_{17}w + a_{18}m_{\xi} = C_{2}$$

$$a_{19}u_{\xi} + a_{20}u_{\xi} + a_{21}u_{\theta} + a_{22}u_{\theta} + a_{23}u_{\theta} + a_{24}w'' + a_{25}w' + a_{26}w + a_{27}m_{\xi} + a_{28}m_{\xi} + a_{29}m_{\xi} = C_{3}$$

$$a_{30}u_{\xi} + a_{31}u_{\xi} + a_{32}u_{\theta} + a_{33}w' + a_{34}w' + a_{35}w + a_{36}m_{\xi} = C_{4}$$
(38)

where the a's and c's are given in Appendix A. These equations can be written in the matrix form

$$\mathbf{E}\mathbf{z}^{\prime} + \mathbf{F}\mathbf{z}^{\prime} + \mathbf{G}\mathbf{z} = \mathbf{e}$$
(19)

where

$$\mathbf{z} = \begin{bmatrix} \mathbf{u}_{\boldsymbol{\xi}} \\ \mathbf{u}_{\boldsymbol{\theta}} \\ \mathbf{w} \\ \mathbf{m}_{\boldsymbol{\xi}} \end{bmatrix}$$
(40)

and

$$E = \begin{bmatrix} a_{1} & 0 & 0 & 0 \\ 0 & a_{12} & a_{15} & 0 \\ 0 & a_{21} & a_{24} & a_{27} \\ 0 & 0 & a_{33} & 0 \end{bmatrix} = \begin{bmatrix} a_{2} & a_{4} & a_{6} & a_{8} \\ a_{10} & a_{13} & a_{16} & 0 \\ a_{19} & a_{22} & a_{25} & a_{28} \\ a_{30} & 0 & a_{34} & 0 \end{bmatrix}$$

$$G = \begin{bmatrix} a_{3} & a_{5} & a_{7} & a_{9} \\ a_{11} & a_{14} & a_{17} & a_{18} \\ a_{20} & a_{23} & a_{26} & a_{29} \\ a_{31} & a_{32} & a_{35} & a_{36} \end{bmatrix} = e = \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \end{bmatrix} = (c_{1} + c_{1} + c_{1})$$
(41)

1.9 BOUNDARY CONDITIONS

In the Sanders theory, the expressions for virtual work per unit length at the boundaries s = 0, \bar{s} are

$$= (\mathbf{N}_{\xi}\mathbf{U}_{\xi} + \mathbf{\hat{N}}_{\xi\theta}\mathbf{U}_{\theta} + \mathbf{\hat{Q}}_{\xi}\mathbf{W} + \mathbf{M}_{\xi}\Phi_{\xi})$$
(42)

where

$$\hat{N}_{\xi\theta} = \overline{N}_{\xi\theta} + \left[(3/2R_{\theta}) - (1/2R_{\xi}) \right] \overline{M}_{\xi\theta}$$
(43)

an '

$$\hat{Q}_{\xi} = (1/a\rho) \left[(\partial/\partial \xi) (\rho M_{\xi}) + 2(\partial \overline{M}_{\xi\theta} / \partial \theta) - \rho' M_{\theta} \right]$$
(44)

are "effective" membrane and transverse shears, respectively, per unit length. (See Figure 1-4.) This form of the virtual work indicates the kinds of boundary conditions that can be imposed; thus, either N_{ξ} or U_{ξ} may be prescribed, either $\hat{N}_{\xi\theta}$ or U_{θ} may be prescribed, and so on; or, more generally, N_{ξ} and U_{ξ} may be related through an elastic constraint against meridional displacement; and analogous constraints can link $\hat{N}_{\xi\theta}$ and U_{θ} , \hat{Q}_{ξ} and W, and M_{ξ} and Φ_{ξ} . Letting

$$\hat{N}_{\xi\theta} = \sigma_0 h_0 \sum_{n=1}^{\infty} \hat{t}_{\xi\theta} (n) \sin n\theta$$
$$\hat{Q}_{\xi} = \sigma_0 h_0 \sum_{n=0}^{\infty} \hat{i}_{\xi} (n) \cos n\theta$$

gives (dropping superscripts)

$$\hat{t}_{\xi\theta} = t_{\xi\theta} + (\lambda^2/2)(3\omega_{\theta} - \omega_{\xi})m_{\xi\theta}$$
$$\hat{f}_{\xi} = \lambda^2 \left[m_{\xi'} + \gamma (m_{\xi} - m_{\theta}) + (2n/\rho)m_{\xi\theta}\right]$$
(46)

Then the boundary conditions just discussed always can be written (for the nth Fourier components) as

$$\Omega \mathbf{y} + \Lambda \mathbf{z} = \mathbf{\pounds} \tag{47}$$

where

.

$$\mathbf{y} = \begin{bmatrix} \mathbf{t}_{\boldsymbol{\xi}} \\ \hat{\mathbf{t}}_{\boldsymbol{\xi}\boldsymbol{\theta}} \\ \hat{\mathbf{f}}_{\boldsymbol{\xi}} \\ \boldsymbol{\varphi}_{\boldsymbol{\xi}} \end{bmatrix}$$
(48)

Figure 1-4. Effective Boundary Forces and Moment

and where Ω and Λ are appropriate diagonal matrices, and l is a given column matrix. (For example, if u_{ξ} is given, the first diagonal element of Ω is zero, that of Λ is unity, and the first element of l is the prescribed value of u_{ξ} ; if there is an elastic constraint on u_{ξ} , then the first diagonal element of Ω is unity, that of Λ is the appropriate constraint coefficient, and the first element of l vanishes.) But now it is desirable to express the boundary conditions entirely in terms of z; from Equations 28 through 32 and 37, it follows that

$$t_{\xi} = b_{1}u_{\xi}' + b_{2}u_{\xi} + b_{3}u_{\theta} + b_{4}w - t_{T}$$

$$\hat{t}_{\xi\theta} = b_{5}u_{\xi} + b_{6}u_{\theta}' + b_{7}u_{\theta} + b_{8}w' + b_{9}w$$

$$\hat{f}_{\xi} = b_{1}0u_{\xi} + b_{11}u_{\theta}' + b_{12}u_{\theta} + b_{13}w' + b_{14}w + b_{15}m_{\xi}'$$

$$+ b_{16}m_{\xi} + \lambda^{2}Y(1 - \nu)m_{T}$$
(49)

where the b's are given in Appendix A. These equations, together with Equation 28a, give

$$\mathbf{y} = \mathbf{H}\mathbf{z}' + \mathbf{J}\mathbf{z} + \mathbf{f}$$
(50)

where

$$H = \begin{bmatrix} b_{1} & 0 & 0 & 0 \\ 0 & b_{6} & b_{8} & 0 \\ 0 & b_{11} & b_{13} & b_{15} \\ 0 & 0 & -1 & 0 \end{bmatrix} \qquad f = \begin{bmatrix} -t_{T} \\ 0 \\ \lambda^{2} \gamma (1 - \nu) m_{T} \\ 0 \end{bmatrix}$$

$$J = \begin{bmatrix} b_{2} & b_{3} & b_{4} & 0 \\ b_{5} & b_{7} & b_{9} & 0 \\ b_{10} & b_{12} & b_{14} & b_{16} \\ \omega_{\xi} & 0 & 0 & 0 \end{bmatrix} \qquad (51)$$

Hence, the boundary conditions (Equation 47) can be ritten as

.

$$\Omega Hz' + (\Lambda + \Omega J)z = \ell - \Omega f$$
(52)

1.10 SINGULAR POINTS (APEX CONDITION)

If the shell has a pole (i.e., r = 0), coefficients in the governing differential equations become singular. An improved procedure for handling such conditions has been outlined in References 9 and 9 and is used in the analysis. The boundary conditions at the apex of a closed shell of revolution are described as follows for each Fourier component (n)

$$u_{\xi} = u_{\theta} = w' = w_{\xi}' = 0 \qquad \text{for } n = 0$$

$$u_{\xi}' = u_{\xi} + u_{\theta} = w = m_{\xi} = 0 \qquad \text{for } n = 1$$

$$u_{\xi} = u_{\theta} = w = w' = 0 \qquad \text{for } n = 2$$

$$u_{\xi} = u_{\theta} = w = m_{\xi} = 0 \qquad \text{for } n \ge 3$$

These special conditions can be cast in a matrix form identical to Equation 52. For this case, the matrix $A + \Omega J$ is not of a diagonal form.

1.11 DISCONTINUITY CONDITIONS

The differential equations (39) are not valid at points in the shell in which discontinuities in geometry (and hence in the coefficients) occur; furthermore, z itself is ambiguous at a discontinuity in the inclination of the reference surface, where the directions of u_{ξ} and w change abruptly. Accordingly, special transition equations must be derived which relate z and its derivative on either side of a discontinuity.

In Reference 1, the special case in which reference surfaces coincide across a discontinuity was considered. (See Figure 1-5.) A more general condition, which was treated in Reference 2, occurs when reference surfaces do not coincide at discontinuities. This type of condition is considered for this program and will be referred to as eccentric discontinuities. The effects of external line load end moments applied at the discontinuity are included in the analysis (Figure 1-5). A typical eccentric discontinuity model is shown in Figure 1-6. Roman numeral superscripts refer to shell regions; thus, for the example considered, Il denotes values beyond and I values ahead of a discontinuity. The conconditions of geometrical compatibility are (Figures 1-5 and 1-6)

Figure 1-5. Discontinuity Conditions Figure 1-6. Eccentric Discontinuity Model

$$u_{\xi}^{II} = \left| u_{\xi}^{I} + E_{cc} \phi_{\xi}^{I} \right| \cos \psi - w^{I} \sin \psi$$

$$u_{\theta}^{II} = u_{\theta}^{I} + E_{cc} \phi_{\theta}^{I}$$

$$w^{II} = \left| u_{\xi}^{I} + E_{cc} \phi_{\xi}^{I} \right| \sin \psi + w^{I} \cos \psi$$

$$\phi_{\xi}^{II} = \phi_{\xi}^{I}$$
(53)

where E_{CC} is the dimensionless eccentricity of the participating reference surfaces measured along the radius of curvature behind the discontinuity point. It can be noted in Figure 1-6 that a positive value of E_{CC} corresponds to an abrupt increase in the radius of a parallel circle as one proceeds in the direction of increasing ξ . Equilibrium requires that

$$t_{\xi}^{II} = t_{\xi}^{I} \cos \psi - \hat{f}_{\xi}^{I} \sin \psi + P_{D} \sin \psi_{0}$$

$$\hat{t}_{\xi\theta}^{II} = \hat{t}_{\xi\theta}^{I}$$

$$\hat{f}_{\xi}^{II} = t_{\xi}^{I} \sin \psi + \hat{f}_{\xi}^{I} \cos \psi - P_{D} \cos \psi_{0}$$

$$m_{\xi}^{II} = m_{\xi}^{I} - \frac{E_{cc}}{\lambda^{2}} t_{\xi}^{I} - M_{D}$$
(54)

where P_D and M_D are Fourier coefficients of series expansions for externally applied line loads and moments; i.e.,

$$\overline{P}_{D} = \frac{\sigma_{0}h_{0}}{a} \sum_{n=0}^{\infty} P_{D} \cos n\theta$$

$$\overline{\mathbf{M}}_{\mathbf{D}} = \frac{\sigma_0 \mathbf{h}_0^3}{\alpha} \sum_{\mathbf{n}=\mathbf{0}}^{\infty} \mathbf{M}_{\mathbf{D}} \cos \mathbf{n} \, \boldsymbol{\theta}$$

The information in Equations 53 and 54 is reproduced in the equations

$$y^{II} = \Psi y^{I} + \Phi_{0} P_{D}$$
 (55)

$$z^{II} = \Phi z^{I} + \not\approx y^{I} + \Psi M_{D}$$
 (56)

where

 $\mathbf{\Lambda}$

$$\Psi = \begin{bmatrix} \cos \psi & 0 & -\sin \psi & 0 \\ 0 & 1 & 0 & 0 \\ \sin \psi & 0 & \cos \psi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(57)
$$\Phi = \mathbf{E_{cc}} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & (\omega_{\theta})_{j}\mathbf{I} & \mathbf{n}/\rho_{j}\mathbf{I} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \overline{\Psi}$$
(58)
$$\Rightarrow = \mathbf{E_{cc}} \begin{bmatrix} 0 & 0 & 0 & \cos \psi \\ 0 & 0 & 0 & \cos \psi \\ 0 & 0 & 0 & \sin \psi \\ -1/\chi^{2} & 0 & 0 & 0 \end{bmatrix}$$
(59)

$$\boldsymbol{\phi}_{0} = \begin{bmatrix} \sin \psi_{0} \\ 0 \\ -\cos \psi_{0} \\ 0 \end{bmatrix}$$
(60)
$$\boldsymbol{\eta} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \end{bmatrix}$$
(61)

Combining Equations 55, 56, and 50 then provides the equations relating $(z')^{II}$, $(z')^{I}$, and z^{I} :

$$H^{II}(z^{II}) + \left[J^{II}\Psi - \Psi J^{I}\right] z^{I} - \Psi H^{I}(z^{I}) = \Phi_{O}P_{D} + \Psi f^{I} - f^{II} \qquad (62a)$$

$$z^{II} = \Phi_{Z}I + H^{I}z^{I} + H^{I}z^{I}$$

where the Roman numerals I and II mean that the matrices H, J, and f are to be calculated from Equation 51 on the basis of shell properties just behind and ahead of the discontinuity, respectively. The equilibrium equations (39), the boundary conditions (52), and the discontinuity conditions (62) will now be cast into a unified set of appropriate finite-difference equations suitable for numerical analysis.

1.12 FINITE DIFFERENCE FORMULATION

A finite difference technique will be used in the solution of the shell equations. In treating complicated shell configurations, it will at times be necessary and convenient for analysis purposes to divide the mathematical model of the shell in combinations of smaller region. The dividing line between regions is usually selected at discontinuity regions. (See Section 2.5.) In the finite difference formulation, the path region will be subdivided into (N^P-1) equal increments of length Δ^P . N^P corresponds to the number of station or pivotal points considered for the region. The pivotal points are identified along the meridian by the integer index i, starting from i = 1 at $\xi = 0$ (station 1) and proceeding to N-th station (i = N) occurring at the endpoint of the region (see Figure 1-7).

Figure 1-7. Meridional Grid Points

The regions are designated by Roman numeral superscripts I, II, etc., and discontinuity stations by $i = J^P$. For the discontinuity junction illustrated in Figure 1-8, the discontinuity j^I would correspond to station i = N of region I, j^{II} station i = 1 of region II, etc. The increment Δ^P can be varied from region to region. Thus, it is possible to introduce fictitious discontinuities wherever a change in increment size is considered desirable.

The differential equations (39), boundary conditions (52) (excepting the closed apex condition), and discontinuity conditions (62) are written in finite difference form at all stations on the basis of the usual central difference formulas

$$z''_{i} = (z_{i+1} - 2z_{i} + z_{i+1})/\Delta^{2}$$

$$z'_{i} = (z_{i+1} - z_{i-1})/2\Delta$$
(63)

where the Δ must, of course, be the one corresponding to the region associated with the station i.

Applying the above expressions at the endpoints of a region (i = 1, N) results in fictitious points occurring outside the range of the region

(i.e., i = 0, N + 1). Figure 1-8 illustrates the mathematical model used at a discontinuity point with fictitious points j^{II-1} and j^{I+1} resulting from application of difference expressions

Fig re 1-8. Finite Difference Stations in Discontinuity Region

The fictitious points can be mathematically eliminated by applying both boundary (or discontinuity) and equilibrium conditions at the endpoints. The details of this type of operation are described in Reference 2. In the original analysis of Reference 1, a somewhat different approach was utilized in that equilibrium was not satisfied at endpoints. The improved procedure of Reference 2 permits a more accurate representation of shell behavior at endpoints.

In case of a pole condition (r = 0), the singularity does not permit writing both equilibrium and compatibility; as a result, the procedure must be modified for this case. The approach used for this special case is to express derivatives at endpoints in terms of modified forward (backward) differences. The boundary condition for a pole condition will be written at i = 0 and i = N with the help of

$$z'_{i} = (-3 z_{1} + 4 z_{2} - z_{3})/2\Delta$$

 $z'_{N} = (3^{2} N - 4 z_{N-1} + z_{N-2})/2\Delta$ (64)

The order of approximation of these expressions is the same as the usual central difference expressions and is usually more accurate than simple forward or backward difference expressions used in Reference 1.

The convention will now be adopted that, at the discontinuity (say P = 1), whenever z_j is written without a qualifying superscript, it means z_j^I ; then, whenever z_j^{II} appears, it will be replaced by utilizing relationship according to Equation 58b. Similar operations would occur for subsequent discontinuities. The results of writing the various difference equations just described can be stated compactly (excepting for pole conditions) as the following set of algebraic equations for z_i (i = 1, 2, 3, ..., N):

$$A_{1}z_{2} + B_{1}z_{1} = g_{1}(i = 1)$$

$$A_{i}z_{i+1} + B_{i}z_{i} + C_{i}z_{i-1} = g_{i} (i = 2, 3, ... N - 1)$$

$$B_{N}z_{N} + C_{N}z_{N-1} = g_{N}(i = N)$$
(65)

Here, at $i = 2, 3, \ldots$ N - 1 the internal points of the region we have

$$A_{i} = (2E_{i}/\Delta) + F_{i}$$

$$B_{i} = -(4E_{i}/\Delta) + 2\Delta G_{i}$$

$$C_{i} = (2E_{i}/\Delta) - F_{i}$$

$$g_{i} = 2\Delta e_{i}$$
(66)

where the appropriate value for Δ is used.

At i = 1, we have been using the procedure outlined above and described in Reference 2 following

$$A_{1} = \frac{\Omega_{1}H_{1}}{2\Delta_{1}} + \frac{\Omega_{1}H_{1}}{2\Delta_{1}}\overline{C}_{1}^{-1}\overline{A}_{1}$$

$$B_{1} = \Lambda_{1} + \Omega_{1}J_{1} + \frac{\Omega_{1}H_{1}}{2\Delta_{1}}\overline{C}_{1}^{-1}\overline{B}_{1}$$

$$g_{1} = \ell_{1} - \Omega_{1}f_{1} + \frac{\Omega_{1}H_{1}}{2\Delta_{1}}\overline{C}_{1}^{-1}2\Delta_{1}e_{1}$$
(67)

and i = N

$$B_{N} = \Lambda_{N} + \Omega_{N} J_{N} - \Omega_{N} H_{N} \overline{A}_{N}^{-1} \overline{B}_{N}$$

$$C_{N} = -\frac{\Omega_{N} H_{N}}{2\Delta_{N-1}} - \frac{\Omega_{N} H_{N}}{2\Delta_{N-1}} \overline{A}_{N}^{-1} \overline{C}_{N}$$

$$G_{N} = \ell_{N} - \Omega_{N} f_{N} - \frac{\Omega_{N} H_{N}}{2\Delta_{N-1}} \overline{A}_{N}^{-1} 2\Delta_{N-1} e_{N}$$
(68)

where the matrices $\overline{A}_1, \overline{B}_1, \overline{C}_1$ and $\overline{A}_N, \overline{B}_N, \overline{C}_N$ are of the form of Equation 66 evaluated at i - 1 and N, respectively.

At discontinuity locations j^P , considerably more complicated expressions for the matrices are obtained than are reported in Reference 1, which arises due to the improved numerical model and the fact that eccentric discontinuities are considered. The details of obtaining these expressions are reported in Reference 2. As a result, the following form of the matrices of discontinuity location is obtained:

$$\begin{split} \mathbf{A}_{j} &= \frac{\mathbf{H}^{II}}{2\Delta^{II}} + \left(\frac{\mathbf{H}^{II}}{2\Delta^{II}} \right) \cdot \left(\mathbf{C}^{II} \right)^{-1} \cdot \mathbf{A}^{II} \\ \mathbf{B}_{j} &= \left(\frac{\mathbf{H}^{II}}{2\Delta^{II}} \right) \cdot \left(\mathbf{C}^{II} \right)^{-1} \mathbf{B}^{II} \cdot \left[\mathbf{\Phi} - \left(\frac{\mathbf{P}^{\mathbf{P}}\mathbf{H}^{I}}{2\Delta^{I}} \right) \left(\mathbf{A}^{I} \right)^{-1} \cdot \mathbf{B}^{I} + \mathbf{P}^{\mathbf{P}}\mathbf{H}^{I} \right] + \left[\mathbf{Y} \right] \\ &- \left[\mathbf{X} \right] \cdot \left(\mathbf{A}^{I} \right)^{-1} \mathbf{B}^{I} \\ \mathbf{C}_{j} &= - \left(\frac{\mathbf{H}^{II}}{2\Delta^{II}} \right) \cdot \left(\mathbf{C}^{II} \right)^{-1} \cdot \mathbf{B}^{II} \left(\frac{\mathbf{P}^{\mathbf{P}}\mathbf{H}^{I}}{2\Delta^{I}} + \frac{\mathbf{P}^{\mathbf{P}}\mathbf{H}^{I}}{2\Delta^{I}} \right) \left(\mathbf{A}^{I} \right)^{-1} \cdot \mathbf{C}^{I} \right] \\ &- \left[\mathbf{X} \right] \cdot \left(\mathbf{A}^{I} \right)^{-1} \mathbf{C}^{I} - \left[\mathbf{X} \right] \\ \mathbf{g}_{j} &= \left(\frac{\mathbf{H}^{II}}{2\Delta^{II}} \right) \cdot \left(\mathbf{C}^{II} \right)^{-1} \cdot \left[\mathbf{g}^{II} - \mathbf{B}^{II} \cdot \left(\frac{\mathbf{P}^{\mathbf{P}}\mathbf{H}^{I}}{2\Delta^{I}} \right) \left(\mathbf{A}^{I} \right)^{-1} + \mathbf{g}^{I} - \mathbf{B}^{II} \mathbf{P}^{\mathbf{P}}\mathbf{H}^{I} \right] \\ &- \left[\mathbf{X} \right] \cdot \left(\mathbf{A}^{I} \right)^{-1} \mathbf{g}^{I} - \left[\mathbf{L} \right] \end{split}$$
(69)

where

$$\begin{vmatrix} \mathbf{X} \\ = (\mathbf{J}^{\mathbf{I}\mathbf{I}} \mathbf{H}^{\mathbf{I}} - \Psi) \cdot \left(\frac{\mathbf{H}^{\mathbf{I}}}{\mathbf{2}\mathbf{\Delta}^{\mathbf{I}}}\right)$$
$$\begin{vmatrix} \mathbf{Y} \\ = \mathbf{J}^{\mathbf{I}\mathbf{I}} (\mathbf{A} + \mathbf{H}^{\mathbf{H}} \mathbf{J}^{\mathbf{I}}) - \Psi \mathbf{H}^{\mathbf{I}} \\ \mathbf{I} \\ = (\mathbf{J}^{\mathbf{I}\mathbf{H}} + \mathbf{H}^{\mathbf{H}} \mathbf{H}^{\mathbf{I}} \mathbf{H}^{\mathbf{I}} \mathbf{H}^{\mathbf{I}}$$
(70)

The A, B, C, and g matrices in Equation 69 are given for either points j^{I} or j^{II} by Equation 66 with the appropriate superscript attached to E, F, G and Δ . At station just past a discontinuity $(j^{II} + 1)$ the matrices must be modified as follows: *

$$C_{j+1}^{*} = C_{j+1}^{II} \left[\left[\mathbf{A} + \mathbf{A} \mathbf{J}^{I} - \mathbf{A} \mathbf{A}^{I} \mathbf{A}^{I} \cdot (\mathbf{A}^{I})^{-1} \cdot \mathbf{B}^{I} \right] \right] + \frac{\mathbf{A} \mathbf{A}^{II}}{2\Delta^{I}} \left[\mathbf{I} + \mathbf{A}^{I-1} \mathbf{C}^{I} \right] \mathbf{P}_{j-1}^{I} \right]$$

$$g_{j+1}^{*} = g_{j+1}^{II} - C_{j+1}^{II} \mathbf{A} \mathbf{A}^{I} - C_{j+1}^{II} \left[\frac{\mathbf{A} \mathbf{A}^{I}}{2\Delta^{I}} \cdot (\mathbf{A}^{I})^{-1} \mathbf{g}^{I} \right] + C_{j+1}^{II} \left[\frac{\mathbf{A} \mathbf{A}^{I}}{2\Delta^{I}} \left[\mathbf{I} + (\mathbf{A}^{I})^{-1} \cdot \mathbf{C}^{I} \right] \right] \mathbf{X}_{j-1}^{I}$$
(71)

1.13 MATRIX SOLUTION OF DIFFERENCE EQUATIONS

The set of matrix equations (65) will be solved by essentially the same formal procedure that is used in Reference 1 for the analogous equation for the case of axisymmetric leading of shells of revolution; this procedure is actually equivalent to solution by the method of Gaussian elimination used in Reference 1 for the same axisymmetric loading problem. In its most primitive form, the Gaussian elimination technique would proceed as follows: the first of Equations 65 would be solved for z_1 in terms of z_2 ; this result would be substituted into the next equation, and z_2 would be found in terms of z_3 and so on; finally, the very last equation, together with the result for s_{N-1} in terms of z_N would determine z_N and then all of the z's would be calculated in reverse order. A minor modification of this method is desirable, however (and sometimes essential), in the treatment of Equation 65 for the matrix B₀ sometimes may be singular.* Accordingly, the solution is started by the simultaneous solution for z_0 and z_1 , in terms of z_2 and then proceeds as just described. From

$$A_{1}z_{2} + B_{1}z_{1} = g_{1}$$

 $B_{2}z_{2} + C_{2}z_{1} = g_{2} - A_{2}z_{3}$

it follows that

$$\mathbf{z}_{2} = - \left[\mathbf{B}_{1} \mathbf{C}_{2}^{-1} \mathbf{B}_{2} - \mathbf{A}_{1} \right]^{-1} \left[\mathbf{B}_{1} \mathbf{C}_{2}^{-1} \mathbf{A}_{2} \mathbf{z}_{3} - \mathbf{B}_{1} \mathbf{C}_{2}^{-1} \mathbf{g}_{2} + \mathbf{g}_{1} \right]$$
(72)

Now write the general result for z_i in terms of z_{i+1} as

$$z_{i} = -P_{i}z_{i+1} + x_{i}$$
 (i = 1, 2, ... N - 1) (73)

Then, the substitution of $z_{i-1} = -P_{i-1}z_i + x_{i-1}$ into the general equation (65) provides the results

$$P_{i} = \left| B_{i} - C_{i} P_{i-1} \right|^{-1} A_{i}$$

$$x_{i} = \left| B_{i} - C_{i} P_{i-1} \right|^{-1} \left| g_{i} - C_{i} x_{i-1} \right| \quad (i = 2, 3, ..., N - 1) \quad (74)$$

*This occurs, for example, in the case of a clamped edge, with $u_{\xi} = u_{\theta} = w = \phi_{\xi} = 0$; then

giving

$$\mathcal{L}_{0} = \mathbf{0} \qquad \begin{bmatrix} \mathbf{0} & & \\ & \mathbf{0} & \\ & & \mathbf{0} & \\ & & \mathbf{0} & \\ & & & \mathbf{0} \end{bmatrix} \qquad \mathbf{A}_{0} = \begin{bmatrix} \mathbf{1} & & \\ & \mathbf{1} & \\ & & \mathbf{0} \end{bmatrix} \qquad \mathbf{B}_{0} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \end{bmatrix}$$

which is singular.

The recurrence relations (Equation 74), with the initial from (Equation 72),

$$P_{2} = |B_{1}C_{2}^{-1} B_{2} - A_{1}|^{-1} B_{1}C_{2}^{-1} A_{2}$$

$$x_{2} = |B_{1}C_{2}^{-1} B_{2} - A_{1}|^{-1} B_{1}C_{2}^{-1} g_{2} - g_{1}$$
(75)

then provide all the P's and x's up to P_{N-1} and x_{N-1} . Substitution of $z_{N-1} = -P_{N-1} z_N + x_{N-1}$ into the last of Equation (66) then gives

$$\mathbf{z_N} = \left| \mathbf{B_N} - \mathbf{C_N P_{N-1}} \right|^{-1} \left| \mathbf{g_N} - \mathbf{C_N x_{N-1}} \right|$$
(76)

and then z_{N-1} , z_{N-2} , ... z_1 can be found from Equation 73. Finally, z_0 is given by

$$z_1 = C_2^{-1} \left[g_2 - A_2 z_1 - B_2 z_3 \right]$$
 (77)

Thus, the only matrix inversions involved in the solution for all the z's are of 4 x 4 matrices, and the process is very well suited for rapid machine computation. The z_j obtained at a discontinuity station is, of course, really z_j^I . The value of z_j^{II} at this point can be evaluated from Equation 62b. For a singular or pole condition, a slight modification in the elimination procedure is involved to accommodate for finite difference form (Equation 64) applied at an endpoint. The details of this procedure are described in Reference 2.

1.14 CALCULATION OF STRESSES

Once the z's have been calculated, the stresses at any point in the shell can be found. The stresses in the present solution are obtained from the expansions

$$\sigma_{\xi} = \sum_{n=0}^{\infty} \sigma_{\xi}(n) \cos n\theta$$
$$\sigma_{\theta} = \sum_{n=0}^{\infty} \sigma_{\theta}(n) \cos n\theta$$
$$\sigma_{\xi} = \sum_{n=1}^{\infty} \sigma_{\xi} \theta(n) \sin n\theta \qquad (78)$$

Inverting the constitutive relations (Equation 15) and using Equations 23, 24, and 26 gives

$${}^{\sigma}\xi^{(n)} = \frac{E_{\sigma_0}}{E_0(1-\nu^2)} \left[e_{\xi}^{(n)} + \nu e_{\theta}^{(n)} + \frac{\zeta}{a}^{(k}(k_{\xi}^{(n)} + \nu k_{\theta}^{(n)}) \right] - \frac{E_{\sigma}T^{(n)}}{1-\nu}$$

$${}^{\sigma}\theta^{(n)} = \frac{E_{\sigma}}{E_0(1-\nu^2)} \left[e_{\theta}^{(n)} + \nu e_{\xi}^{(n)} + \frac{\zeta}{a}^{(k}(k_{\theta}^{(n)} + \nu k_{\theta}^{(n)}) \right] - \frac{E_{\sigma}T^{(n)}}{1-\nu}$$

$${}^{\sigma}\xi\theta^{(n)} = \frac{E_{\sigma}}{E_0(1+\nu)} \left[e_{\xi}\theta^{(n)} + \frac{\zeta}{a}^{(k}\xi\theta^{(n)}) \right]$$

$$(79)$$

Note that E, u, and $T^{(n)}$ all may depend on 5, the distance from the reference surface.

Using Equations 32a, 32b, and 37 (and, again, casually dropping superscripts n) gives

$$k_{\xi} + v k_{\theta} = \frac{m_{\xi} + m_{T}}{d}$$

$$k_{\theta} + v k_{\xi} = \frac{m_{\theta} + m_{T}}{d} = \frac{v (m_{\xi} + m_{T})}{d} + (1 - v^{2})k_{\theta}$$

which, when used in Equation 79, together with the strain-rotationdisplacement equations (28 through 30), leads to

$$\begin{bmatrix} \sigma_{\xi}^{(n)} \\ \sigma_{\theta}^{(n)} \\ \sigma_{\xi\theta}^{(n)} \end{bmatrix} = K\mathbf{z}' + \mathbf{L}\mathbf{z} + \sigma_{T}$$
(80)

$$\mathbf{K} = \frac{\mathbf{E}\,\sigma}{\mathbf{E}_{0}\,(1-\nu^{2})} \begin{bmatrix} 1 & 0 & 0 & 0 \\ \nu & 0 & -\frac{\zeta \gamma(1-\nu^{2})}{a} & 0 \\ 0 & \frac{1-\nu}{2} & \left[1 + \frac{\zeta}{2a}\,(3\omega_{\theta} - \omega_{\xi}) \right] & \frac{\zeta}{a}\,(1-\nu)\frac{n}{p} & 0 \end{bmatrix}$$
(81)

$$I_{-} = \frac{E_{e_{0}}}{E_{0}(1-v^{2})} \begin{bmatrix} v_{1} & v_{1} & v_{1} & v_{1} \\ v_{1} & \frac{(1-v^{2})!_{u}}{4} & v_{1} \\ v_{1} & \frac{(1-v^{2})!_{u}}{4} & v_{1} \\ \frac{(1-v^{2})!_{u}}{4} & \frac{(1-v^{2})!_{u}}{4} \end{bmatrix} & v_{1} & \frac{(1-v^{2})!_{u}}{4} & \frac{(1-v^{2})!_{u}}{4} \\ \frac{(1-v)!_{u}}{4} & \frac{(1-v)!_{u}}{4} & \frac{(1-v)!_{u}}{4} & \frac{(1-v)!_{u}}{4} \\ \frac{(1-v)!_{u}}{4} & \frac{(1-v)!_{u}}{4} & \frac{(1-v)!_{u}}{4} \\ \frac{(1-v)!_{u}}{4} & \frac{(1-v)!_{u}}{4} & \frac{(1-v)!_{u}}{4} \\ \frac{(1-v)!_{u}}{4} \\ \frac{(1-v)!_{u}}{4} & \frac{(1-v)!_{u}}{4} \\ \frac{(1-v)$$

1.15 REMARK CONCERNING THE REFERENCE SURFACE

A substantial simplification in setting up the numerical analysis for computation may result from the observation that, in the spirit of thinshell theory, errors of the order of the thickness in the specification of the reference surface can be tolerated in the formulation of the equation of equilibrium. It is recommended accordingly that the key geometric function r(s) be started with respect to a surface chosen simply according to convenience anywhere in the shell wall. In other words, the condition (Equation 1) need not be imposed insofar as calculations of t e various geometrical parameters ρ , ω_{ρ} , ω_{ϵ} , and γ are concerned. Of course, if Equation 1 can be satisfied easily in these calculations, there is no harm in doing so; but when, for example, the same shell is to be analyzed for several different temperature conditions with different resultant variations of Young's modulus, it is not recommended that new reference surfaces and new variations of P, ω_{θ} , etc., be calculated for each case. On the other hand, it is essential that the rigorous location of the reference surface enter into Equations 34 and 36 for the nondimensional bending stiffness d and the thermal moment mT. Similarly, the correct value of ζ as measured from the true reference surface must be used in Equations 80 through 83 for the stresses.

1.16 BRANCHING OF SHELL REGIONS

It has been tacitly assumed that the shell under consideration has no more than two boundaries; a multiple-branch shell such as shown in Figure 1-9a may be analyzed, however, by applying appropriate transition conditions at the branch point.

Define separate families of auxiliary matrices P^{I} , P^{II} , P^{II} , x^{I} , x^{II} and x^{III} with the properties

$$\mathbf{z}_{i}^{I} = -\mathbf{P}_{i}^{I} \mathbf{z}_{i+1}^{I} + \mathbf{x}_{i}^{I}$$

$$\mathbf{z}_{i}^{II} = -\mathbf{P}_{i}^{II} \mathbf{z}_{i+1}^{II} + \mathbf{x}_{i}^{II}$$

$$\mathbf{z}_{i}^{III} = -\mathbf{P}_{i}^{III} \mathbf{z}_{i+1}^{III} + \mathbf{x}_{i}^{III}$$
(84)

Figure 1-9. Branched Shells

where the superscripts refer to the separate branches shown in Figure 1-9a. It is possible to start the calculations of PI, xI and PII, xII at the boundaries of branches I and II and then leap across the juncture j to the calculation of PIII, xIII. The reverse sweep for the calculation of the z's then would start at the boundary of branch III and, at the juncture j, continue independently along the branches I and II back to their respective boundaries. The details of this procedure are herein given. This method can be extended readily to handle a multiplicity of branches as in Figure 1-9b; it will not, however, be applicable to closed loops (Figure 1-9c), which must be treated separately by traditional cut-and-fit methods of indeterminate structural analysis. The mathematical model considered for the numerical solution of branched shell problems is shown in Figure 1-10 with the possibility of a concentrated force P_D and M_D applied at the juncture included. The program has been set up to handle 4 shell branches meeting at a common point.

Figure 1-10. Mathematical Model for Branched Shell

By analogy with the previous discussion on discontinuity conditions, we may repeat here for branched shells the compatibility and equilibrium equations in the following manner:

$$\begin{array}{c}
\mathbf{u}_{\xi}^{IV} = \mathbf{u}_{\xi}^{M} \cos\psi^{M} - \mathbf{w}^{M} \sin\psi^{M} \\
\mathbf{u}_{\theta}^{IV} = \mathbf{u}_{\theta}^{M} \\
\mathbf{w}^{IV} = \mathbf{u}_{\theta}^{M} \sin\psi^{M} + \mathbf{w}^{M} \cos\psi^{M} \\
\phi_{\xi}^{IV} = \phi_{\xi}^{M}
\end{array}$$
(M = I, II or III)

(85)

Equilibrium:
$$t_{\xi}^{IV} - \sum_{M=1}^{III} t_{\xi}^{M} \cos^{\psi}M + \sum_{M=1}^{III} \hat{f}_{\xi}^{M} \sin^{\psi}M - \overline{P} \sin\phi_{0} = 0$$

 $t_{\xi\theta}^{IV} - \sum_{M=1}^{III} t_{\xi\theta}^{M} = 0$
 $\hat{f}_{\xi}^{IV} - \sum_{M=1}^{III} t_{\xi}^{M} \sin^{\psi}M - \sum_{M=1}^{III} \hat{f}_{\xi}^{M} \cos^{\psi}M + \overline{P} \cos\phi_{0} = 0$
 $m_{\xi}^{IV} - \sum_{M=1}^{III} m_{\xi}^{M} + \overline{M} = 0$
(86)

By recalling the definition of the y (Equation 48) and z (Equation 40) matrices and introducing the diagonal matrices

$$\beta = \begin{bmatrix} 1 & & \\ & 1 & \\ & & & 0 \end{bmatrix} \qquad \eta = \begin{bmatrix} 0 & & \\ & 0 & \\ & & & 1 \end{bmatrix} \qquad (87)$$

Equations 65 and 86 may be recast in the formulas for compatibility

$$\beta \mathbf{z}^{\mathbf{IV}} + \eta \mathbf{y}^{\mathbf{IV}} = \beta \Psi^{\mathbf{I}} \mathbf{z}^{\mathbf{I}} + \eta \mathbf{y}^{\mathbf{I}} = \beta \Psi^{\mathbf{II}} \mathbf{z}^{\mathbf{II}} + \eta \mathbf{y}^{\mathbf{II}} = \beta \Psi^{\mathbf{III}} \mathbf{z}^{\mathbf{III}} + \eta \mathbf{y}^{\mathbf{III}}$$
(88)

and for equilibrium

$$\beta \mathbf{y}^{\mathbf{IV}} + \eta \mathbf{z}^{\mathbf{IV}} = \sum_{\mathbf{M}=\mathbf{I}}^{\mathbf{III}} \beta \Psi^{\mathbf{M}} \mathbf{y}^{\mathbf{M}} + \eta \mathbf{z}^{\mathbf{M}} + \bar{\Phi} \overline{\mathbf{P}} + \bar{\eta} \overline{\mathbf{M}}$$
(89)

where

$$\bar{\Phi} = \begin{vmatrix} \sin \phi_0 \\ 0 \\ -\cos \phi_0 \\ 0 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$$
(90)

Introducing Equations 36 into 88 and 89 and noting $\eta f = 0$; $\beta f = f$ and $\beta \Psi f = \Psi f$, we obtain:

for compatibility:

$$\eta \mathbf{H}_{\mathbf{IV}} \left(\mathbf{z}^{\mathbf{IV}} \right)' + \left(\eta \mathbf{J}_{\mathbf{IV}} + \beta \right) \mathbf{z}^{\mathbf{IV}} \mathbf{z} \eta \mathbf{H}_{\mathbf{I}} \mathbf{z}^{\mathbf{I}} + \left(\eta \mathbf{J}_{\mathbf{I}} + \beta \Psi^{\mathbf{I}} \right) \mathbf{z}^{\mathbf{I}}$$
$$= \eta \mathbf{H}_{\mathbf{II}} \mathbf{z}_{\mathbf{II}}' + \left(\eta \mathbf{J}_{\mathbf{II}} + \beta \Psi^{\mathbf{II}} \right) \mathbf{z}^{\mathbf{II}}$$
$$= \eta \mathbf{H}_{\mathbf{III}} \mathbf{z}_{\mathbf{II}}' + \left(\eta \mathbf{J}_{\mathbf{III}} + \beta \Psi^{\mathbf{III}} \right) \mathbf{z}^{\mathbf{III}}$$
(91)

and for equilibrium

$$\beta H_{IV}(z^{IV})' + (\beta J_{IV} + \eta) z^{IV} = \sum_{M=I}^{III} \left[\beta \Psi M_{H_M} z^{M'} + (\beta \Psi M_{J_M} + \eta) z^{M'} + \Psi M_{f_M} \right] - f_{IV} + \overline{\Phi} \overline{P} + \overline{\eta} \overline{M}$$
(92)

A central finite difference scheme is used to obtain the numerical solution of Equations 91 and 92 within the framework of the Gaussian elimination procedure.

To eliminate the fictitious points (they will be used in calculating for internal forces and stresses at junction) \mathbf{z}_{j+1} , \mathbf{z}_{j+1}^{III} , \mathbf{z}_{j+1}^{III} and \mathbf{z}_{j+1}^{III} that appear, we utilize the equilibrium equations at the ends of the adjoining regions of the juncture in a fashion similar to that used in the discontinuity section. After substituting the expressions for fictitious points in Equations 91 and 92 and recalling the definitions of the A, B, and C matrices (Equations 52), we may write the recursive equation equivalent of Equation 54 for the branched shell. As (for \mathbf{j}^{IV}):

$$\mathbf{z}_{j}^{IV} = -\mathbf{P}_{j}^{IV} \mathbf{z}_{j+1}^{IV} + \mathbf{X}_{j}^{IV}$$
(93)

where

$$\mathbf{P}_{j}^{IV} = \mathbf{L}_{\mathbf{M}}^{-1} \left\{ \frac{\beta \mathbf{H}_{IV}}{2\Delta_{IV}} \left[\mathbf{I} + \mathbf{C}_{IV}^{-1} \mathbf{A}_{IV} \right] - \left[\sum_{\mathbf{M}=\mathbf{I}}^{\mathbf{III}} (\mathbf{K}_{\mathbf{M}}) \right] \left[\frac{\eta \mathbf{H}_{IV}}{2\Delta_{IV}} \mathbf{I} + \mathbf{C}_{IV}^{-1} \mathbf{A}_{IV} \right] \right\}$$

Ł

$$X_{j}^{IV} = L_{M}^{-1} \left\{ \left[\frac{\beta H_{IV}}{2\Delta_{IV}} C_{IV}^{-1} g_{IV} - f_{IV} + \sum_{M=I}^{III} \left| \beta \psi^{M} \frac{H_{M}}{2\Delta_{M}} A_{M}^{-1} g_{M} + \psi^{M} f_{M} \right. \right. \\ \left. - \frac{\beta \psi^{M} H_{M}}{2\Delta_{M}} \left[A_{M}^{-1} C_{M} + I \right] X_{j}^{M-1} \right] - \sum_{M=I}^{III} \left| (K_{M}) \left[\frac{\gamma H_{IV}}{2\Delta_{IV}} C_{IV}^{-1} g_{IV} \right] \right. \\ \left. + \eta \frac{H_{IV}}{2\Delta_{IV}} A_{IV}^{-1} g_{IV} - \frac{\eta H_{IV}}{2\Delta_{IV}} \left[A_{IV}^{-1} C_{IV} + I \right] X_{j}^{M-1} \right] \right\} \right\}$$
(94)

and

$$K_{M} = \left\{ \frac{\beta \Psi^{M} H_{M}}{2\Delta_{M}} \left[-A_{M}^{-1} B_{M} + A_{M}^{-1} C_{M} P_{j}^{M-1} + P_{j}^{M-1} \right] + \left(\beta \Psi^{M} J_{M} + \eta\right) \right\} M_{M}^{-1}$$

$$L_{M} = \left\{ \left[\left(\beta J_{IV} + \eta\right) + \frac{\beta H_{IV}}{2\Delta_{IV}} C_{IV}^{-1} B_{IV} \right] - \sum_{M=I}^{III} K_{M} \left[\frac{\eta H_{IV}}{2\Delta_{IV}} C_{IV}^{-1} B_{IV} \right] + \left(\eta J_{IV} + \beta\right) \right\}$$

$$(95)$$

where

$$M_{M} = \frac{\eta H_{M}}{2\Delta_{M}} \left[-A_{M}^{-1} B_{M} + A_{M}^{-1} C_{M} P_{j}^{M-1} + P^{M-1} \right] + (\eta J_{M} + \beta \Psi^{M})$$

For the remaining branch segments (i.e., M = I, II, III), the following recursion formula is used:

$$\mathbf{z}_{j}^{M} = \mathbf{Q}_{j}^{M} \mathbf{z}_{j}^{IV} + \mathbf{P}_{j}^{M} \mathbf{z}_{j+1}^{IV} + \mathbf{X}_{j}^{M}$$
(96)

where

$$\begin{split} \Omega_{j}^{M} &= M_{M}^{-1} \quad \left\{ \begin{array}{l} \frac{\eta H_{IV}}{2\Delta_{IV}} \ C_{IV}^{-1} \ B_{IV} + (\eta \ J_{IV} + \beta) \right\} \\ P_{j}^{M} &= M_{M}^{-1} \quad \left\{ \begin{array}{l} \frac{\eta H_{IV}}{2\Delta_{IV}} \left[I - C_{IV}^{-1} \ A_{IV} \right] \right\} \\ X_{j}^{M} &= M_{M}^{-1} \quad \left\{ -\eta \frac{H_{IV}}{2\Delta_{IV}} \ C_{IV}^{-1} \ g_{IV} - \eta \frac{H_{M}}{2\Delta_{M}} \ A_{M}^{-1} \cdot g_{M} \\ &+ \frac{\eta H_{M}}{2\Delta_{M}} \left[A_{M}^{-1} \ C_{M} + I \right] \ X_{j}^{M-1} \right\} \end{split}$$

and (M_M) is given by Equation 95.

Thus, from a knowledge of P_{j-1}^{I} , P_{j-1}^{II} , P_{j-1}^{III} - --, P_{j-1}^{N-1} and X_{j-1}^{I} , X_{j-1}^{II} , --, X_{j-1}^{N-1} , the calculation can proceed directly to the determination of the Nth shell region, P_{j}^{N} , X_{j}^{N} and then to the boundary of branch N in the standard fashion.

APPENDIX IA: FORMULAS FOR COEFFICIENTS

The coefficients a₁, a₂... a₃₆ in Equation 38 are as follows:

$$a_{1} = b$$

$$a_{2} = \gamma b + b'$$

$$a_{3} = \nu b' \gamma - \nu b \omega_{\xi} \omega_{\theta} - b \gamma^{2} - \frac{(1 - \nu)bn^{2}}{2\rho^{2}} - \lambda^{2} d (1 - \nu) \left[(1 + \nu) \gamma^{2} \omega_{\xi}^{2} + \frac{(3 \omega_{\xi} - \omega_{\theta})^{2} n^{2}}{8\rho^{2}} \right]$$

$$a_{4} = \frac{(1+v)bn}{2\rho} + \frac{\lambda^{2}dn(1-v)}{8\rho} (3\omega_{\xi} - \omega_{\theta}) (3\omega_{\theta} - \omega_{\xi})$$

$$a_{5} = \frac{vnb'}{\rho} - \left(\frac{3-v}{2\rho}\right) (\gamma bn) - \frac{\lambda^{2}d(1-v)\gamma n}{\rho} \left[\frac{(3\omega_{\xi} - \omega_{\theta}) (3\omega_{\theta} - \omega_{\xi})}{8} + (1+v)\omega_{\xi} \omega_{\theta} \right]$$

$$+ (1+v)\omega_{\xi} \omega_{\theta}$$

$$a_{6} = b(\omega_{\xi} + v\omega_{\theta}) + \lambda^{2}d(1-v) \left[(1+v)\dot{\gamma}^{2}\omega_{\xi} + (n^{2}/2\rho^{2}) (3\omega_{\xi} - \omega_{\theta}) \right]$$

$$a_{7} = b \left[\omega_{\xi}' + \gamma (\omega_{\xi} - \omega_{\theta}) \right] + b'(\omega_{\xi} + v\omega_{\theta})$$

$$- \frac{\lambda^{2}d(1-v)\gamma n^{2}}{\rho^{2}} \left[\frac{3\omega_{\xi} - \omega_{\theta}}{2} + (1+v)\omega_{\xi} \right]$$

$$a_{8} = \lambda^{2}\omega_{\xi}$$

$$a_{9} = -\lambda^{2}(1-v)\gamma\omega_{\xi}$$

$$a_{10} = -a_{4}$$

$$a_{11} = \frac{b\gamma n}{2\rho} (3-v) - \frac{(1-v)nb'}{2\rho} + \frac{\lambda^{2}d(1-v)n}{\rho} x \left[- (1+v)\gamma \omega_{\xi} - \omega_{\theta} + \frac{\gamma}{8} (6\omega_{\xi} - \omega_{\theta} - 7\omega_{\xi}^{2} - 3\omega_{\theta}^{2}) - \frac{\omega_{\xi}'}{4} (5\omega_{\theta} - 3\omega_{\xi}) \right]$$

$$- \frac{\lambda^{2}d'(1-v)n}{8\rho} (3\omega_{\xi} - \omega_{\theta}) (3\omega_{\theta} - \omega_{\xi})$$

$$a_{12} = \frac{b(1-v)}{2} + \frac{\lambda^{2}d(1-v)(3\omega_{\theta} - \omega_{\xi})^{2}}{8}$$

$$a_{13} = \left(\frac{1-v}{2}\right) (\gamma b+b') - \frac{\lambda^{2}d(1-v)}{8} (3\omega_{\theta} - \omega_{\xi}) x \left[2\omega_{\xi}' - \gamma (5\omega_{\xi} - 3\gamma_{\theta}) \right]$$

$$+ \frac{\lambda^{2}d'(1-v)}{8} (3\omega_{\theta} - \omega_{\xi})^{2}$$

$$\begin{aligned} a_{14} &= -\gamma a_{13} + \left(\frac{1-\nu}{2}\right) b_{\psi_{\xi}} \omega_{0} - \frac{bn^{2}}{\rho^{2}} - \lambda^{2} d(1-\nu) \left[\frac{(1+\nu)\omega_{0}^{2} c_{n}^{2}}{\rho^{2}}\right] \\ &- \frac{\omega_{\xi} \omega_{0}}{8} (3\omega_{0} - \omega_{\xi})^{2} \\ a_{15} &= \frac{\lambda^{2} d(1-\nu) (3\omega_{0} - \omega_{\xi})n}{2\rho} \\ a_{16} &= \frac{\lambda^{2} d(1-\nu)}{2\rho} \left[2(1+\nu)\gamma\omega_{0} - \omega_{\xi}' + 3\gamma(\omega_{\xi} - \omega_{0})\right] \\ &+ \frac{\lambda^{2} d'(1-\nu) (3\omega_{0} - \omega_{\xi})n}{2\rho} \\ a_{17} &= -\frac{bn(\omega_{0} + \nu\omega_{\xi})}{\rho} + \frac{\lambda^{2} dn(1-\nu)}{2\rho} \times \left[\gamma\omega_{\xi}' - 2\gamma^{2}\omega_{\xi} - \frac{2(1+\nu)\omega_{0}n^{2}}{\rho^{2}} + (3\omega_{0} - \omega_{\xi})(\gamma^{2} + \omega_{\xi}\omega_{0})\right] \\ &- \frac{\lambda^{2} d'n(1-\nu)\gamma}{2\rho}(3\omega_{0} - \omega_{\xi}) \\ a_{18} &= -(\nu\lambda^{2}\omega_{0}n/\rho) \\ a_{19} &= -a_{6} \\ a_{20} &= -b\gamma(\omega_{0} + \nu\omega_{\xi}) + \lambda^{2} d(1-\nu) \left[\gamma(1+\nu)(-\gamma\omega_{\xi}' + \gamma^{2}\omega_{\xi} - (n^{2}\omega_{\xi}/\rho^{2}) + 2\omega_{\xi}^{2}\omega_{0}) + (n^{2}/2\rho^{2})(\gamma_{\xi} + (n^{2}/2\rho^{2})(3\omega_{\xi} - \omega_{0})] \\ &- \gamma\omega_{0} - 3\omega_{\xi}') \right] - \lambda^{2} d'(1-\nu) \left[(1+\nu)\gamma^{2}\omega_{\xi} + (n^{2}/2\rho^{2})(3\omega_{\xi} - \omega_{0})\right] \end{aligned}$$

 $a_{21} = a_{15}$

$$a_{22} = \frac{\lambda^2 d (1-\nu) n}{2\rho} \left[3\gamma \omega_{\xi} - \gamma \omega_{\theta} (5+2\nu) - \omega_{\xi} \right] + \frac{\lambda^2 d' (1-\nu) n}{2\rho} (3\omega_{\theta} - \omega_{\xi}) a_{23} = -\frac{bn (\omega_{\theta} + \nu \omega_{\xi})}{\rho} + \frac{\lambda^2 d (1-\nu) n}{2\rho} x \left[2 (1+\nu) \left(\omega_{\xi} \omega_{\theta}^2 - \gamma^2 \omega_{\xi} + 2\gamma^2 \omega_{\theta} - \frac{n^2 \omega_{\theta}}{\rho^2} \right) + \gamma \omega_{\xi}' + 3\gamma^2 (\omega_{\theta} - \omega_{\xi}) + \omega_{\xi} \omega_{\theta} (3\omega_{\theta} - \omega_{\xi}) \right] - \frac{\lambda^2 d' (1-\nu) n}{2\rho} \left[2 (1+\nu)\gamma \omega_{\theta} + \gamma (3\omega_{\theta} - \omega_{\xi}) \right]$$

$$a_{24} = \lambda^{2} d (1-\nu) \left[(2n^{2}/\rho^{2}) + (1+\nu)\gamma^{2} \right]$$

$$a_{25} = -\lambda^{2} d (1-\nu) \left[(1+\nu) (2\gamma \omega_{\xi} \omega_{\theta} + \gamma^{3}) + (2\gamma n^{2}/\rho^{2}) \right]$$

$$+ \lambda^{2} d' (1-\nu) \left[(1+\nu)^{2} + (2n^{2}/\rho^{2}) \right]$$

$$a_{26} = -b(w_{\xi}^{2} + 2v\omega_{\xi}\omega_{\theta} + \omega_{\theta}^{2}) + \frac{\lambda^{2}d(1-v)n^{2}}{\rho^{2}} \left[(1+v)\left(\omega_{\xi}\omega_{\theta} - \frac{n^{2}}{\rho^{2}} + 2\gamma^{2}\right) + 2(\gamma^{2} + \omega_{\xi}\omega_{\theta}) \right]^{2} \cdot \frac{\lambda^{2}d'(1-v)n^{2}}{\rho^{2}} (3+v)\gamma$$

$$a_{27} = \lambda^{2}$$

$$a_{28} = \lambda^{2}\gamma (2-v)$$

$$a_{29} = -\lambda^{2} \left[(1-v)\omega_{\xi}\omega_{\theta} + (vn^{2}/\rho^{2}) \right]$$

$$a_{30} = d\omega_{\xi}$$

$$a_{31} = d(\omega_{\xi}' + v\gamma\omega_{\xi})$$

$$a_{32} = dvn\omega_{\theta}/\rho$$

$$a_{33} = -d$$

$$a_{34} = -dv^{\gamma}$$

$$a_{35} = dvn^{2}/\rho^{2}$$

$$a_{36} = -1$$
The c's are
$$c_{1} = -p_{\xi} + t_{T}' - \lambda^{2} (1-v) Y_{\omega_{\xi}} m_{T}$$

$$c_{2} = -p_{\theta} - (n/\rho) t_{T} - \lambda^{2} (1-v) (n/\rho) \omega_{\theta} m_{T}$$

$$c_{3} = -p - (\omega_{\xi} + \omega_{\theta}) t_{T} - \lambda^{2} (1-v) Y m_{T}' + \lambda^{2} (1-v) [\omega_{\xi} \omega_{\theta} - (n^{2}/\rho^{2})] m_{T}$$

$$c_{4} = m_{T}$$
Finally, the b's in Equation (49) are
$$b_{1} = b$$

$$b_{2} = v\gamma b$$

$$b_{3} = vnb/\rho$$

$$b_{4} = b (\omega_{\xi} + v\omega_{\theta})$$

$$b_{5} = -\frac{b (1-v) n}{2\rho} - \frac{d\lambda^{2} (1-v) n}{8\rho} (3\omega_{\xi} - \omega_{\theta}) (3\omega_{\theta} - \omega_{\xi})$$

$$b_{6} = \frac{b (1-v) n}{2\rho} (3\omega_{\theta} - \omega_{\xi})^{2}$$

$$b_{7} = -\gamma b_{6}$$

$$b_{8} = \frac{\lambda^{2} d (1-v) n}{2\rho} (3\omega_{\theta} - \omega_{\xi})$$

$$b_{9} = -\gamma b_{8}$$

$$b_{10} = -\lambda^{2} d (1-\nu) \left[(1+\nu) Y^{2} \omega_{\xi} + (n^{2}/2\rho^{2}) (3\omega_{\xi} - \omega_{\theta}) \right]$$

$$b_{11} = \frac{\lambda^{2} d (1-\nu) n}{2\rho} (3\omega_{\theta} - \omega_{\xi})$$

$$b_{12} = -\frac{\lambda^{2} d (1-\nu) Y n}{2\rho} \left[3\omega_{\theta} - \omega_{\xi} + 2 (1+\nu)\omega_{\theta} \right]$$

$$b_{13} = \lambda^{2} d (1-\nu) \left[(2n^{2}/\rho^{2}) + (1+\nu) Y^{2} \right]$$

$$b_{14} = -\lambda^{2} d (1-\nu) (3+\nu) (Yn^{2}/\rho^{2})$$

$$b_{15} = \lambda^{2}$$

$$b_{16} = \lambda^{2} (1-\nu) Y$$

PAGES 40 AND 41 ARE MISSING FROM THE ORIGINAL DOCUMENT.

paragraphs that follow are intended to aid in formulation of the problem for program use and augment the detail input instructions in Section III. For ease of reference, FORTRAN instruction symbols used in the program and related to the descriptive paragraphs are placed in parentheses following paragraph titles.

2.2 PROGRAM CAPABILI + 2S AND LIMITATIONS

Before describing some of the general program characteristics, it will perhaps be worthwhill to list some of the program features that are not generally present in other shell analysis programs. Also included in this list are limitations in the program that have resulted due to theoretical restrictions, computer storage capacity, economic considerations, etc.

- a. A shell structure having virtually any combination of abrupt discontinuities in geometry, loads, temperature, and material properties can be analyzed by breaking the structure into the appropriate regions.
- b. The main requirement in each shell region is that geometry, material properties, loads, and temperatures vary smoothly along the generatrix or meridian line.
- c. As many as 50 (estimated) integrally joined shell regions can be analyzed as one shell structure.
- d. As many as four regions may be joined at one common junction (branch point).
- e. Line loads and line moments can be applied at junctions between regions. The effects of eccentricity of reference surfaces occurring at discontinuity junctions (juncture of two shell regions) is automatically handled by the program. At branch points, these effects can be handled by an approximate procedure or minimized by appropriate selection of junction point.
- f. Laminated shell structures consisting of up to three materials broken into as many as six intimately bonded layers can be considered by the computer program.
- g. All materials excepting Poisson's ratio can vary from layer to layer through the thickness as well as along the meridional coordinate.

- h. As many as 150 integration intervals (station points) can be considered in each region.
- i. Curve fitting techniques are utilized to reduce amount of input data. A second-degree polynomial fit is used.
- j. Both unsymmetric surface load and temperatures can be applied to the shell. The variation of temperature across the cross-section can be continuous and piece-wise linear through each layer.
- k. The numerical solution procedure allows for high accuracy without excessive use of computer time. (Approximate machine running time 150 stations per minute for each Fourier harmonic.)

2.3 SIGN CONVENTIONS AND DIMENSIONS

The sign conventions used in the program are illustrated in Figures 1-1 through 1-10 in Section I. To briefly augment, the stresses σ_{ξ} , σ_{θ} and membrane forces N $_{\xi}$, N $_{\theta}$ are positive when they tend to produce tension and negative when they are in compression. The moments M $_{\xi}$, M $_{\theta}$ are positive in sign when they tend to produce tensile stresses in the inner (bottom) surfaces and compressive stresses in the outer (top) surface. (See Section 2.4.) The extensional displacement u and transverse deflection w are positive when the ξ and ζ coordinates, respectively, are increased.

In using the program, all data specified must be dimensionally consistent. In the manual, the quantity P will indicate force quantities (e.g., pounds) and L length quantities (e.g., inches). The program output yields results in force and length that are consistent with the input quantities.

2.4 REFERENCE, INNER, AND OUTER SURFACES

The reference surface $\zeta = 0$ is chosen such that the requirements of Equation 1 be satisfied. The cross-sectional properties are then evaluated based upon this reference surface. As discussed in 1.15, a substantial simplification is obtained when specifying key geometric functions (e.g., r, ω_{ξ}). if the reference surface is chosen according to convenience anywhere within the shell wall. However, the chell stiffness parameter should be evaluated systematically along the lines discussed in Section I.

It will be convenient to refer to inner and outer surfaces of the shell. One can keep the inner and outer surface definitions clear by remembering that in direction of increasing value of ξ , the outer surface is on the left and the inner set of the right when the geometry is drawn with axial distance in ξ or the right obtion and radial distance from left to right as shown in Figure 1-1. Using the same description, the inner surface will sometimes be referred to as the "bottom" (BOT) surface and outer as the "top" (TOP) surface.

2.5 SHELL REGIONS (EKK)

In solving a shell problem it is necessary to select a mathematical model to represent the actual shell configuration. It may be necessary or convenient in establishing a suitable mathematical model for complicated shell configurations to fictitiously divide the shell along its length into a number of "regions." Thus, the first step in the analysis of shell problems is to delineate the "regions" of the mathematical model. Ideally, this division results in each region being a simple shell element, such as a cylinder. sphere, cone, etc.

The main requirement in delineating a shell region is that shell properties and loads vary smoothly along the generatrix or meridian line in the region. Thus, the logical dividing line between regions would occur at points on the shell where an abrupt discontinuity or a radical change in any of the following exists: (1) geometry; (2) section or material properties; (3) induced or surface loading; (4) temperature distribution; (5) other considerations such as length to radius magnitudes; (6) combinations of 1 through 5. The points at which these fictitious subdivisions occur are called junctions. It will be convenient in the program to differentiate between two types of junction points. The point where one region of the mathematical model is joined to a single other region of the same mathe-.natical model is termed a discontinuity point or junction. (See Section 1.11.) Junctions where more than two shell regions meet at a common point are called branch points. (See Section 1.16.) It should be emphasized that it is absolutely essential in treating problems where abrupt discontinuities in shell properties (1 and 2 above) occur to introduce a junction point since a unique solution procedure is required in such cases. For convenience of data input or change in grid increment (Section 1.12), fictitious-type discontinuities may be introduced when desirable.

Theoretically, the limit on the number of shell regions per problem is dictated by the storage capacity on the tapes used. Twenty regions have been used without diffic y, and it is estimated that the capability for considering up to 50 regions is possible. With a structural mesh of 150 grid points possible (Section 2.7), it is unlikely that such a large number of regions is necessary in treating even the most complicated of engineering problems.

The program code processes the region data in the order in which the regional data is introduced into the input data deck of punched cards. The

first region is known as region 1, the second region, regions 2, etc., even though punched cards do not carry the number designation of the regions. The complete data information for a particular region must be inputted before the subsequent region data can be considered. The sequence of input of regional data must be consistent with the analytical solution of the problem. The regions should be selected in sequence proceeding in a continuous manner from one boundary to the final boundary. The procedure for handling branched shell configurations (more than two shells ining) is modified somewhat in that data for each branch is input up to the common branch junction point until the next to last branch is completed. The data for the final or closing branch proceeds from junction point to the linal end conditions. (See 2.10.2.)

The code value EKK represents the number of shell regions selected for a particular shell problem. The amount of regional data must coincide with the value of ΣKK . The examples shown below indicate typical region delineation for complicated shell configurations.

In Figure 2-1 a five-region shell configuration is shown where four discontinuity junctions have been used to subdivide the mathematical model. Junction (1) illustrates a discontinuity point where an abrupt change in the shell section properties occur. A discontinuity of slope between the reference surface of two joining shells is illustrated by junction (2). At (3) and (4), fictitious subdivisions have been introduced where abrupt changes in load distribution occurred. The arrows on Figure 2-1 indicate the direction of increasing ξ or station number and the sequence of data input. A six-region branched shell is shown in Figure 2-2. The first discontinuity point illustrates the region delineation when two shells of different shapes meet. Branch points (2) and (3) represent common branch points where more than two regions join. This example will be discussed in more detail in Section 2.10 on junction points.

2.6 FOURIER COMPONENTS (SUM, ENFO, ENFI, ENFOR, THETA)

The computer program permits analysis of shells subjected to unsymmetric loads using a Fourier series technique. This approach described in Section 1.7 permits the analysis of complicated loads by considering the individual contribution of each Fourier component of the Fourier series expansion of the load distribution. The total solution is obtained by summing the Fourier components in the appropriate series expression in the circumferential coordinate.

Figure 2-1

Figure 2-2

When treating more than one Fourier component for a shell problem the code value SUM is set to a nonzero value. A positive value for the SUM indicator indicates the solution will be summed according to the series expressions, Equations 1st through 24, page 7. A negative SUM prints the individual solution for each discrete Fourier harmonic. The data value ENFO represents the first and lowest Fourier harmonic (UNF) considered. Subsequent Fourier components are numbered in increasing order in the ENFI(I) data region. Up to 11 ENF values are permissible in this data region. If more than 11 Fourier barmonics are to be considered, the problem can be reformulated for the remaining harmonics and the solutions added.

It may be desirable to test the convergence of the Fourier series solution to obtain intermediate prints of partial Fourier sums. This capability is possible using the ENFOR(I) data region where these intermediate prints are permissible. For example, if 10 Fourier components are considered, it might be desirable to print the summed solutions for the last three harmonics to compare convergence of results.

In order to determine the value of solution at circumferential (THETA) locations on the shell, the capability for evaluating the series expressions at discrete THETA values is possible. This data region THETA(I) permits a maximum of 10 circumferential solution printouts.

2.7 STATIONS IN REGIONS (EN)

The machine program achieves a shell solution by integration of finite difference equations along the meridian or arc length distance of the shell. The meridional coordinate ξ on the reference surface has the range $0 \le \xi \le \xi_j$ for the j-th region. The number of integration points (called stations) located in the region under consideration is assigned the EN code value. The stations are equally spaced with the initial point located on the reference surface at the beginning of the region designated station 1 (i = 1 or $\xi = 0$) and the last or EN-th station at the end of the region called station N (i = N or $\xi = \xi_j$). The numbering of stations proceeds in direction of positive meridional coordinate assigned to the respective region. The maximum number of stations permissible in a region is 150 (minimum 3). The regional input data are specified at stations on the reference surface of each region.

The length of the finite difference "lump" of shell is computed internal to the program from the length or wrap distance and the number of stations (EN) in the region. This finite difference increment of integration is defined as DEL in the program and printout. Best results are obtained when the finite difference increments are approximately the same from region to region.

The machine running time increases with the number of integration steps considered per region. The type of shell problem considered should dictate the sue of the grid mesh or number of stations considered. This comes with experience and how the results are to be used. As a general rule, it is recommended that more integration intervals be used where rapid change in variables occurs along the length of the shell. Experience with the program indicates that considering 100 stations is probably sufficient for engineering type accuracy of the shell solution in most shell regions. For extremely long shells (e.g., cylinders), it may be necessary to subdivide the shell into more regions in order to obtain a suitable integration interval.

2.8 GEOMETRY OF REGIONS (GMI)

Geometric parameters must be defined at each station location. The sign convention for the curvature parameters, ω_{ϕ} , ω_{θ} are illustrated as follows:

In order to assist the analyst in defining the set of geometry parameters with a minimum number of input parameters, several options for specific classes of geometries are made available. The options are described below with their identifying code number (GMI).

2.8.1 Cone-Cylinder Option (GMI = 1.0)

This geometry option may be specified for a complete rang of regional configurations generated by a straight line, e.g., circular plates, cones, and cylinders. A miximum of three input parameters is required. The input parameters required are defined as follows:

- 1. RA1 Radial distance from axis of revolution to the first station (i = 1) of the region
- 2. AXL meridional length of shell
- 3. ANX angle the generator makes with the axis of revolution

Figure 2-3 illustrates the geometric parameters used in describing the cone cylinder option. Both RA1 and AXL are positive quantities. The parameter ANX \sim given in degrees and is positive clockwise measured from the generate \sim the positive X axis as shown in Figure 2-3.

Figure 2-3. Cone Cylinder Geometry

2.8.2 Sphere-Toroid (GMI = 2.0)

This option may be specified for a complete range of regional configuration generated by a circular curve. Four input parameters are necessary for defining a sphere-toroid, as shown in Figure 2-4.

Figure 2-4. Sphere-Toroid Geometry

The input parameters are

- 1. RC Radius of curvature of the generator
- 2. ROFF Offset distance measured from axis of revolution to the center of meridional curvature

- 3. PHIO Angular position in degrees of the beginning of a region measured clockwise positive about the center of curvature from an axis parallel to the axis of revolution
- 4. PHIN Angular position of the end of the region

2.8.3 Discrete Point Option (GMI = ±3.0)

This option was developed for use on regions where the generator cannot be described by one of the other options or where a curved generator is given by a set of discrete points. As a consequence of various possible ways the geometry may be supplied to the analyst, several variations of input data format can be accommodated.

On a positive indicator (GMI = +3.0), the program will set up the necessary geometric parameter from the input data which describes the generator by discrete radial and axial distances. The input quantities to the program are EM (number of points given), RIPT (radial distance from axis of revolution at input points), XIPT (axial coordinates of the input points). The set of RIPT and XIPT must include the first and last points of the region. XIPT must be given in ascending magnitudes. On a negative indicator (GMI = -3.0), the coordinates of the discrete points are given in radial and surface or arc length, the surface length coordinate is input directly in the XIPT locations.

An interpolation routine is used to obtain appropriate geometric parameters at station points from the original input values. The parameters such as curvatures are computed using finite difference forms of the station set. A least squares method is used to minimize the scatter of these computations. To hold the errors in curvatures to less than 10 percent, the number of points described by RIPT and XIPT should be at least as great as the number of stations. For some situations such as locations of major changes in the generator curve, it will be necessary to input a denser popu lation of RIPT and XIPT. (See Figure 2-5.) Because of the difficulty involved in the least squares and interpolation routines, extreme care must be exercised in the use of this option in order to obtain an adequate description of shell geometry. A significant improvement in results is obtained if the additional recommendations described below are adhered to.

When the meridional and circumferential radii of curvatures are available, they can be input at discrete points and curve-fit to give a better description of the curvatures. If possible, it is strongly recommended that this capability be used since the errors in curvatures are reduced considerably to better control curvatures and less input points of the generator

Figure 2-5

are required. This data is input in the location RCURV and RCUR? for radius of curvatures R_{ξ} and R_{θ} , respectively (Section 1.3). RCURV and RCURZ values must correspond with the points described by RIPT and XIPT. This is an optional input to both GMI = +3.0 and GMI = -3.0. When no values are input at RCURV and RCURZ locations, the curvatures will be computed from the discrete point set of RIPT and XIPT.

2.8.4 Conics Options (GMI = 4.0, 5.0, ± 6.0)

Several options are made available for the conics class of generator. Three classes of conics are treated: ellipse (GMI = 4.0), hyperbola (GMI = 5.0), and the parabolas (GMI = ± 6.0). The parameters for the conics are taken from the standard form (Figure 2-6).

In Figure 2-6, the coordinates X', Y' are the standard form coordinates. The input quantities are as follows:

- 1. RFF is the translation distance of X' axis from the axis of revolution.
- 2. SPNO is the clockwise positive opening angle from positive X¹ to the first station location.
- 3. SPNN is the positive opening angle from positive X' to the last station location.

Figure 2-6

- 4. A is the semimajor axis parallel to the axis of revolution for the ellipse and hyperbola, A is the distance from the directrix to the focus for the parabolas.
- 5. B is the semimajor axis perpendicular to the axis of revolution.

2.9 END CONDITIONS (BCITP, BCIBM)

Four boundary or end conditions must be supplied at each end of a shell region. From Section 1.9, these conditions are input in matrix form. To simplify the amount of data input a boundary indicator code has been set up to permit simple call of boundary support conditions. The value BCITP defines the boundary indicator at the 1st or top station (i = 1) of the region and BCIBM the value at the last station (bottom) (i = N). The boundary or

BCITP or BCIBM Code No.	Type of End Condition	Mathematical Equivalent
1	Free Support	$\mathbf{t}_{\boldsymbol{\xi}} = \hat{\mathbf{t}}_{\boldsymbol{\xi}\boldsymbol{\theta}} = \hat{\mathbf{f}}_{\boldsymbol{\xi}} = \mathbf{m}_{\boldsymbol{\xi}} = 0$
2	Roller	$\mathbf{t}_{\boldsymbol{\xi}} = \mathbf{u}_{\boldsymbol{\theta}} = \mathbf{w} = \mathbf{m}_{\boldsymbol{\xi}} = 0$
3	Clamped (Fixed)	$\mathbf{u}_{\boldsymbol{\xi}} = \mathbf{u}_{\boldsymbol{\theta}} = \mathbf{w} = \boldsymbol{\phi}_{\boldsymbol{\xi}} = 0$
4	Simple Support (Linged)	$\mathbf{u}_{\boldsymbol{\xi}} = \mathbf{u}_{\boldsymbol{\theta}} = \mathbf{w} = \mathbf{m}_{\boldsymbol{\xi}} = 0$
5	Symmetrical (or Complete)*	$\mathbf{u}_{\boldsymbol{\xi}} = \mathbf{u}_{\boldsymbol{\theta}} = \hat{\mathbf{f}}_{\boldsymbol{\xi}} = \boldsymbol{\phi}_{\boldsymbol{\xi}} = 0$
6	Special	Read Boundary Matrices Ω, Λ, l
7,8	(to be defined)	Space for additional Boundary Condition
9	Closed Apex (r = 0)	See Section 1.10 for conditions
10	Branch Point	
0, >10	Discontinuity Point	

end conditions permitted by the code, together with the identifying code number and mathematical description, are as follows:

.

The identifying boundary matrices for often encountered external support conditions 1 through 5 and 9 are internal to the program and can be called by stipulating the correct code number. Space is available in code numbers 7 and 8 to put in appropriate boundary condition matrices that offer particular interest to the user. Specifying BCITP (or BCIBM) = 6 permits inputting boundary matrices Ω , Λ , and ℓ (See Equation 47) directly into the program. This option would be used when considering special boundaries, spring support conditions, applied load or displacements to boundaries. or any consistent set of end restraint conditions. The details

^{*}Special condition when shell has a plane of symmetry about the normal to the axis of revolution. Use only for axisymmetric loads (e.g., complete sphere can be treated as hemisphere).

of formulating these matrices directly are described in Section 3.4.5. The indicator value when set equal to 0 (or >10) indicates a discontinuity condition occurring at the particular boundary location. The program automatically employs the appropriate compatibility relationship as described in Section 1.11. When the endpoint corresponds to a branched junction point (more than two shells coming together), the boundary indicator must be set at 10 and the program will automatically set the solution format to handle branched configurations.

2.10 JUNCTIONS (GPSI, GECX, PD, MD, PSIO)

A junction occurs when one region of the mathematical model is joined to one. two, or three regions of the same mathematical model. It will be convenient to differentiate between two types of junction points. A detailed description of discontinuity and branch type junction points is given in the following paragraphs. Each type requires a different mode of solution in the computer program (Section 1.11 and 1.16). Also discussed below is a description of external line loads and moments that can be applied at junction points.

2.10.1 Discontinuity Junction

By our definition, a discontinuity junction occurs at a point where one region of the mathematical model is joined to another single region of the same mathematical model. Discontinuity junctions are usually selected where abrupt discontinuities in shell properties or loads occur. However, fictitious type discontinuities are sometimes introduced where change in finite difference grid interval is described or for reasons of convenience of inputting data. Types of abrupt discontinuities in shell properties that can be accommodated by the program are illustrated by considering in detail the example shown in Figure 2-7.

Junction (2) (Figure 2-7a) illustrates a discontinuity point occurring between regions II and III due to an abrupt angle change in reference surface caused by two shells of different shape joining at a common point. The angle ψ is coded GPSI in the program and measures the change in slope, i.e., the angle between the normals to the region meridians at the junction point. The discontinuity angle GPSI is referred to the end of the region, e.g., the ψ in Figure 2-7a would be part of the input data of region II. The discontinuity junction (1) characterizes a discontinuity point where an abrupt change in the shell cross-sectional (including material) properties occurs. The program will also accommodate eccentric discontinuities, i.e., discontinuities where reference surfaces at a discontinuity junction do not intersect at a common point (see Figure 2-7b). The program automatically compensates for the couple generated by in-plane membrane forces in each region

Tigure 2-7a. Slope Discontinuity (Discontinuity Junction 2 of Figure 2-1)

not being coincident with each other. The eccentricity distance E_{CC} (Figure 2-7b) is coded GECX and represents the eccentricity of reference surfaces measured along the radius of curvature at the end point of a region (e.g., region II of Figure 2-7b). A positive value of E_{CC} corresponds to an abrupt increase in the radius of a parallel circle as one proceeds in the direction of increasing ξ and station numbers. This positive direction is shown by directional arrows in Figure 2-7. Following a similar procedure as described above, fictitious discontinuities may be introduced at points where abrupt variation of load occur or where change in finite difference grid increment is desired.

The existence of a discontinuity junction at the endpoint of a region is specified by the end condition indicator BCITP (or BCIBM). For a discontinuity point, the indication values BCITP (or BCIBM) can be set equal to zero or >10. The printout for a discontinuity junction is given by the value 1×10^{10} .

To illustrate the use of end condition indicators and sequence of data input, the following table has been prepared for sample problem shown in Figure 2-7:

Table	2.	1
-------	----	---

Region	Boundary at i = 1 (BCITP)	Boundary at i = N (BCIBM)	GP S I	GECX
I	1	0	0	Е _{сс}
II	0	0	20°	0
III	0	0	0	0
IV	0	0	0	0
V	0	3	0	0

2.10.2 Branch Junction

A branch point occurs when one region of a mathematical model is joined to two or three regions of the same mathematical model. The program will consider up to four shell regions or branches meeting at a common junction point. In the analysis of branched shells, a precise order must be followed in the inputting of data information. This order can best be exemplified by a typical branched configuration illustrated in Figure 2-2 on page 46. The numbers on each branch identity the regions or branches and indicate the sequence of data input for the regions comprising the multishell configuration. All required data for a particular region must be input before the next regional information is considered. The regions J-III are referred to as starting branches, the last regions are characterized by the fact that the last or N-th station in that region cccurs at the common junction point. A closing branch has its first station (i = 1) at the branch point. The starting and closing branches must be selected in consistent form with the numerical solution procedure (Figure 2-2). The existence of a branch junction occurring at the endpoints of a region is designated by use of the end condition indicator BCITP (BCIBM) set equal to 10.

The program does not automatically handle eccentricities in reference surfaces occurring at branch point as was done at a discontinuity junction. However, since line moments can be applied at a junction, it is possible to account for the unbalance moment occurring at a branch point due to eccentricities in an approximate manner. This is accomplished by running a multibranch shell case (without eccentricity effects included) and calculating by hand the unbalance moment due to the couple generated by the in-plane membrane forces N_{ξ} ($\downarrow Q_{\xi}$ contribution) in each region being

ł

displaced from each other. Applying the calculated unbalance moment as an externally applied line moment at the junction and rerunning the same case in the program will yield a corrected solution. This trial-and-error process can be repeated until the resulting error is as small as desired. Use of free body diagrams are helpful in setting up this model.

The procedure for setting up a branched contiguration in the program can be illustrated by consideration of the example shown in Figure 2-2. In Figure 2-2. the first junction is a discontinuity point with (2) and (3) being branched points. The arrows on the diagram indicate directions of increasing ξ or increasing station number for the respective regions. Regions II and III would be starting branches and IV the closing branch associated with junction (2); similarly, IV and V starting and VI closing branches characterizing junction(3). The sequence of input of data with appropriate end and discontinuity conditions can best be illustrated by Table 2-2.

Region	BCITP	BCIBM	GPSI	GECX
I	9	0	0	0
II	0	10	315°	Not possible
III	3	10	0	Not possible
IV	10	10	0	Not possible
v	1	10	60°	Not possible
VI	10	9	0	Not possible

Table	2.	2
-------	----	---

2.10.3 Discontinuity Loads

The effects of externally applied line loads and moments on a shell response can be determined using the program. The concentrated line load coded PD and moment MD are applied at junction points on the mathematical model. If no geometrical discontinuity exists, a fictitious discontinuity is introduced to incorporate the line load and moment. The program will permit a maximum of 11 Fourier components of PD and MD to be applied to the program. The value of PS10 (in degrees) is the measured angle between the concentrated load direction and the normal to the closing branch at the common branch point. The positive magnitude of PD (\overline{P}_D) and MD (\overline{M}_D) is shown in Figure 2-8. For a branched configuration, the load and moment value occurring at a junction can be entered with the regional data of any (one only) of the starting branches; for example, the information could be supplied with data for either of regions I, II, or III. At a discontinuity point, the discontinuity loads would. of course, be supplied with the region preceding the junction point.

Figure 2-8

2.11 PRESSURE LOADS (PILD, PFETB, PTHTB, PNTB)

The values of surface pressure acting on a region are supplied at each station of the region. The sign convention for positive and negative values of pressure is shown in Figure 1.2d in its simplified form, internal pressure has a positive value and external pressure a negative value. The normal q and tangential loads q_{ξ} are assumed to be symmetrical about $\theta = 0$ and antisymmetrical for circumferential load q_{θ} . (See Section 1.7.)

To reduce the amount of data load information input into the program and to simplify the handling of unsymmetric loads, a pressure load indicator has been introduced. This indicator has the coded value PILD and permits different input format for various types of load information. The dimensional arrays PFETB, PTHTB, PNTB are used for inputting tangential, circumferential. and normal loads, respectively. These arrays, referred to as load tables, are dimensional for 200 information bits. The detailed procedure or table setup is given in Section 3.4.7, page 90.

When loads (or more specifically Fourier coefficients of load) are constant over the region, i.e., do not vary in the meridional coordinate, the PILD indicator is set equal to one. In this case, only one value of pressure load data is required for each Fourier harmonic (ENF) in each load table. For the case of unsymmetric loads that vary meridionally, the Fourier components of load can be inputted at selected stations along the meridian. The program will automatically compute values at intermediate stations using the CODIMA curve-fit routine. (See Section 3.7.) PILD is set equal to two when using this option. Arbitrary unsymmetric loads can be described without prior knowledge of the Fourier coefficients of load distribution by using PILD option three. Discrete values of load are inputted in appropriate load tables at specific meridional and circumferential locations. A linear interpolation routine yields necessary values at intermediate locations, and the program automatically determines Fourier coefficients of loads using the Fourier-Euler inversion formula. The inversion integral is evaluated numerically with coded value ENTH indicating number of finite sums taken. It is recommended that the maximum number 91 be used for this value for general cases.

All pressure load data are inputted in dimensional form (i.e., in units of P/L^2) and the program automatically performs appropriate operations to make coefficients nondimensional (Section 1.7).

2.12 TEMPERATURE DISTRIBUTIONS (TBOT, TTOP, TTP, TIBT)

The temperature of the outer surface, each interface (multilayer shells). and inner surface must be supplied at each station of each region. The temperature data of inner and outer surfaces are inputted in a similer manner to pressure loads (see Section 3.4.7). Temperature indicators coded TIBT and TITP for inner and outer surfaces, respectively, are utilized with TBOT and TTOP representing table arrays for inner and outer surface temperature values.

Temperature distributions across the shell thickness are usually derived from solution of the heat transfer problem. The program handles only shell structural problems and does not make any heat transfer calculations. However, it does use the given temperature distribution to calculate stresses and deflections due to thermal influences in the shell. Since the temperature must be supplied at each face, there will be one more temperature value at each station than there are layers in the region. The outer and inner surface temperatures are supplied using procedures described above. The internal interface temperatures are supplied using a temperature gradient table for inputting interface temperatures at discrete meridional stations. An irterface defines the surface between two shell layers (Section 2.13). The gradient value at each interface is prescribed as a percentage of the total differential between top and bottom surface temperatures. The number of gradient stations considered per region is coded ENOGR (10 maximum), with GSTA being station values at which gradients are supplied. The gradients are supplied at internal interfaces and GSTA stations counting from first interface beyond the inner surface to the last interface before the outer surface of the shell.

The temperature input data is not curve-fitted directly; instead, the program calculates the thermal load ENT and moment EMT at data input stations and curve-fits using CODIMA to give intermediate station values.

2.13 MULTILAYER SHELLS (ELAY, ENMAT, EMAT)

The computer program permits the analysis of multilayer shell configurations. Laminated shell sections having as many as s.x intimately bonded layers can be analyzed. The value assigned to the variable ELAY is the number of layers in the region. For identification, the layers are numbered consecutively starting from the inner surface. (See Section 2.4.) A region may consist of various layers of different materials each material having different elastic properties. A region of one material may be assumed o be divided into imaginary layers for purposes of determining stress internal to the outside and inside surfaces of the region or handling nonlinear temperature distributions across the thickness. The code value ENMAT indicates the number of different materials considered, for the problem with three being the maximum. The material layer indicator EMAT describes the material for each layer. The material used in a layer are numbered in secuence starting from inner layer and proceeding to outer layer. There are six possible values in the EMAT data locations, i.e., one for each layer. As an example, let us consider the four-layer shell section shown in Figure 2-9. The layer i entification is given in Roman numerals. The sequence of data for EMAT, for example, would be shown 1, 2, 1, 3, i.e., material 1 in first and third layers, material 2 in second layer, third material in fourth layer.

Figure 2-9. Layer Shell

2.14 MATERIAL PROPERTIES (POIS, ENEL, TMPEL, YML, ENAL, TMPAL, ALFL, ENE2, etc.)

In general, the elastic properties for structural material depend on the temperature of the material. In the computer program, the material properties. modulus of elasticity (Young's modulus), and coefficient of thermal expansion are permitted to vary as a function of temperature in the material. The material properties versus temperature data are read into the program in the form of tables for each individual material. The variables ENEI and ENAI describe the number of values of Young's modulus and coefficient of thermal expansions, respectively, that will be used in the tables for the first material. The code value TMPE1 represents temperatures of which the YMI (Young's modulus) values are given in the tables for the first material. TMPAl are temperature values at which the ALF1 thermal expansion coefficients are given. In the second material, similar code instructions are given ly ENE2, TMPE2, YM2, ENA2, TMPA2, ALF2 and so on for the third material.) With the temperature at the layer interfaces and surfaces known, the values of Young's modulus and coefficient of thermal expansion are determined for each material at each interface by CODIMA curve-fit of the material property tables. The material property variation through each layer is obtained by linear interpolation. The value of Poisson's ratio is assumed constant in each layer and defined in the regional input data as the quantity POIS (six data locations possible, one per layer). The inaccuracies introduced by assuming a constant value of Poisson's ratio for each layer in a region are small and this assumption greatly simplifies the equations of the program. The distribution of material properties must be known before the stiffness properties and thermal loads can be determined at each station on the shell.

2.15 STIFFNESS PROPERTIES (EIFH, ENOTH, THSTA, TH, D, EK)

The stiffness properties of the shell can be evaluated when the material properties and shell thicknesses are known. The stiffness parameters must be supplied at each station in the region. The procedure for input of material property data is given in Section 2.14. For multilayer shells, the program permits the input of shell layer thicknesses in array form and automatically curve-fits data to ascertain thicknesses at intermediate station points. For the case of constant thicknesses, setting the variable EIFH to +1 permits the use of a simplified data format. For variable thicknesses, EIFH is set to -1 to permit reading of layer thickness tables. The quantity ENOTH sets the number of thickness stations given with THSTA being the active station number at which thicknesses are supplied (20 maximum). The station number must be the same for all layers. The thicknesses are read in by the quantity TH in order of layers' thicknesses per station, e.g., for a fivelayer shell, the thickness of each layer is read at a specific station before preceding to the next station. The order of layer input is consistent with description outlined in Section 2.13. i.e., first layer at inner surface preceding in order to the last layer on the outer surface.

The cross-sectional properties are evaluated from Equations 33 and 34. It is assumed that the material properties (and temperature distribution) varies linearly across each layer. Thus, all integrands will be broken up into a sum of linear functions of ξ and the integrals are evaluated numerically based on values of material properties at layer and branching surfaces. A similar procedure is used in evaluating the thermal load and moment expression described by Equations 35 and 36.

For the case of constant stiffness properties, the extensional (D) and flexural (EK) stiffness can be inputted directly into the program by use of the EN indicator discussed in Section 3.4.6.

2.16 INTERNAL SPRING SUPPORT (GSPRL, GUK, GVK, GWK, GEMK)

The program will allow the consideration of a support spring at any internal station in a region. The station location of the spring is specified by value GSPRL. The values of spring constants for the meridional, circumferential, transverse, and rotational spring supports are given by the symbols GUK, GVK, GWK, GEMK. This capability would aid in considering shell structures which have internal elastic restraints such as a circumferential ring or other type of elastic support conditions. The program with minor modifications can be extended to handle more internal support points if desired.

2.17 REFERENCE QUANTITIES (SIGO, EO, HO, AO)

SIGO, EO, HO, and AO represent reference stress, Young's modulus, thickness, and length quantities introduced in the analysis to provide nondimensional Fourier coefficients of comparable magnitudes. (See Section 1.3.5.) It is usually most convenient to set the value of these quantities equal to one.

2.18 GRAPHICAL PLOTS (PIXI)

This is a program option permitting graphical plotting of results using the Stromberg Carlson automatic plotter. Nonzero values of PIXI will give plots. If no graphs desired set PIXI = 0.

2.19 SPECIAL INDICATORS (EX, PTHI, PFLAG, STRI)

There are several indicators in the program that yield certain features in the program that cannot be classified completely under the paragraph description presented previously.

The program will permit the stacking of problems so that more than one problem can be run with a job submittal. Theoretically, any number of problems can be stacked. The indicator PTHI is used to eliminate the repetition of data when similar problems are used. A PTHI value equal to zero indicates a normal program path. Positive PTHI values permit skipping of the geometry subroutine with the shell geometry remaining identical to the preceding case. A negative value of PTHI retains all shell properties from preceding case but permits variation of surface loads.

The PFLAG indicator permits the printing of all input data when the value is set to nonzero. In addition, a negative PFLAG will yield print information of a diagnostic type.

The quantity STRI indicates the layer at which a second value of stress across the thickness is desired. The value of stress at the inner surface of the specified layer is printed. Zero value of STRI automatically gives the stress at the outer surface of the shell.

The EX indicator is an option formulated to simplify data when running cases with constant loads and section properties are considered. This option is invaluable in running simple check cases. The details on this use of the EX symbol is given in Section 3.4.6.

2.20 CURVE FITTING

As discussed in previous sections, the shell parameters and loads are curve-fitted using the controlled deviation interpolation method concept (CODIMA). CODIMA basically involves fitting a second-degree polynomial through three successive points in the data field. Thus, the curve passes exactly through the supplied input points. The detailed characteristics of CODIMA are outlined in Section 3.7.3 and will not be repeated here. CODIMA was selected because it offers an accurate, efficient, and reliable technique for fitting data. As contrasted to "least square" techniques, it does not exhibit ill behavior in treating even the most complex of functions. Of most importance, CODIMA fits automatically and does not require additional input construction to be supplied by the user.

2.21 GENERAL COMMENTS

A number of difficulties may arise as a result not of errors in the program or its writeup but of certain subtleties connected with shell theory and the construction of the program. It would be foolhardy to attempt to outline all these difficulties and subtleties here. However, it would perhaps be worthwhile to give some simple tips to serve as a reminder in use of the program.

- 1. The user should always check the output data from the program to see if it corresponds to input entered. In using curve-fit techniques (CODIMA) it may be desirable to input more data than absolutely necessary to increase the accuracy of representative results.
- 2. Some difficulty may be encountered in selecting a mathematical model particularly when treating branching configurations; for example, some ambiguity is discovered in the definition of thickness for each shell region in the junction region. Careful study of Section 2.10.3 with the exercise of good engineering judgment should permit the selection of an adequate engineering model.
- 3. The user should be reminded that shell theory is two-dimensional and input parameters and results should be interpreted accordingly. The results, of course, will only be as good as the mathematical model selected.
- 4. The discrete point option (GMI = 3.0) should be used only when the shell geometry cannot be described by the other geometry options. If this option is used, it is strongly recommended that the capability for input of radius of curvature information be utilized. A dense population of input data must be supplied when using this option in order to guarantee an accurate geometrical representation.
- 5. For multiregion configurations, extreme care must be exercised to ensure that the geometrical location of a junction point is matched between regions. In addition, best results are obtained if the finite difference intervals are selected to be approximately equal on each region.
- 6. Some difficulty may be encountered in treating problems having apex-apex or free-free boundary conditions. Rigid body type motion may occur when data are not input precisely. For some problems where some "drift" occurs, it may be possible to supply a nonforce-inducing spring to the shell in order to obtain a zero reference point for displacements.

III. DETAILED USE OF THE PROGRAM

3.1 INTRODUCTION

The Shell of Revolution Computer Program is written almost entirely in FORTRAN IV and makes use of the overlay feature of that language. The exception is found in the utility subroutine CRTG, described in Section 3.7.5.

The program has been checked out in NAASYS, the NAA adaption of the IBM 7090/7094 IBSYS/IBJOB system and \Rightarrow s the NAASYS library routines shown in the load map, pages 67 to 73, inclusive, this section.

The NAASYS input tape is 'UNIT05, ' the output tape is 'UNIT06, ' and the system CRT file is 'UNIT16. ' In addition to these files, the program uses 3, 4, 7, 8, 9, 10, 11, 12, and 13 as scratch tapes or for overlay storage during execution. NAASYS itself, is stored on 'UNIT01.'

The program is made up of an executive program and eight links, five of which are called by the executive program, and the other three by the DATLNK subroutine. The name of the main program in each link and a description of its use follows.

Link No.	Name	Purpose
0	EXECUTIVE	Reads the general data, DA, and controls the flow of execution of the other links.
1	DATLNK	Acts as a subexecutive program to control GEOM, DATLDS, and DATLYR, the subroutines that set up regional data. Also reads special data, SDA. Prints Section and Material Properties and Loads.
2	GEOM	Reads geometry parameters/region. Calcu- lates DEL, R, X, WFE, WTH, GAMA, and RHO. (See program nomenclature, Section 3.10.) Prints all geometry input and calculated values.

Link No.	Name	Purpose
3	DATLDS	Reads pressure loads and temperatures for the inner and outer faces/region, DLD. Makes pressure dimensionless and, depending on indicator, sends a constant, curve-fits. or Fourier sums for values at each meridional station. Sets up temperatures at 20 stations for use in DATLYR. Some data prints on indicator.
4	DATLYR	Reads section and material properties data, DAL/region. Sets up D, EK, ENT, EMT, El, T, ALF at all meridional stations. (The first four mentioned are made dimensionless.) Some data prints on indicator.
5	PANDX	Forms the P and X matrices of Equations 74 and 75 (Section 1.13) needed in the solution of the difference equations.
b	INTLD	Uses the P and X matrices from link 5 to form the solution matrix, z. (Equations 76 and 77, Section 1.13) Computes the current Fourier component for the bending moments, transverse shear forces, membrane forces, and stresses.
7	SUMS	Performs the Fourier summing for unsymmet- rical loading conditions. Prints results. Sets up tapes and indicators for next Fourier component.
8	PIX	Plots shell geometry, displacements and other results from link 6/region. (Results are printed for all THETA values but are plotted for just the first THETA.)

3.2 DECK SET-UP

In Figure 3-1 we have shown the setup of the column binary program deck, with the necessary control cards for each link.

The \$IBJOB, \$ORIGIN, and \$DATA cards are single control cards. The circled numbers found on the first two control cards mentioned indicate the order in which they, plus the associated decks of that link, should be

IBLOR

I

DVERLAY DRIGIN CARDS AND ASSIGNED LINK NUMBEPS

sorigin_	LNK	IS LINK	I. PARENT LINK IS	LINK	I S	C
SOR [G1N	LMKA	IS LINK	2. PARENT LINK IS	LINK	15	•
SON I GIN	LNKA	IS LIAK	3, PARENT LINK IS	LINK	51	
SURIGIN	LINKA, REH	IS LIAK	4. PARENT LIAK IS	LINK	15	
\$08 [6 [N	LINK -	IS LINK	5. PARENT LINK IS	LIK	IS	U
SORIGIN	LNK	IS LINK	6. PARENT LINK IS	L I NK	IS	U
SOR IGIN	LIK	IS LINK	7, PARENT LINK IS	L I NK	SI	Ų
\$04 6 N	LNK,REW	IS LINK	8. PARFNT LINK IS	LINK	15	0

- 67 -

Jhows the relation between the overlay links. Overlay Origin Cards and Assigned Link Numbers

I.

PASE 49

30111110

64

3570

84161

* MAN YALMAN *

SYSTEM SYSTEM FILE 9LACK GRIGIN FILES 1. UNITOI

		NANDA CONTRACTOR STRAND		for all take with how read		er urite state in it into a		a variable and tranc.							04266	04326	04373.	0440C THRU 51121	
UNI 702	UNITOS	UN1104	UNI 705	UN: T06	UNITO 7	UNI 708	UNI 109	UNITIO	UNITII	UNIT12	UNITIS	UNI 714	UNI 715	UNI 716	7	VITIALIZATION	PRUGRAM		
2.	•	• •	5.	ć.	2 •2	.	5 .	10.	11.	12.	13.	14.	15.	1¢.	FILE LIST ORIGIN	PRE-EXECUTION INITIALIZATION	CALL CN UBJECT PROGRAM	UBJECT PROGRAM	

LINK	DECK	DRIGIN	CONTROL	SECTIONS	(/ NAME /=	O NON:	CONTROL SECTIONS (/NAME/#NUN 0 LENGTH, (LOC)=DFLETED, ##NTT PEFEREGCED)	C)=DFLETED.	ドレフィキ	a Ër Eq EqCE DI
0	1488R	04400		/(67372)	EVEN	04401		C5177 +		
	CAN	05213		(05213)						
	PSU	05323		(05323)						
	> W J	05433	7 k k	(05433)						
	•LINK	05601	/.101 /	05601	/"TDECT/	05612		05632		
	•LXCCN	05652	•LXSTR	05652	• LXSTP	05657			, נעביט	75756
			LBEXIT	05772 +	L XR TN	05772			• 15CLS	74164 #
			LXARG	06305	• ٢ 0	06324			•CLSE	C1216
			•LFBL	06333 *	•LUNB 06334	96134	PECUT OFARS		CTESs,	05337
			SC. SHT	06340	/ S4R1 • V/	06341				16 35 [

Map of Gure Storage

11 351d

95.11.67.P.S

		. WRTFQ	06362	. REDFQ	06343	CNTL.	96364		
• 1 ODEF	06367	DEF IN	06367	• ATTAC	06373 *		06375	NU0C.	75377
		.READ	06401	• WRITE	06403	. ASP	06413	•REA72	54423
		.RELES	06425 •	• LAREA	* 96430 *	.LFBLK	06454	.LTSX	06457
-		AREAL	06471	•LUNBL	\$ 1244	•ENTRY	06503	4C2.	34536
		• 60	06542	• DEP.R	06556	IXd DN.	06562	JXNCO.	75554
		•EX34	06606	FPUN	06613	•• PLOT	06413		
• 10CSF	06614					1			
-LOVRY	12136	.LOVRY	(12136)	.LDT	(05601)	.LRECT	(05612)	•1.460	(05 5 3 2)
•LXSL	12710	•L XSEL	12710	• LXSCL	12711	LXTST	12714 +	JVCX1.	12762 *
		•LXRCT	12773 *	•LXIND	13132	•LXDIS	13140	• L XFL3	13141
		•L TCH	13146						
.FPTRP	13166	<pre> efepte ovelow </pre>	13166 *	• FPOUT	13322	• F P 4RG	13332	/*COUAT/	13334 *
•ERAS•	13412	Ee 1	13412	£•2	4	E . 3	13414	Ea 4	341
•XCC•	13416	CC.1	13416	CC.2	4	CC • 3	13420	1 C v 4	13421
XIT	13422	EXIT	13422	• EXIT.	13422		k - 1	•	•
FXEM	13423	. FXEM.	13423	• F XOUT	37	• FXARG	13764	/.JPT4./	14343
0-XP-0	14052	RDOP XQ	14052 *	OPEXQ	14054				
FOUT	14120	.FOUT.	14120						
FCNV	14461	.FCON.	14461	~	14511 *	/DHSHON/	14513 *	• FCNV •	14515
		• ENDES	14534	• C NY SH	14536	.FDX1	1,542	•F7X2	14543
		• DBC	14545	6.3	14703	 DBC20 	1-/31	+ SCC +	14741
		• DDF I X	14750	-	14756	. 00 BC	15033	• 7 DR 51	15276
		• DDR 52	15300 +	•01	15303	• 02	15305	• FERR?	15372
		. ANPT	15426	- ONP T	15443	•LNTP	15526	TUCA.	10,575
		• DFLT	15614	•FLT	15751	• DE XPN	16042	• F X.D	16343
		-HOUT	16174	• INTG	16245	 LnJT 	16355	+000+	16406
		• XCF	16440	• TEST	17146	• KOUNT	17151	•LIST	17154
		. DONE	17165	• NUTBF	17232	EVEN	17231	• BUF	17262
		.0570	17263	HTOIN	17264	. GAIN	17265	-GAIVI	17265
		• FB08F	17276	EVEN	17307	.000FL	17323	. JAFLG	17324
		004 -	17325	• PEX	17326	• FE XP	17327	• D I C	17330
F108	17346	•	17346	. FCNT	17451	.FBLT.	17547	.Fanto	17567
		•FRLR•	17613	•FRLR.	(:7613)	•FWLR.	1765	• F.4LR.	(17557)
		81	17717	-	20011				
FIDS	2001	ETOC.	51005				• • • • • • • •		

Map of Core Storage (Cont)

ł

90191

- 69 -

	JEFTU.	20226	•F [[L.		8+CLS	- 19202	1.4632	
	REOF		PLOF.Q	20300 +	• Thul	20434		27444 *
	• B [N	20445 #	• FCT	20446	3FC K52	20457	SEGF-J	
2054	•FI0H•	20547	•FFIL,	21334	• FR TN.	21341		
52	• FWR D.	21557						
80	.FWR9.	21603						
62	-FROD-	21627						
5	FRDR	21655						
20	- UNNI	10212						
20	-UND 2	21702						
20	-UND3-	21703						
70	- (IND4-	21794						
21705	-UN05-	21705						
10	• UN06.	21706	e BUFS7	21707				
2171	-UN07-	21712	1					
1712	-BCNII-	21713						
2171		21714						
1210		21715						
		21716						
27		01112						
	• 7 7 A 0							
25		12111						
2112		17,17						
21 72	• UNI 5•	21122						
2172	•UNI 6.	21 72 3						
2172	ALOG10	21724	ALNG	21725				
2213	COSD	22130	SIND	22132				
2216	CUS	22161	SIN	22162				
2235	SQRT	22355						
2243	• X P 2 •	22430						
2254	eF851.	22546						
2300	e raw Te	23003						
2312	•F5Li•	23140	•F SD1.	23146 +				
15	eFBL1.	23175	.FB01.	23203 +				
1020	- 115 -	23215	-5111-	23222	, sol,	23230	5711,	23236
3225		72767	E SDD.	23775 +	•	1		
		1 13 6 3						
2330	aFRLC.	23324	e HHUUS	- 75667				

21 357c

20131100

1 U U D

Map of Core Storage (Cont)

34191780

1+105

~

157d

٠ ٠ ٠ ٠ 20103 30103 23516 23527 27562 /*****/ NY Y SFRSAV RESETV # ٠ /FNU.ID/(23517) EVEN 23525 /RX.../23535 /XLO../23536 /MR../23556 /MR../23556 /MR../23556 /2...52550 /CTPE../23556 /CTPE../23566 /CUT.../23556 30626 30676 27560 NXV SCERRV FRAMEV ٠ * * ¥ /*PLDT./(23516) /xxxx../23526 /AV../23531 /PR../23535 /PR../23541 /HIGH../23541 /HIGH../23545 /*RFG../23553 /YRFG./23553 /BUTT../23563 * (24436) 27517 27560 23765 23770 24212 1262201 30366 30402 25552 10353 30417 30464 30473 30513 30673 EPRLNV FRRNLV RUMP. CAMRAV • IDFRM RXPNUV VSCALV IVV TETCOV SETMOV MSXYV HOLDAV FAINTV VAXV VAOPV LINPV * ٠ (25%55) 26221 26221 (27%53) (27%66) 27562 (3025) (30347) (30347) (30347) 30414 30464 (30465) 30507 30507 (10406) (23400) SCCU... BINELO BRITEV ERMRKV EVEN GRIDIV HDLDIV LABLV LINFV LINFV VONLNV PLOIV PLOIV PRINTV SETCIV SETCIV SETCIV XPANDV XSCALV IXV VXAXV XMODV 0+0+0 23516 23745 23770 24242 24242 24255 24242 24432 24432 24432 24432 24432 24432 25555 25555 25555 25555 25555 25555 27650 226220 226220 226220 30347 30357 31375 30407 30414 30464 30465 30476 30237 BNBCDC BRITEV EKMRKV ERRLNV GRIDIV GRIDIV LABLV LINEV LINEV NCNLNV PLDI. VAAV Xmuduq Xfandv Xscalq 5422.0 FLOTV Printv SETMIV SMXYV SMR3.7 SFTC IV STOPTV CECPD

Map of Core Sturage (Cont.)

•	
Ľ	
5	
2	
a a	

PAGE 74

3127 0723 0723 0723 31155 FFGLU 31155 55TV-2 31274 30773 31155 NDFRV (31156) 55TV-2 31274 30773 31155 NDFRV (31156) 55TV-2 31274 30773 31155 NDFRV (31156) 55TV-2 31274 3137 31155 NCFUTV 31165 55TV-2 31274 3147 31155 SCGUTV 31165 55TV-2 31274 3147 3127 LC5SAV (31156) 57V-2 31274 32437 31417 CD51MA 33477 57V-2 31274 31416 /// //67372 EVEN 33617 67UN 33615 /// //67372 EVEN 33617 67UN 33616 /// /// //67372 EVEN 33617 67UN 33616 /// /// /// /// /// 67036 33616 /// /// /// /// /// 67036 33616 /// /// /// /// ///	10734								57254 50332				37654 37654	
31127 30710 • UVV 30717 • UVV 3073 31127 FFGLV 3103 CCVL0 31137 9073 7 57372 FFGLV 3103 CCVV 31137 9073 7 31126 NDFRV 31156 SCTV-2 31224 9073 67372 1165 55CUTV 31165 SCTV-2 31224 9073 31126 NDFRV 31155 SCTV-2 31224 9073 31127 CD5144 3165 SCTV-2 31224 9073 32655 CD5144 33470 EVEN 31323 7410K 32437 7 74160 EVEN 33617 DATLVP 44266 75667 EVEN 45413 EVEN 33617 DATLVP 44132 33616 // // // 167372 EVEN 33617 DATLVP 44132 33616 // // 167372 EVEN 33617 DATLVP 44132 33616 // // 1677372 EVEN <	SCLSAV								400 600				/HI46. /	EVEN RESETS /L,3Cat/
SFRREV 30710 UXV 30711 V 31123 FFCLV 31013 UXV 30711 V 31123 FFCLV 31013 UXV 30711 V 31123 FFCLV 311013 UXV 31137 31156 SCCUTV 31165 SCTV-2 31224 31165 SCCUTV 31165 SCTV-2 31224 31161 /// /// /(67372) EVEN 33617 45412 EVEN 45413 ENTERP 45406 44306 45412 EVEN 45413 ENTERP 45406 44306 33616 /// /// /(67372) EVEN 31323 45412 EVEN 45413 ENTERP 45001 33616 /// /// /(67372) EVEN 31323 474160				32437	44266	45034		44132	47344 50235 50377		50414	44565	37631 37662 37672	
SFRREV 30710 UVV 30717 N 31127 L755 LV 30746 31137 1013 N 31127 L755 LV 31127 1127 31136 31156 NOFRV 31165 SCTV+2 31224 31156 SCCUTV 31165 SCTV+2 31224 31156 SCCUTV 31165 SCTV+2 31224 31156 SCCUTV 31165 SCTV+2 31224 31155 SCCUTV 31165 SCTV+2 31224 3117 L7053721 FVEN 31470 31373 32455 C001MA 33470 31371 31373 32455 C001MA 33470 31373 13713 32455 C001MA 33470 31373 13713 32417 FVEN 33470 33417 44306 33616 /// /// /// 147372 1470 33616 /// FVEN 45413 EVEN 33617 33616 /// /// /// 147372 <	77[]			JATLNK	GF 3 M	DATLDS		DATLYR	PANDX 000 002		INTLO	SHIMS	~	/TABG / FTCG /LCGC@T/
SFAREV 30710 RFSCLV 30746 21013 FVIN- 31013 211127 NOFRV 31156 31156 SCCUTV 31156 31156 SCCUTV 31156 31156 SCCUTV 31156 31156 SCCUTV 31165 31156 SCCUTV 31165 31165 SCCUTV 31165 32455 COD1MA 334770 33616 /// //67372 33616 /// //67372 44160 EVEN 45413 470 SCCUTV 45413 31322 /// /// /// 47150 S0142 S0342 31322 /// /// /// 31322 /// S034		11137	31224	£2E1E	33617	3617	45601	33617 44306	31323 50161 50324	50345 (50350)	62£16	31323	31323 37647 37666	
SFRAEV 20746 21013 FVID 31013 V 31127 VDFRV 311127 V 31156 NDFRV 31156 31156 SCCUTV 31156 31156 SCCUTV 31156 31156 SCCUTV 31155 31156 SCCUTV 31155 31156 SCCUTV 31155 31156 SCCUTV 31155 31156 SCCUTV 31470 32455 CODIMA 33477 33616 /// (67372) 33616 /// (67372) 44160 EVEN 45413 44160 EVEN 45413 47160 EVEN 454137 33615 /// (67372) 47160 EVEN 50360 31322 2008 50300 31322 /// (67372) 31322 /// (67372) 31322 /// (67372) 31322 /// (67372) 31322 2122 <td>AXN</td> <td>LUCSTV</td> <td>SCTV+2</td> <td>FVEN</td> <td>t vên</td> <td>E VEN</td> <td>ENTERP</td> <td>EVEN STCOMB</td> <td>R VEN Col P Col P</td> <td>1005</td> <td>FVEN</td> <td>FVEN</td> <td></td> <td>``</td>	AXN	LUCSTV	SCTV+2	FVEN	t vên	E VEN	ENTERP	EVEN STCOMB	R VEN Col P Col P	1005	FVEN	FVEN		` `
SFRAE RFSCL13 SFRAE RFSCL13 SFRAE RFSCL12 S1127 S1156 SCC13 SCC114 SCC11	30710 + 30746 + 4013	(31127)	31165	/(67372) 07245	(67372)	1673721	45353 45413	/(67372) 44161	/(67372) /(67372) 50300	50342	(67372)	(167372)	/,573721 / 37650 37663	
	SFAREV RFSCLV Devio		SCCUTV				DINTRP Even	Z	m	004 Even			U Z Z	EVEN LINEG /LINCRT/
	1015		31 156 31 165 67372	31322	<u>م</u> ۵	33616	45067 45412	33616 44160	31322 47373	50350	31322	31322	31322 37650	37715 40166
	111	LUCSAV	SCAUTO		C T T T T	5C J S	CNTP ENTP	GL YR ST V	PX4AT PXDU	INV	INLDS	FSUMS	CRT Catag	CPTG CRTMUD

Map of Core Storage (Cont)

40.181

, -

98141140

IBLOR

		/L. GUP 7	/L.SCP1/(40167)	110001/	/LUGUXV/142142)	/ FPP NLV	ノドアアシントレント	1.10464476270531
		V XMODV	/ XMODV / (30464	V GOMY/	/ YHOD / (30464)			
SC AL E	40170	/COMMG	/COMMG /(37650)	/EGRCH(/E4808()/(37442)	/ HUL DG	/HULDG /1374561	121211376376341
		EVEN	12104	SCALEC	SCALEG 40335			
PL076+	40347	/COMMG	/(37650)	/ EP RORC	/ EP R.O.R.G/ (37662)	/INTG	11376721	PLOTS 47536
GR [DG+	40552	D X D X D	/ 40554	EVEN	40553	U HMR C	/HMRG /(37664)	121415511375741
		/MF SHG		/TABG	11377021	90 I d9	41216	
SCHRG	41234							
*AAOXO	41251	D ADXCI/	/140554)	DXDYV	42070			
LOGDXV	42142	UXDY0	/UXDYQ /(40554)	FVEN	42143	LUCDXV	LPCNXV (42142)	
ILINE*	42355	IL INE	42735					
CFFSC	42775							
[/0 BUFFFAS			51122	51122 THRU	67352			
UNUSED CORE Begin execution	11 DN 32		67353	67353 THRU	67371	1 8-49-22		

Map of Core Storage (Cont)

PAGE 75

stackel. For example, the second level subroutines, GEOM, DATLDS, and DATLYR, will be found in the deck before the first-level subroutine, PANDX, because they are executed in this order.

It is imperative that the utility subroutines be kept with each link as shown. The matrix arithmetic subroutines, MAD, MSU, and MMY, are required by PANDX and INTLD, but since only one first-level subroutine may occupy core at a given time, they are entered with the EXECUTIVE link so that they may be shared by both.

Additional control cards preceding the \$IBJOB card are likely to vary somewhat with the installation. An IBM systems handbook should be consulted.

9 184705 0 \$JUB IRJOB C13504410956 32 1920258804122FURUIKE 8305 9 194705 C \$IBJO5 9 184802 0 \$* 9 185033 0 \$IBSYS

Additional control cards used at S&ID

3.3 PROGRAM FLOW DESCRIPTION

An overall flow diagram of the paths between the EXECUTIVE program and the first-level subroutines, and between the subroutine DATLNK and its second-level subroutines, is included in Figure 3-2.

A detailed flow diagram of each of these major control type routines, i.e., EXECUTIVE and DATLNK, is also included in Figures 3-3 and 3-4, respectively.

Many comments cards have been included in the listings of the other subroutines to aid in understanding their flow. (See Appendix IIIA, pages 181 through 273.)

3.4 INPUT DATA FORMAT

3.4.1 Introduction

Two types of data are entered in the program: (1) general data that is read by the EXECUTIVE program and (2) regional data that is controlled by DATLNK. Depending on the values entered for the indicators PTHI (see DA data, Section 3.4.4) and EX (see SDA data, Section 3.4.6), the DATLNK subroutine will call or omit calling GEOM, DECRD(SDA), DATLDS, and

Figure 3.2. Program Flow

KEPRODUCILIBITY OF THE ORIGINAL PAGE IS POOR."

H in some じょういおく site creat the to presente ŧ T. my and late (SA) SALEME. Tipe Car not ENFOR 1 THE TH . / 1. 1 + 10 ¥ PANUR Read & cards " of title date ¥ ENTLU ¥ S.T.able T pe hes. p. th indi ۲ cates & subscript SHAS for LNT & & LNT AR. 4 ť = 13 54-1 Rid General t dati, Dot +4. ¥ 7c.-38 ENF Frint ť ÐA Z er. JATA = <. - 1 PERE tyc. 1 Set in tist Fearing Pix semperent & quaris at ends OF ENFE ENFER ۲ 1 3 1 Sot Constant Scalar 3 JATLAK (ศ

Figure 3.3. Executive Program

- 77 -

Figure 3.4. DATLNK - Regional Data Control Program

DATLYR. These latter four subroutines are cycled per region. A full explanation of the data for each routine, together with sample data sheets, is included in Sections 3.4.4 through 3.4.9.

Figure 3-5 shows the possible flow between the various data reading subroutines.

3.4.2 DECRD Subroutine

All data, with the exception of the three title cards, is read by means of the DECRD subroutine, available on the NAA library tape.

This routine provides the facility for reading a variable number of pieces of floating point data into specified elements of an array; these elements may be in either sequential or nonconsecutive locations. Only the information specified is actually read into storage.

The fixed point number (index) in the first field on each card defines the position of the first piece of data on the card. If the index is 1, the first piece of data will be stored in the first location reserved for the array; if it is 16, the first word will be placed in the sixteenth position, etc. The remaining fields on each card contain information for the successive locations of the array. If one or more fields are left blank, no information is read into the locations corresponding to these fields; the information already in these locations is unaltered.

The sample data sheets shown in Section 3. 6. 3 have six fields of 12-card columns each and an identification field of eight columns for sorting purposes.

3 Title Carls กิก (Executive) 1 Rea J \$ U. PTHI . - ·5m tope = 0. GON EX : C (Gr #4) / SDA PTHE (DATLNK) < C. , = +2 Ex PTHE . 1. = + 6,+1. DLD (DATIDS) ł >6. PTHE > ¥1. tic. 1 - 14-CX # 1. DHL (DATLYR)]. I Start of region D& Icop Cycles for Ekk regions See DA date, Section 8:4.4 PTHI, path indicator See Dri data, sec 3.1.1. EX, constant data indicator Sec SDH data, section 3.4.6.

ENGT, no. of temperature stations When Euro, no temperature loads This indicator is set by the program.

Figure 3.5. Flow Chart for Data Reading

- a. The index must be written to the extreme right of the first field; it may not be zero or blank (no decimal point).
- b. The programmer should keep in mind the way in which FORTRAN stores arrays having double or triple subscripts, e.g. A(1, 1), A(2, 1), A(3, 1), A(1, 2), A(2, 2), etc.
- c. The floating point (REAL) data should be entered with a decimal point (anywhere in the field) and an exponent, when necessary, written to the extreme right of the field and preceded by a '+' or '-'.
- d. Reading data is concluded by placing a negative sign in column 1 of the last card to be read.
- e. Zero should always be entered as '0.'. A '-0.' or '.0' will be recognized as a blank.

ERROR indication: If the index is zero or blank, the comment "****BAD INDEX ON DECRD CARD-" will be printed, followed by a printout of the columns 1.80 of the defective card. The job will be terminated.

If the data for the array in the CALL statement have been completely read and no negative sign has been encountered in column 1 of last card read, data intended for subsequent CALL's will be read into the incorrect array. When there are no data cards to satisfy the appetite of a CALL DECRD statement, the job will terminate with an end of file tape 5 designation, as shown below.

TRACEBACK - CALLS IN REVERSE ORDER.

CALLING Reutine	IFN DR Line ND.	AB SOLUTE LCCATION
FIOS	333	20471
FROD	13	21632
1488R	17	04635
NAA USER MESSAGE	141	
END CF FILE READING	UNIT05	
EXECUTION ENDED.		

If this occurs before all expected results have been printed, check the last card of each data block for the negative sign in column 1.

3.4.3 Data Deck Setup

Data decks should be stacked as follows:

- 1. Three cards (72 columns each) of title data
- 2. DA, general shell data. read by the EXECUTIVE program
- 3. GDA, geometry data, read by the GEOM subroutine
- 4. SDA, special data cases, read in DATLNK subroutine
- 5. DLD, loads data, read in DATLDS subroutine
- 6. DAL, section properties data, read in DATLYR

With the exception of the three title cards, each group of data listed above should have a minus sign in column 1 of the last card. Groups three through six are repeated for additional regions. Remember that some portions may be omitted due to the values of indicators EX or PTHI. (See flow chart, Figure 3-5, Section 3.4.1.)

3.4.4 Title Cards and Call DECRD (DA)

Three title cards form the first three cards of any data deck for each case. These cards are useful in identifying the run at a later date. They may include a brief problem description, the date of the run, a reference, etc.

These cards may not be omitted, but they may be blank, if desired. If the cards are forgetten, the error indication from DECRD will occur for a multiple case run, or the job will terminate with an end of file tape 5 designation (as explained in Section 3.4.2) provided the DA data for the case was three cards or less.

All input data must be dimensionally consistent. It should be noted that all nondimensionalization is done internal to the program; thus, all inputs must be supplied with appropriate dimensions (e.g., transverse load PN is input with dimensions P/L^2). In the instructions that follow, the input quantities in terms of nomenclature of Section I are listed in the description and comments.

DECRD Index	Name	Description and Commants
l	ЕКК	Number of regions (50 regions estimated limit)
2	AO	Reference longth (a)
3	HO	Reference thickness (h ₀)
4	EO	Reference Young's modulus (E ₀)
5	SIGO	Reference stress (g ₀)
U	PIXI	CRT indicator. Plots curves when nonzero. Must be zero when SUM is negative.
7	PTHI	Path indicator First case = O, "normal" path Following cases: a. Negative - skip GEOM; geometry is the same as preceding case b. Positive - loads change only
8	SUM	Nonzero for multiple Fourier components a. Positive - results are summed, with prints given at ENFOR values b. Negative - discrete Fourier components printed each time. 10 CRT
9	ENFO	Initial Fourier component (n)
10	ENFI	Subsequent Fourier components (10 more)
21	ENFØR	Fourier component print values. Three prints are permitted. Two intermediate prints of the Fourier summing are possible for checking convergence. The last ENFOR given should be the same as the last ENFI
25	THETA	Circumferential angle 🖗 (degrees), 10 maximum

ENFI, ENFOR, and THETA values must be read for each case. DA(1) through DA(9) are set to zero before reading the first case data but, for multiple case runs, they will retain their values unless changed by the programmer.

3.4.5 Call DECRD (GDA)

The GDA data array is zeroed each time before the above statement is executed. This means that all GDA data must be repeated for multipleregion or multiple-case runs.

DECRD Index	Name	Description and Comments
l	GMI	Geometry indicator = 1. cons-cylinder = 2. sphere-toroid = ±3. discrete points = ½. ellipse = 5. hyperbola = ±6. parabola
2	EN	Number of station points per region (150 maximum)
3.	PFLAG	Print indicator. Nonzero prints all input data. A negative PFLAG prints additional information of a diagnostic type (see Section 3.5).
4	BCITP	Boundary condition indicator at first station i = 1 (top)
5	BCIBM	 Boundary condition indicator at last station i at N (bottom) = 1. free (t_ξ, T_ξ, T_ξ, m_ξ = 0) = 2. roller (t_ξ, u_θ, w, m_ξ = 0) = 3. clamped, fixed (f_ξ, u_θ, u_θ, w = 0) = 4. simply supported, hinged (u_ξ, u_θ, w, m_ξ = 0) = 5. complete (T_ξ, f_ξ, u_ξ, u_θ = 0) axisymmetric load problem only = 6. special boundary matrices read in. Must use 6 whenever nonzero values are prescribed at boundary values in EM5X or EMN5 matrices = 9. closed apex (e.g., <i>i</i>pex of sphere, pole condition). Set one of the apex end conditions to -9 for apex-apex type boundaries. = 10. branch point (more than 2 regions joining) ** At a branching discontinuity only one region may have a top boundary indicator of 10 = 0, 1. E+10 discontinuity junction (two regions joining)

DECRD Index	Name	Description and Comments
t	GPSI	Discontinuity in slope at the end of the region (degrees) (See Figure 2.1 (2))
7	GECX	Eccentricity of reference surface at a discontinuity point (i = N) (See Section 2, 10)
8	GSPRI	Station location of internal support spring, one per region
٥	GUK	Spring constant, meridional direction
10	GVK	Spring constant, circumferential
11	GWK	Spring constant, normal to shell
12	GEMK	Spring constant, rotational
		When GMI = 1.0; see Section 2.8.1
15	RAI	Radial distance from axis of revolution to station 1 (L)
lo	AXL	Meridional length of shell (L)
17	ANX	Angle the generator makes with the axis of revolution (degrees)
	-*	When GMI = 2.0; see Section 2.8.2
15	RC	Radius of curvature of the generator (L)
16	R ¢ FF	Offset distance measured from axis of revolution to center of meridional curvature (L)
17	рніо	Initial opening angle from vertical axis (degrees)
18	PHIN	Final opening angle from vertical axis (degrees)
	Whe	n GMI = 3.0 (or -3.0); see Section 2.8.3
19	EM	Number of RIPT's given (12 minimum, 150 maximum)
20	RIPT	Discrete radial distances

DECRD Index	Name	Description and Comments
170	XIPT	Discrete axial or vertical distances (or arc lengths)
320	RCURV	Meridional radii of curvatures
470	RCURZ	Circumferential radii of curvatures
		GMI = 4.0, 5.0; see Section 2.8.4
796	RFF	Offset distance from axis of revolution to the parallel coordinate of the standard form
797	SPNO	Clockwise positive opening angle from the positive vertical standard form coordinate to the first station (degrees)
798	SPNN	Clockwise positive opening angle from the positive vertical standard form coordinate to the last station (degrees)
7 99	A	Semimajor axis parallel to the axis of revolution
800	В	Semimajor axis perpendicular to the axis of revolution
		GMI = ±6.0; see Section 2.8.4
796	RFF	Offset distance from axis of revolution to the parallel coordinate of the standard form
797	SPNO	Clockwise positive opening from the positive vertical standard form coordinate to the first station (degrees)
798	SPNN	Clockwise positive opening angle from the positive vertical standard form coordinate to the last station (degrees)
799	A	Distance from the directrix to the focus, positive in positive direction of the standard form

Boundary matrices, when not set by indicator, only the diagonal elements are read. The explanation below is based on the assumption that the user is familiar with Section 1.9, "Boundary Conditions".

DECRD Index	Name	Description and Comments
020	EMIX	Diagonal terms of force boundary matrix (Ω) (i = 1 or top of shell)
024	ЕМЗК	Diagonal terms of displacement boundary matrix (A), i = 1
028	EM5X	Column boundary matrices (2), top of open shell (i = 1); dimensioned for 20 Fourier components of boundary force or displacement
705	EMNI	Like EMIX at i = N (or bottom boundary)
712	EMN3	Like EM3X at i = N (bottom boundary)
710	EMN5	Like EM5X at i = N (bottom boundary)

3.4.0 Call DECRD (SDA)

The SDA data array is set to zero before the first case and first region data are read. Succeeding regions or cases have just the T, ENT, EMT, PN, PFE, and PTH arrays zeroed. EX is set to zero on the second pass of an unsymmetrical load case. All other data will remain unchanged from the preceding region unless entered by the programmer. If there are no changes, one data card (with an index number) must be read to satisfy the call DECRD (SDA) statement.

DECRD Index	Name	Description and Comments
1	EX	Constant data indicator*
		= 0. No constants
		Negative - all constants. One value is entered for D, EK, Ei, T, ALF, DNA, POI and the Fourier component of ENT, EMT, PFE, PTH, PN. These values are modified by the reference coefficients where applicable and the entire EN stations are filled with the constants.

*The constant data indicator for EX ≤ 0 can be used only when SUM = 0. When SUM ≥ 0 , EX must be set equal to zero and zormal input format following.

DECRD Index	Name	Description and Comments
		 + 1 constant section properties and temperature loads. One value is entered for E1, POI, DNA, ALF, and T. Values for D, EK, EMT and ENT are set by Equations 33 through 36.
		Values may be read for D and EK by entering the data flag 1. E + 10 in SDA (26) and the D and EK values in SDA (27) and SDA (177), respectively. The program multiplies by the appropriate reference coefficients.
		= + 2 constant pressure loads, no temperature loads. The Fourier component for PN, PFE and PTH are entered as data. The values are multiplied by the reference coefficients and stored for EN stations.

The following data are read directly into the SDA array only when EX is nonzero, exceptions noted.

DECRD Index	Name	Description and Comments
25	POI	Poisson's ratio (y). Not entered for EX = +2.
26	D	Membrane stiffness (bE_0h_0). Not entered for positive EX, except for data flag use explained in EX = +1., above.
176	EK	Bending stiffness ($dE_0h_0^3$). Same as D.
326	ENT	Thermal load (t _T c _o h _o). Negative EX only.
476	EMT	Thermal moment $(m_T \sigma_0 h_0^3)$. Negative EX only.
626	PFE	Fourier component for surface load applied in meridional direction ($P_{\xi}a/\sigma_{o}h_{o}$). Read for negative EX or EX = +2.
776	PTH	Same as PFE, circumferential direction
926	PN	Same as PFE, normal direction

.

DECRD Index	Name	Description and Comments
1070	EI	Modulus of elasticity (E). Read when EX is negative or equal to +1.
1220	т	Temperature differential (0° reference temperature). EX neg. or +1.
1370	A1.F	Coefficient of thermal expansion (0). EX negative or +1.
1520	DNA	Distance from neutral axis. (Value will be negative for inner surface.) EX negative or +1.

These data cards (with a "-" in column 1 of the last one) will be succeeded by the following:

When EX is	
-1.	Next region's GDA, geometry data
+1.	This region's DLD, pressure loads data
+2.	This region's DAL, Section properties data
0.	This region's DLD, then DAL data

3.4.7 Call DECRD (DLD)

~

The DLD data array is zeroed each time before the above statement is executed. This means that all DLD data must be repeated for multiple region or multiple case runs.

DECRD Index	Name	Description and Comments
1	PILD-	Pressure loads indicator for PFETB, PTHTB, PNTB = 1. constants = 2. Fourier components given
	•	= 3. Fourier summing, symmetrical
2	TIBT	Temperature distribution indicator for inner surface (TBOT) (Same as PILD)
3	TITP	Temperature distribution indicator for outer surface (TTOP) (Same as PILD)

DECRD Index	Name	Description and Comments
4	EN TH	Number of finite sums taken to evaluate Fourier inversion integral for pressure or temperature coefficients. For most cases, best results obtained by setting equal to maximum value of 91.
5	PFETB	Table for PFE load. The array is dimensioned as 200 and its format is dependent on PILD, as explained below—TAB setup, Section 3. 4. 7. 1
205	ртнтв	Table for PTH load. Like PFETB
405	PNTB	Table for PN load. Like PFETB
o05	твфт	Table for temperatures on the inner surface. Dimension is 200; format determined by TIBT
805	ттфр	Table for outer surface temperature. Dimension is 200; format determined by TITP
1005	PSIO	Angle at which line load is applied at a junction point (see Figure 1-10)
1005	PD	Magnitude of line loads applied at a junction point. Consecutive locations are used for succeeding Fourier components, 11 maximum
1026	EMD	Line moment applied at a junction (11 Fourier components possible)

Don't forget the "-" in column one of the last card.

3. 4. 7. 1 Tab Setup

All loads tables—PFETB, PTHTB, PNTB, TBOT, and TTOP—are dimensioned 200. Where Fourier summing is desired, the values are read for all Fourier components (ENF's) at the same time. The format of the tables for PFE, PTH, and PN will depend on the value assigned to PILD, while that of TBOT and TTOP are determined by TIBT and TITP, respectively.

TAB(I) Tables for all loads (temperature) and all ENF's Indicator = 1 TAB(I) **Constant value for first ENF** Constant value for second ENF TAB(I+1) Etc. Indicator = 2TAB(I) Number of ENF's TAB(I+1) **ist ENF** value TAB(I+2) Number of meridional stations where loads are entered Station No. = 1 ** must be 1. TAB(I+3) Load at station l 🦽 🐐 **TAB(I+4) TAB(I+5)** Second station, e.g. 10. TAB(I+6) Load at station 10., etc., with station numbers and values interlaced. **The last station must be EN, GDA (2) **TAB(2* TAB(I+2)+4) will be like TAB(I+1)**, i.e., the second ENF value. Repeat the pattern. Indicator = 3TAB(I) Number of theta rays (circumferential stations) included in the table **TAB(I+1)** First theta value (degrees) ** must be 0. TAB(I+2) Number of stations to describe the first theta ray ** Must incluie an stations listed for all theta ravs (20 maximum) TAB(I+3)F Stations and values interlaced in same manner as for Indicator = 2. Rules regarding first and last stations apply to all theta rays TAB(2* TAB(I+2)+4)F will be like TAB(I+1) for the second theta and the pattern repeats from there. ******It is not necessary to include all stations from theta ray one in theta ray two and the succeeding rays but stations I and EN must be among those chosen. **The last theta value must be 180..

The table entered for an indicator 3 will be used to form a matrix, NFE x NTH, where NFE is equal to the number of stations given in TAB(I+2) and NTH is equal to ENTH, i.e., DLD (4).

The matrix is formed by double, linear interpolation of the values. The interpolation subroutine, DINTRP, will select the lower or upper bound when a value is off an end of a theta ray and continue after printing:

LIMITS OF TABLE EXCEEDED BY ARGUMENT - ±x.xxxE±xx ±x.xxxxE±xx - VALUE USED FROM TABLE

This, of course, wastes time and will not occur if stations along each theta ray start with 1. and end with EN. A more serious error is made when the first theta ray is not 0.0 degrees and the last 180.0 degrees. The resulting printout will read:

> ARGUMENT EXCEEDS EXTENT OF TABLE IN DINTRP ARGUMENT = ±x. xxxxE±xx TABLE VALUES x. xxxxE±xx (6 per line)

_ _ _ _ _ _ _

and the job is terminated.

When EX is	Next data will be
0.	This region's DAL, section properties data
-1.	Next region's DGA, geometry data
-1. or 2.	(Should not have had any DLD data.)

3.4.8 Call DECRD (DAL)

•

The DAL data array is zeroed each time before the above statement is executed. This means that all DAL data must be repeated for multiple region or multiple case runs.

DECRD Index	Name	Description and Comments
1	ELAY	Number of layers (6 maximum)
2	STRIX	Layer number for second stress print
3	EIFH	Thickness indicator = +1. constants all stations in a layer = -1. discrete values given at THSTA stations

DECRD Index	Name	Description and Comments				
-4	енфтн	Number of thickness stations				
**	THSTA	Station numbers at which thicknesses are given. These are the same for all layers. (20 maximum) First one = 1., last one = EN.				
25	TH	Thicknesses at stations, layers				

**The TH array is dimensioned (20 x 6). When $EIFH = \pm 1$. The constant for each layer may be entered in consecutive locations, i.e., the thickness for layer one at DECRD index, 25, thickness for layer two at 26, etc.

When thickness varies along a layer (EIFH = -1) and values are entered at thickness stations (THSTA), they must be entered according to FORTRAN doubly subscripted arrays. Station 1 on the second layer will have a DECRD index 20 locations away from station 1 on layer one (the inner layer). For any given station and layer, the DECRD index = 24 + 20* (layer no. -1) + sta. no. (See also the example for entering gradients.)

DECRD Index	Name	Description and Comments
145	ENMAT	Number of materials considered in problem (3 maximur)
146	EMAT	Material indicator/layer (1, 2, or 3)
152	P ģis	Poisson's ratio/layer

The Materials Tables data (DECRD indices 158 to 284) for all materials should be entered with the data for the first region which uses DAL data, whether that region uses all given materials or not.

DECRD Index	Name	Description and Comments
158	ENE1	Number of Young's moduli for the first material (10 maximum)
159	TMPEI	Temperatures at which Young's moduli are given, first material (ENE1 of them)

DECRD Index	Name	Description and Comments
169	YM1	Young's modulus for first material
179	ENE2	Same as ENE1, second material
180	TMPE2	Same as TMPE1, second material
190	УМ2	Same as YM1, second material
200	ENE3	Same as ENE1, third material
201	TMPE3	Same as TMPE1, third material
211	ҮМ З	Same as YM1, third material

**When there are no temperature loads, the Young's modulus is considered constant and should be entered at DECRD indices 169, 190, and 211 for materials 1, 2, and 3, respectively.

DECRD Index	Name	Description and Comments
221	ENAÌ	Number of thermal expansion coefficient for first material, 10 maximum
222	TMPA1	Temperatures at which thermal expansion coefficients are given. First material, ENAl of them
232	ALF1	Thermal expansion coefficients for first material
242	ENA2	As ENAl, second material
243	TMPA2	As TMPA1, second material
253	ALF2	As ALFI, second material
263	ENA3	As ENAl, third material
264	TMPA3	As TMPA1, third material
274	ALF3	As ALF1, third material
	l	l

**TMPE1, TMPE2, TMPE3, TMPA1, TMPA2, and TMPA3 are used by the curve-fitting routine CODIMA, and so the temperatures should be listed in algebraic ascending order and should bound expected temperatures for all regions.

1

DECRD Index	Name	Description and Comments
-284	ENØGR	Number of gradient stations (10 maximum)
285	GSTA	Stations at which temperature gradients are given. Same for each interface. First one = 1. Last one = EN
205	GR	Gradients at GSTA stations and "internal" interfaces, counting from the first interface (next to the inner surface) up to and including the last interface (below the outer surface of the shell). Values are given as ratio of the total differential between top and bottom surface temperatures.

**When the gradients are constant along an interface, ENOGR is entered as 1. and the gradient values are entered in the GR array in consecutive locations, each representing the value to be used for one interface. It is not necessary to enter GSTA values.

When the gradients vary along an interface, and gradient stations (GSTA) are given, the gradients themselves must be entered according to the way FORTRAN stores doubly subscripted arrays. GR (stations, gradient interfaces) = GR (19, 5).

For example, ENOGR = 4. ELAY \approx 3., then the DECRD indices for the GR array would be

GSTA Layer	1.	10.	25.	EN
1	295	(296)	(297)	(298) entered on one card
2	305	(306)	(307)	(308) entered on next card
3	315	(316)	(317)	(318) entered on third card

The DECRD index for any layer and station = 294 + 10 (layer no. -1) + sta.

The last DAL data card should have a minus (-) in column 1. The geometry data, GDA, for the next region will normally follow except for subsequent cases where PTHI may not be zero.

When PTHI is negative, the geometry data remains the same and the next cards will be SDA type. If one desires to enter values in the EM5X or EMN5 boundary matrices without entering the GEOM subroutine, he may use SDA (2458) and SDA (2494), respectively, when SUM = 0.; or, when summing is desired, the values for the first Fourier component will be entered in SDA (2458) and SDA (2494) but succeeding Fourier components for the upper boundary in SDA (780) and lower boundary in SDA (930).

When PTHI is positive the DAL data will be followed by DLD, loads data for the next region. A positive PTHI does not permit a change in the EM15X and EMN5 boundary matrices.

3.5 OUTPUT FORMAT

Following are sample pages and a description of the output of the program.. The sample output represents some of the results obtained from the sample problem discussed in Section 3.6. Due to amount of output information, only a portion of the results will be used to illustrate the output format. Additional results are reported in Section 3.6. The page numbers indicate the start of new pages of the computer output (i.e., the first print wheel has the carriage control character 1) and do not necessarily correspond to the actual page numbers of the computer output. The latter is a function of the number of meridional stations, the number of regions into which the shell has been divided and the value assigned to the print indicator, PFLAG, entered with the geometry data, GDA. These page numbers and the circled letters that correspond to remarks in the description re not printed by the computer. The link where the printing occurs and the EFN (external formula number) of the FORMAT statements are given for crossreference with the program listings (Section 3.9).

Output page 1

Always printed EXEC

- A Three title cards. These cards are printed exactly as entered on the data sheets.
- B This space is available for other pertinent comments (21) that would not fit the three title cards but that will be useful from a documentation point of view. It is a convenient place to include a sketch of the model assumed in setting up the problem, such as identifying the ends and junctions of various regions and showing the loads and reactions together with their respective points of application.

Always printed EXEC

А	This is the value entered as ENFO, the initial Fourier component.					
В	There are 12 values printed for Fourier components, but as stated in the input format, only 10 values in addition to the ENFO are provided for. The last one is used as a program indicator and in fact will be "wiped out" by the program, if entered.					
C	Space is prov	vided for 10 thetas.	The eleventh one is	(32)		
•	• •	dicator. See B.				
D	When SUM = data.	0., it is not necess	ary to enter any ENFOR			
E	When SUM = 0, only three or fewer ENFOR's should be chosen. This location like B and C should always be -1.0000E 10 and will be set to this number by the machine.					
Output page 3			Always printed GE	:OM		
A	stacked, i.e.	Region number will depend on how the data cards were stacked, i.e., the first set of data entered is called "1", the second set "2", etc.				
В	The type of shell is indicated, depending on the (32, 49 or value read in for the geometry indicator, GMI. 90)					
С	The value 1.0000E 10 indicates a discontinuity boundary. Any other values were entered as data. See input format for GDA (page)					
D	This data wil	ll vary with the GMI	indicator.			
E	difference in GEOM subro	eters, together with crement, DEL, are utine. They are pri onal stations.	computed by the	126)		
	R	Figure 1.1	Section 1.3			
	X	Figure 1.1	Section 1.3			
	WFE WTH	Equation 4	Section 1.3			
	GAMA	Equation 3 Equation 5	Section 1.3 Section 1.3			
	RHO	wd naprost 2	Section 1.3			
			UGULIMI II J			

Output page 2

FOUR REGIONS + SPHERE - CONE - CONE - CYLINDEP + JNSYMMETRICAL PRESSIRE BRANCHED SHELL SAMPLE PROBLEM FOR USERS MANUAL ** MUGUST 17. 1355 LOADING, TEMPERATURE LUADS, LAYERED REGIONS, AJUNDAPY FARCE . • ; : ł ; • • • • į . i į 1

0

Output Page 1

ļ

ţ

GENERAL DATA

FTURIER COMPONENTS (EWFI) - 0.0000E 01 -1.0000F 10 -1.0000E 10 -1.0000F	7.00046-39 9.00007 01 1.80005 07 -1.00005 17 -1.00005	1.0000E 00 H0 = 1.0000E 00 F0 = 1.0000E 70 51G7 =	PRINT ENFS (ENFOR) - 0
	-1.50005 10 -1.00005 15 -1.05535 17 -1.05005 13 -1.00005	1.0000E 30 PIXI = 1.0000F 00 PTHI = 0.0000E-39	0.0000E-39 1.0000E 00 -1.0000E 10 -1.0000E 13
URIER C	CONST ANTS	AO	INT ENF

- 99 -

ISTAG -1. OF +10. INDICATES LAST . EMEL. EMEGA. AND THETA VALUES.) Output Page 2

I

TATA FTR REGITY 1 ISOMERE-FAUGIU	1.2130€ 32	7.03 95 E -02	1.0000 00 - C	0.0000E-39 0.0070E-39	.0.0006-39 WK = 0.0006-39 YK = 0.60746-33	2.0000F 90 • 0.0000F-39 Рыіл • 0.0017F-39 Рыіч = 4.077лE 31	WFELL) WTH([] GAMA([) ZHA([)	1.6528925E-71 1.652A925E-01 1.0003377E 17 7.737375E-33 1.6528925E-01 1.6528925E-01 1.423460AE 31 7.7393356E-32 1.423460AE 31 7.7393356E-32	1.6526925E-01 4.7331595E 00	1+9729755-01 9*94974694 JJ 1+95299255-01 2*83794935 JJ	L. 83284/255-01 7. 58 599555 73 1. 65289255-01 2.(2483155 70 1. 65285255-01 2.(2483155 70	1.07797255-01 1.7077455 30 6 1.65289255-01 1.57259705 30 6 1.4141085 30 3		1.6528925E-01 4.3259013F-02 5.85285915 1.6529925E-01 4.1213285E-02 5.8772845E	1. 85289255-01 3. 91733545- 32 5. 85.91455 1. 65289255-01 3. 71676895-07 5. 90275345	1.6528925E-01 3.5132524E-02 5.917790F		
GE MAFTRY "	2	NCR. DEL =	8017 - 9013 -	11 ANS P SI = ECX =	3 = 2545 = VK = C	GEOM[= Roff =	(1)X	040 040				3.3142543E-02 1. 4.0907923E-02 1.	!	575 CO 905 DO	ů U U	200	4.93017175 nn 1. 4.09942455 nn 1.	•
	NJ. RF STATIONS	FINITE DIFFERENCE INCR.	A JUNDARY CONDITIONS	DISCONTINULTY CONDITIONS	SPRING CONDITION	ИТНЕК DATA PFLAG= -1.0000E 00 RC = 6.0530E 00	(II) (3-51776205-01		.32397176-01 .^2362096-01	**	.4524591E DC .87729627 DC	Š	9177904E 00 8120257E 00		
						8			•		• •0 •	23	**	111	115		52	•

,

Output page 4

Printed on negative PFLAG in DATLDS (451)

There is no sample output page for this, since it would be used very infrequently for diagnostic purposes to check the "summing matrix" that results from linear double interpolation of the load distribution on the shell.

The matrix is dimensioned NFE by NTH, where NFE is the number of stations entered in the table along the first theta ray (TAB (I+2)) when the indicator is set at option 3 (20 maximum); and NTH is the fixed point form of D1 D(4), ENTH (see Section 3.4.7), the number of theta increments to sum.

l'his summing area, called TEMP, is printed station-wise (columnwise), eight per line.

Output page 5

PFLAG # 0., DATLDS (97)

The output sample for this page represents results printed out for the tables. It would be used strictly as a check of the data inputted in PFETB, PTHTB, PNTB, TBOT and TTOP. (See Section 3.4.7.) The format would appear as follows:

LOADS TABLES FOR REGION 1

I	PFE	PTH	PN	твот	TTOP
1					
2					
•					
•					
•					
200					

Output page 6

PFLAG # 0., DATLDS (851)

- A Meridional stations, 19 or 20 of them, chosen equally spaced between 1 and EN
- B TBOT, temperature on the bottom or inner surface TTOP, temperature on the top or outer surface. In the example shown the bottom surface temperature data was constant, and outer surface varied linearly along the meridian, i.e., TIBT = 1, TITP = 2.

LUADS TABLES FOR REGION 1

. **:**

ł

I

1160	2.0000015 00	0.0000000E-34	2.00000000000	1.JOC000E Di		.2100006	.0000000	1.0003007E 30.	300000u.	300000000	-30000úuu.	1.2100000E 02	-300000000	•	E-30000000	0.000000E-39		-	0.00000000	2.2000000E-39	00000000	0.0000095-39	0000	000000-	ç	0.C0C0002E-39	000	e,	000.	800.		3000000	Ļ	0.030306-39	1.00000E-34	0 • 0 000000E - 34		0.000000E-39
TBAT	+ 1000000E		000000	-	0000000		-30000000	•	- 0000000- 3	- •	9.000000E39	š	E-30000000	•	•	E-30000000	C.0000000E-39	E-30C00000	•			. 30.000.00.	8	.00000006-3	.000000006-3	-30C000C0-	-300000C0.	-0000000E-3	-30C000000	-3000000.	E-3		0.0000016-39	-3000000.	0. n000006-39	Ē	-30-00000°	.0001000
Z	2.3000005 70	-3000000		1.0000505 50	-3000000E-	.8001008.	.5000006		• 1900001 E	w		1.90920095 30	.0000000	-0000000	-00000000-	.8000006	-3,75000706 70	.8000008.	59510306	1.2100000E 02	.0000000E	0000000.	.0000000E-3	.0000005E-3	€-3000Cu00.	0.00030006-39	.0000000E-3	-30000000-	-300000uc.	-30000000°	5-3	-2000000E-3	ç	•	E-30000000	300 JC 006-3	C00000C0.	
Ita	0.00000E-39	n. 200000E-39	0000006-3	0.0000000000	0.000005-39	- 3000000 ·	0000000000	0000000	M00006-3	000000000-3	E-3	00000000	0000006-3	0000002-3	00 000002-3	00.0000000	00000000000	0000000	00000000000	0.000000E-39	- 00000CC0	.000n000E-3	- 3000000 ·	. 9000000 -3	- 1000000E-3	1.	- 3000000 ·	. DC 30000E-3	0000000	- 300000CO -	E-30000000"	-000C0CC6-	.0.00000F-3	0.CJ1COD0E-39	- D100 00 -3	300006-3	. 3C COOODE-3	• 0000000
PFE	0°000030E-34	0.0000000000000000000000000000000000000	-20000-30J	9. 30000 306-39	0.000000000000000000000000	E-306-00-00-3	n.00000fe-39	E-3000000	- JOUNC JOE - 3	•C 00000006-3	.000000-3	.0000006-3	-000000E-3	n:	.0000006-3	-3000000E-3		0.0000006-39	£-30000000	-2000000E-3	ñ	.0000000CE-3	000000.	- 30C 30000.	.000000003	-2023030E-3	-10LJUJU-	COC00000.	-30-COJJO-	-2000000E-3	6E-3040000C*0	0.0000000000-39	7.0000306-39	0.000000E-39	0°1000000E-30	T		
-	1	2	•	ł	r	•	~	60	0	10	11	12	13	14	15	16	17	18	61	ส	21	22	23		25		27		29	00	1 E	32	33	46	35	36	37	80

C F J J	20 CC	C 36614	25 ME 2	. 1551e :	- 4583E 0	. 15 ADE 9	C 36140.	C 36655.	0 3J529.	· 31510.	. 2043E 0	C 3000%.	- 7917E 7	C JEEAU.	0 3054E.	· 4667E J	C 36436.	- JW 6C*
Ø	~ ~																	
1221	1001		evel.	1300	.1305	2001.	1110	0001.	.1302	1030	.1001	-100u	.1039	1001.	1001.	.1030	1076	1000
SI N. Q		i "	N	•		ň	ċ	-	-	-			•			13.	20.	-

Output Page 0

**Pages 4, 5 and 6, to reiterate, can be printed only if the DATLDS subroutine has been entered. (EX will be 0. or +1. or, for a succeeding case, PTHI will be greater than zero.)

PFLAG # 0., DATLYR

A	First, second, and third materials. Curves are dimensioned for 10 possible values. Zeroes fill the locations where no entries have been made.
B	The meridional station numbers given here are a combination of those set up in DATLDS for the temperature loads (see output page 6) and the thick- ness stations, THSTA, read as data or set to 1. and EN when the thickness is constant, as it was in the example.
С	The temperatures indicate a value at the inner face (440) of the layer
D	Printed for all values of PFLAG from here to "Output page 8."
E	One value of Poisson's ratio per layer, readlst layer2nd4th5th5th6thMaterial indicators have the same format.
F	Gradients are entered for interfaces other than the inner and outer faces and at stations components all, thus the printout indicates interfaces 2 3 4 5 6 where 1 and 7 would indicate the inner and outer faces, respectively.
_	DATLNK (102)
G	When the DATLYR subroutine has not been entered because $EX = \pm 1$. the Section and Material Properties output will consist of just the printout from this point to "Output page 8."
Н	POI, Poisson's ratio, inner layer POI2, Poisson's ratio for second stress

- 104 -

Print Symbol	Math Symbol and Equation	Definition
Ð	b Equation 33, Section 1, 7	Membrane stiffness
ЕК	d Equation 34, Section 1.7	Bending stiffness
E	Е	Modulus of elasticity (E1)
ALF		Thermal expansion coefficient
DNA		Distance from the neutral axis to the inner surface
Т	Т	
	Equation 26, Section 1.7	Temperature differential

 \therefore For succeeding Fourier components none of the Section and Material Properties are printed except when PFLAG $\neq 0$.

Output page 8

Always printed DATLNK (104)

A	ENF,	current	Fourier	component	

B Current Fourier component for a force or moment applied at a junction point, EN.

C Mechanical and thermal loads at each meridional station

Print Symbol	Math Symbol and Equation	Definition
P(PHI)	Equation 25, Section 1.7	Pressure in the meridional direction
P(THETA)	Equation 25, Section 1.7	Pressure in the circumferential direction
P(N)	Equation 25, Section 1.7	Normal pressure
ENT	Equation 35, Section 1.7	Temperature load
ЕМТ	Equation 36, Section 1.7	Temperature moment

~ "SFGTERY AND MATFOTAL PROPERTIFS - NEGITY

" 1.COCOF CO THICKNESS INDICATOR

ł

ł

•

CURVES OF TEMPERATURE VS. YAUNGS MODULUS

. 1

•

7.030075-39 7.030075-39 7.0707075-39 7.000775-39 7.000775-39 7.000775-39 7.000775-39 7.007775-39 7.007775-39 7.007705-39	
remp r	ON CIEF.
VM2 VM2 VM2 VM2 VM2 VM2 VM2 VM2 VM2 VM2	CURVES OF TEMPERATURE VS. THERMAL EXPANSION CREF.
1F## 1F## -1.000005 73 1.000005 03 1.000005 03 1.000005 03 1.000005 03 0.000005 03 0.00005 03 0.00005 03 0.00005 03 0.00005 03 0.00005 00 0.00005 0000000000000000000000000000000	OF TEMPERATURE VS
A A A A A A A A	CURVES
remp -1.c.Jn700F n3 0.0CC770E-39 1.cJK 000F 02 1.cTm70CE 03 C.CC0700E-39 0.cT0000E-39 0.cC0000E-39 0.cC0000E-39 0.cC0000E-39	

ALF3 1.000005-39	0*1010062-34 0*100062-34	0.03009CE-39 2.03304CE-39	0.0000055-39 0.0000055-39	0,0000000 0,000000 0,000000 0,0000000 0,000000	66 - 200 coño • 0
TEM? C.C.JJN00E-39	0.200001E-39 0.5 10100E-39	<i>n_f</i> 0000 5-39 C_JJ3000E-39	C "CAJAJQE-39 0 "JC7029E-39	0.000005-39 0.000005-39 0.000005-39	F0-400-00-0-0
ALF2 1.133000E-05	1. 133000E-05 P.0P0000E-39	0.000005-30 0.000005-39	0.07707F-39 7.77077F-39	1.0305905-39 7.0330965-39 2.2330905-30	
15MP -1.00ncore 03	1 .00 0000 73 0 .00 00006-39	(1.00000f-39 (1.00000f-39	7 .00 3330E-39 0.700/00E-39	0.0000005-39 0.0000005-39	
4LE15	1.30000E-05	0, r 7.0004E-39 0, 00004AE-39	0.30000055-39 0.3000006-39	0. C70005-39 0. N010005-39	AC-JUR MIDE .C
TEMP -1.07305 03	1.500006 03		0.000000000000000000000000000000000000	0.009700F-39 9.07000F-39	65-30fm)

₫

Output Page 7

ļ

TABLE OF STATIONS VS. TEMP. AND THICKNESSES. LAVER I

Jutput Fage 7 (Con.)

Ť	-30000	0000F-	-362260-	-3000000	-300000	1.000005-3	-30000°	-300000-	-30000-0-	-300C C.	-1640	000006-	-35036-	-3000 00	OTCODE-	-30000	-300000	00.0065-	-30006-	
	02	02	50	20	20	ć	25	02	22	20	22	02	22	5	02	02	2	02	ĉ	
TEMP	0000	0000	0000	0000	GOGC		ELOUE.	.37 300	ecuce.	.306.90	2000	.30000	• 33000	.000000.	20000	0000	0000	0000	0000	
	ç	00	01	۲.	รี	61	10	10	ī	01	1	10	16	10	ะ	16	21	20	 C	
Ľ	1.00000	0	1.3000jE	1.90006	. 5000	3. LONDOE	0Gù1 .	. 30.00	UCCO.	. 5000	.1000	. 1000	UU 16.	00 70 ·	. 5r0n0	9. ITCCOE	0.9(0	1.0000	

TABLE OF STATIONS VS. TEMP. AND THICKNESSES. LAYER 2

5, numbre -32	2°	ていー チャレンシン・>		1	ぞいーメロンいいだ。5	. 220r 05-3	5.75.0025-12	5	5 • COUVOE 72	-200000	-200000	ຣິ	0	C.	5.00005-32	2°-360000*5	
5				20													
3 ~~ ~(.5•1	C	E.	•	1.5CiGnE	DOCC C	a.	0000	530.00	1.50000	20000	U UUC	0000	50005	0000	GUUC	0000	
1.		:	Ē	ີ	١L	tð	10	le	5	١c	10	10	10	ໂ	22	Zů	
10 11 11 11	37.34 × B • 1	2	3.10006	3. 700	4. X 0006	4. 91.135	じてい	6.177CAE	6. THORDE	7. 300006	7. 00.75	8. 50ru0E	9. 1r.Jr.05	9. 73030F	1.03070F	1.0907.35	

ı

LAYER
THICKNESSES.
FMP. AND
vs. 1
STATIONS
TAHLE 14

m

THK.	176-J	- 3000 LC -	- 300000-	-00 000E-3		-300000	C-3000 JC .	6-300300-	- 3000000	- 10 70 01.	-3000CC.		-200000	-100001-	000006-0	- 300000 ·	- 300000-	-300000-
754P .140006 0	1.140705 32	0 300041.	0 300341.	-14000E 0	.14070E n	· 14003E 7	.1400CE 0	·14009E 0	6 3660. ··	5 3000 ·	C 31004.	1400UE 0	.14097E 2	· 300041.	.140006 3	.1400'LE 0	.140706 0	.145036 9
514. 514.	č u	. JODOF 0	U JOSQUE .	0 300005 0	.100006 0	JUDDAS .	· 3000 V	- 300006 ·	. Sr 900E 9	. 1000E 0	- 701-05 D	. 30001E.	U 300010.	0 3000rs.	- 10000E -	0 300Cul.	0 3000EC.	106 1.

STATION VS. TEMPERATURE, OUTER FACE

TEMP 1.100066 92 1.100066 92	.10006 0 .100306 3 te 7 (Cont
575 575 575 5 5 5 5 5 5 5 5 5 5 5 5 5 5	. 300 99E

		10	90	0.0200006-39 0.0200006-39		un -	1.50000000 02 1.50000000 02 1.50000000 02 1.50000000 02	1	~
		3*000 6E-30 3*000 0E-0 1	2.009 0E 00 0.009 7E-39	ES 0+000006-39 0+0	10-30v00° E	00 DNA([)	10-34900001-1- 10-34900001-1- 10-34900000-1- 10-34900000-1- 10-34900000-1 10-34900000-1	1.00003045-01 1.00003045-01 1.00000011-01 1.00000015-01	-4
1. 100005 02 1. 100005 02 1. 100005 02 1. 100005 02 1. 100005 02		3 .5007E- 31 C .nnone-39	1.0000E 00 0.0707E-39	AT [NNER [NTERFACES 0.000006-39 0.00	• • • • • • • • • • • • • • • • • • •	PRINT = 3.0000E Alf([]	330,000 E-05 330,000 E-05 320000 E-05 3300000 E-05		7 (Cont) 🖡
8.400005 01 9.100005 01 9.700005 01 1.030005 02 1.030005 02	3.r00n6 00 2.00006 00	3.0000E-01	2-000/E 00	9. 7000006-01 9. 0000006-01	0°E = 19d	NA. FAR SECOND STRESS	9,99999996 9,99999996 9,99999995 9,99999995 1,000005 1,000005 1,000005 1,00005 1,00005 1,005 1,005	9.999999E 0 9.9999999E 0 9.9999999E 0 9.9999999E 0	Output Page 7
	(ELAV) = (ENMAT) =	ł	(EMAT) =	5.013000E-01 5.07700E-01	1		1.02739905 03 7.02739905 03 7.02739905 03 7.02739955 03	7.02739906 03 7.02739906 03 7.02739906 03 7.02739506 03	-+
	D' NO. OF LAVERS NJ. OF MATERIALS	PHISSANS RATIOS	MATERIAL IND.	GAADIENT TABLES STA. 1.0000006 02			1.83946786 06 1.83946786 06 1.83946786 06 1.83946786 06	i	

- 109 -

ĩ

D These matrices are the 22 and A matrices of Equation 47, Section 1.9. They are printed for boundary condition indicators equal to 1, through 6.; thus, a set printed with the last region on the shell would be for a bottom boundary. Branched shells may have several top boundary prints but any closed apex regions (BCITP = 9.) will not be printed.

Output page 9

SUMS (733)

- A Current circumferential angle
- B Current Fourier component. Results are for this component only or represent the Fourier sums to this component, depending on whether SUM = 0. or SUM \neq 0., respectively.

Print Symbol	Math Symbol and Equation	Definition
U		Meridional displacement
v	Equation 21, Section 1.3.5	Circumferential displacement
w	Figure 3a, Section 1.3.4	Normal displacement
M(PHI)		Meridional bending moment per unit length
M(THETA)	Equation 20, Section 1.3.5 Figure 2c, Section 1.3.4	Circumferential bending moment per unit length
M(PHI, THETA)		Bending moment per unit length, shear

Output page 10

A	Print Symbol	Math Equation and Symbol	Definition
	Q(PHI) Q(THETA)	Figure 2b, Section 1.3.4	Transverse forces per unit length
	N(PHI)	Dection 1. J. 4	Meridional membrane force per unit length
	N(THETA)	Equation 19, Section 1.3.5 Figure 2a, Section 1.3.4	Circumferential membrane force per unit length
	N(PHI, Theta)		Membrane force per unit length, shear

ENE = 0.0000E-37 LANS REGION I

PIFONCEI = 1.6000E ni C HINOHENTI = 0.0070E-39

ANGLE(PS(0) = -1.0006 01

L CADS	
THERMAL	
MECHANICAL	

	-7417F	.7351F	. 72955	.7219E	.71535	.73676	. 73215	. 5955E	. 63395	-6323E	.67575	.6691E	. 6625£	.65596	36220.1	1.6427E	.6361£		1.62295	.61635	.6097E	.6731E	.5965E	-59995	-5933E	.57675	.5721E	.56356	3695	.5503E	.5437E	.53726	.53065	•
ENT(1)	.3450E 0	.0490E 0	. J529E D	• 3569€ •	00010 0	.0448E C	. 36876 0	. J7275 J	. 7767E 0	. J806E 0	. 39466	. 78655 0	.0925E 0	.0965E 0	.1004E 0	. 1044E 0	.1083E 0	1.11235 93	.1162E 0	.1202E 9	.1242E .0	.12815 0	.13216 0	.1360E 0	.14CNE C	.1440F 0	.14795 2	0 36151.	.1550E 0	. 15996 0	.1637E D	.1577E 3	.17175 0	
	.0000	. ADD IF	.5330E	3485E	7.09675	. A277E	.0541F	.22366	1.39126	1.55785	.7223E		2.04605	.2052F	2.3628E	2.5186	2.4726E		2.9756E	.1245F	.2716E	30214.	.5607E	.7027E	. 5429E	-9814E	.1162E	.25726	.3865E	1816	64795	7761F	9024E	Output Page' 8
4873H7 19	€-3úðúu•		-30000-3	1000 - 3	E-3000c.	- 3000v	-20000-	- 30000 ·	E-30202.	C-10000	.C 000E-3	CLOOPE - 3	R-30000"	E-30.6	-1000 J.	E-3000	E-30000-	0.0000-39	-2000-	- 20000-	-30000-3	E-JULJS.	-0000E-3	E-30000.	E-36000.	E-3000.3*	E-3000C-	-30000-	E-30001.		E-30000.	R-JUCUC.	-30CCC-	-4
(11 4) d	E-30.JJ.	E-JOUL.	-1001-	E-3000C.	E-30000.	E-30000.	10 PE-3	-LCONE-3	-3000t-	.000 NE-3	-1000-	-20000-	- 300C - 3	-3000u-	-30 JOC -3	E-30000.	-3000C.		.0000E-3	- 30000-		E-juuuu.	E-300000	E-30000-	10001-	E-30000.	E-30000"	- 1000r -	-200Ca-	E-ju.je.j.	-1001-	E-3-3040.	 -30000-3 	->
3	-1	e .)	••	•	ŝ	Ð	•	æ	œ	51	11	12	13	41	15	15	17	13	61	ý Č	21	22	23	24	25	96.	27	2 A	29	57	16	32	33	≁ત્

·

BOUNDARY MATRICES +++

3.€000001€-39 1.300001€-39 0.000001€-39 0.000001€-39	0 • C OC 07 M1 E - 37 0 • 0000001 E - 39 7 • 700701 E - 39 1 • 0000000 E - 90	0 1100001E-39		0.000000000000000000000000000000000000	6E-3000000000000000000000000000000000000
C。JOJOJCJE-39 J。7CJGTJCF-39 1.COJUOODE CJ n.OJJJNOJE-39	0.000000000000000000000000000000000000	2 .500070E 01		0.000000000000000000000000000000000000	0.0000006-39 0.00000006-39 1.00000006-39 0.0000006-39
4,13709376-34 1,157571555 9,46900075-34 0,09970395-39	0.0000076-39 7.0000076-39 7.00000716-39 0.00000716-39	0°C000002E-34	.ES ###	n. 0000036-39 0.0000006-39 3.0000006-39 0.3090906-39	0.0000016-39 1.003000000 00 0.30300006-39 3.03900006-39
FM1 (3M6GA) 1.rrrg()JF *r *.r)5.c)16-30 0.000006-30 r.a)000006-39	EM3 (LAMBAA) 0.72704006+39 0.52007776-39 0.5700056-39 0.600056-39	5M5 (L) 5.00000056-39	DUNDARY MATRICES ***	ENL (JMEGA) (07000 07E-39 (02000005-39 1.07000 00E-39 2.0000005-39	F43 (L4480A) 1.0.00000F Or 0.0.00000F-39 0.0.00000F-39 0.000005-39

Output Page 8 (Cont)

96-3C010700.0

0.0000006-39

0.000001F-39

0-0:00000-1-39 543 (L)

LEAVING INTLD. LNK6

6 7.0111-39 REGION I, DEFLECTIONS AND INTERNAL LOADS, THELA = 0.30006-17 EVE =

ļ

	(1 m O)	4 L L L	(I)M	(]Hd]W	METAI	M(PH[,THETA)
	2.61936-10	-C-000E-34	7. 93966-02	1.6920E 31	1.6920E 31	0.0335-39
•			1-1392E-02		.6200E 0	-9000E-3
14 1	-1-7		7. 930 JE-02	6872E	•6554E 0	100CD - 2
•	9 * N -		7.93596-02	6 846E	.68136 0	300cr.
n	-3.4	-30000-	7.93296-02	6 819E	6773E 9	
ت .		00000-3	7.9291E-02	6790E	.6733E 0	-1000u
~	-3.2	-0.000.5-39	7.92446-02	.6758E	.6692E 3	.000re-3
•	0-9-	- 2 J	2.9187E-02	±6724€	.6650E Q	€-30C-J0.
•	i	.0000.	7.91216-02	. 6687E	.665.6E 0	.0700F-3
2	-1.1	-30000.	7.9046E-02	•6648E	.6561F 9	.03006-3
11	Ť	0.0000E-39	7.8962E-02	1.6606E 01	0 35159.	0.03005-39
12		- 0000E-	7.0001E-02	• 656 LE	.64675 0	.01006-3
13	-10	-30000-	7.9763E-r2	.6513E	.6417F 0	-30000-
14		-30000-	7.96505-02	34040.	· 39969.	-30u00-
15	-	-30000.	7.8526E-02	.6412E	0 341E9.	.0100E-3
16	-1.3	-30000-	7.9393E-C2	.635BE	.6261E 0	.9000f-3
11	-1.3	-30000.	7.8250E-n2	.6302E	.6204E U	-300CC-
13		-30000.	7_8097E-02	-6244F	.6150F 0	-300CG-
61	-1-	-3000u-	7.7934E-02	.61865	0 346U9.	.00006-3
x	-1.6	-DOUDE-	1.1761E-02	•612 <i>5</i> E	.6036E 0	.0000E-3
21	-1-1	-30000-	7.7578E-02	• 6064E	.5977E D	-0100E-3
2	-1.	-2020Q.	7 7365 E-02	.6002E	.5918E 0	.93006.
23	-1.1	-30000-	7.71836-02	. 5939E	.58586 0	1-36630.
24	-1.9	-30000.	7.69716-02	.5875E	5798E 0	.0001E-3
25	-2.0	-30000.	7.57486-02	.5811E	.5737E 0	E-300C0.
77		-JODOD.	Z4517E-02	▲ 5746E	.5672E 0	.00026-3
27	-2-2	- 000 JE-	7.6275F-02	.5681F	.5613E 1	.03035-3
28	-2.]	-3(ŭ 30 •	7.6023E-C2	.5615E	•5551E C	-30000 ·
29	-2.3	-3000C-	7.5762E-02	.5549E	•5488E C	. CODOE-3
8	-2.4	-CCODE-	7.5492E-C2	. 5483E	.5425E 3	.03096-3
16	-2-	-30000.	7.5712E-02	.5417E	.5361E 0	.CJ01F-3
22	77-	-30000.		-3131E.	.5298E D	
33	5	n.0000E-39	7.4622E-C2		.5234F J	.0001E-3
*	7	-30000.	7.4314E-02	•5218E	.5170F 0	-0000-
35	-	-30006-	7.3996F-02	-5152F	.5176E 0	000011-3
2		-30006.	7.3668E-02	. 52855	.5042E 3	.1C JOE+3
-		-	_	-	-	-
116	455-7		2.2910F-02	3264F	32044.	-30000
120	3641E-0		•2329E-0	.0512E J	0 E O	06-30
121	μ.	000UE-3	•1 72 0F -0	.19965)	•L165E ن	

Output Page 9

NITHETA) VIPHI, THETA)	5418C	2.10836 30 -0.7030 2.10836 30 -0.7030	5	JE AACOU	9421E 33	-0428E 20.	-	3065E 00	-9.5117E 30 0.000rE-39	J125E 01	0461E 01 0.0007		0- 10	.19576 01	0 10	. 26735 01	3009E 31 0.0000E	-3344E 21 0-0000	.3676E 01 0.0000	0116 01 0.00r0	1353E 01 0.000C	10 36694	5		5797E DI	6192E 01 0	5576E 01 3	6973E 71 0	7377E J1	-L. 7791E 31 -0.000C E-39	B207E J1	8629E 01	9051E 01	•	-1.9905E 01 -0.0000F-39	-240331E 01 -040000 E-39 -	0755E 01	-2.1179E 01 -0.00C0F-39	1607E 01 -0.		24355 01 -0 -	
" (IHd) N	-7 6410C AA	27875				1		-5.6423E CQ	-6.13736 00		-7.07668 00	-7.39826.00	w	-3.0727E 00				2071E	-+5896	-9.7004E.00			-1.0395E 01		09406		1283E 0	.14916	0					-1-2764E .01.	-1.2981E 01	10 39616.1-	-1.3415E 01	=L.3642E 01	and i	-1.4085E.01	-1.42986 01	
TVI JHL 10	r 20005-30					0.00006-39	0.00706-39	0.00006-39	0.00006-39	0.00006-39	C-30000 3	0.00005-39	Q.(1000E-39	-30000.	0.0005-39		0.00006-39	- ODODE-	-30000	. 0000 E- 3	0.000E-34	D. D000E-39	0.0000E-39	0.00006-39	0.00006-39	0. JC00E-39	-3C000.	0.00006-39	0.00006-39	m .	.0000E-3		.00006-3		0.00006-39	0.0000E-32	0.0000E-39	0.0000E-39	0.0000E-39	0.1000E-39	0.0006-39	
C GLENLL	-2-16115-01			10-300+6*2-	-2.25796-01	-2.30205-01	-2.6961E-01	-3°3796E-n	-3.5200E	-3-98162-01	-4.44656-01	-4.900 TE-01	-5.35316-01	-5.77666-01	-6.1750E-01	-4.54516-01	-6.8596-01		-7.40045-01	-10-3046-01	-7.96176-01	-0.1627E-01	-8.33966-01	-9-9995-01	-8.4297E-01	-8.7460E-01	-8.8466E-01	-8.93286-01	-9.0053E-01	-9-04586-01	-9.,1166E-01	-9.1587E-01.	-9.19306-01	-9.2202E-01	- J. 2418E-01	-9.25945-01	-9.27376-01	-9.28h2E-01	-9.29786-01	-9.3019E-01	-9.31926-01	
-	-	• ~	• •	•	4	5	•	-	•	¢	2	=	р., 	13	1	51	91			*	-	,	22		4	1	2	27	8	1		H	32	33	4	2		37	38	5	\$	11

_ - 114 -

Output page 11

A

Print Symbol	Math Equation or Symbol	Definition
SIG(PHI)		Meridional stress, inner surface
SIG(THETA)	Equation 79, Section 1.4.3	Circumferential stress, inner surface
SG(PHI, THETA)		Shear stress, inner surface
SG2(PHI)		Meridional stress, chosen surface
SG2 (THETA)		Circumferential stress, chosen surface
SG2(PHI, THETA)		Shear stress, chosen surface

Pages 9, 10, 11 are repeated first for other regions and then for other thetas.

3.6 SAMPLE PROBLEM

To demonstrate the use of the computer program and illustrate the format for data input, the sample problem shown in Figure 3.6 has been worked out. This problem is a hypothetical one, selected to illustrate the use of many options in the program. The problem features an uncymmetrical load distribution, varying temperature loads, branch and eccentric discontinuity junctions, applied boundary forces, discontinuity loads, and others. The details for setting up this problem are described in the following paragraphs. Sample data sheets are presented in Section 3.4.9.

3.6.1 Problem Setup

The first step toward setting up this problem is a suitable selection of a mathematical model. For the shell configuration considered, it will be necessary to divide the shell into at least four regions for computer solution. Using four regions, it will be convenient to draw a line diagram of the geometry denoting the extent of each region, the junction, and appropriate end conditions. This line diagram is shown in Figure 3.7. The arrows indicate direction of increasing meridional coordinate or station numbers. The sequence of input of regional data is given by the numeral designation given the particular regions (i.e., 1-2-3-4). Other sequences for numbering regions are permissible provided the selection is consistent with solution

~

Figure 3.7

procedure of the program. Referring to the region numbering system shown in Figure 3.7, the problem could be consistently formulated by sequencing the regional input data (with appropriate end condition, of course) in these following combinations: (2-1-3-4), (4-3-2-1), and (4-3-1-2). The sequences (1-2-4-3) and (2-4-3-1) for example would not offer consistent formulation since a continuous transgression to the next region is not possible with this format. Using the example illustrated in Figure 3.6 let us now proceed to the input of regional data information.

3. o. 2 Regional Data

Let us now consider the individual shell regions that make up the shell configuration (Figure 3.8 a-d).

Region I is a sperical shell with an opening angle of 80 degrees. The end condition at (i = 1) is a closed apex and requires that BCITP be set equal to 9. Since this region joins to two other shells at i = N, its bottom boundary (BCIBM) is set equal to 10.

The mechanical loading on the shell consists of an unsymmetric external normal pressure load with a distribution given in the form

- 118 -

$$\mathbf{p} = -\left(1 - \left(\frac{\xi}{\xi}\right)^2\right) \left(10 + 5\cos\theta\right)$$

where ξ is the arc length of the shell (dimensionless).

The form of this load requires that the problem be defined by two Fourier harmonics (n = 0, 1) in order to obtain complete solutions. The temperature applied to this region is a constant temperature differential of 110 degrees (0° reference) applied to the inner surface and linearly varying temperature at the outer surface starting from 0° at the apex to 50 degrees at station i = N. The number of stations considered in this region is 121. A line load of 10.1 pounds per inch is applied at the branch junction which requires values of $\psi = -10^\circ$ and $P_D = 16.1$ in DLD (1005) and DLD (1006), respectively. If desired this load could be read in with data fc_ region II. In this case, ψ would be set equal to 115 degrees.

Region II is a conical shell in which the cone angle input (ANX) is 115 degrees. This region is a threelayer section with constant temperature of 110 degrees at outer surface and 150 degrees at inner surface. The middle layer (0. 1-inch thick) is constructed of material 2 and layers 1 and 3 (0.05-inch thick) are of material 1. The temperatures at the interfaces are shown in the accompanying figure and are reflected in the gradient table shown on card 143. A force-free end condition excepting for an applied as isymmetric shear load (25 pounds per inch) exists at top boundary (station 1). This boundary condition requires that BCITP be set equal to 6, and

appropriate diagonal boundary arrays are read in EM1X, EM5X, EM5X array in GDA locations 62)-632. The other endpoint corresponds to a branch junction and BCIBM is set equal to 10.

The third region is a single-layer conical shell. The end conditions are stipulated at i = 1 by setting BCITB = 10 since this is a brench point and BCIBM = 0 at i = N, a discontinuity point. The temperature of outer surface is assumed to vary linearly from 50 degrees at station 1 to 120 degrees at the last station. The inner surface has a constant temperature of 150 degrees.

Figure 3.8 c

The unsymmetrical pressure load has the distribution

$$p = -\left(1 - \frac{\xi}{\xi}\right)(10 + 5\cos\theta)$$

Material 1 is used and the number of stations have been chosen at 141.

Since an eccentricity in reference surface occurs between Regions III and IV, the eccentricity distance ECX is set equal to 0.031 and discontinuity angle $\sim = 10$ degrees.

Region IV

Figure 3.8 d

3.6.3 Data Sheets and Results

The last region is a two-layer cylindrical shell. The boundary condition at the last station is assumed to be clamped, then BCIBM = 3.0. A uniform internal pressure of 10 psi acts on the section and temperatures of outer and inner surfaces and 120 degrees and 150 degrees, respectively. The outer layer is constructed of ma' rial 2 and the inner layer of material 1. The temperature gradient across the shell thickness is assumed to vary along the meridian of the shell. The values are shown on data sheets.

The regional data for each region are written on standard IBM data sheets. The complete data for the sample problem are shown in the following IBM data form sheets.

to-22	Three Title Cards	be blank if desired. Identification numbers are safeguards against data deck "scrambling". E.g., a card of GDA data preceding the last (-) card of the DA data, will be read into the DA array. The actual values are optional but should be chosen to permit additions and sorting of entire deck. Data Sheet
XE.C. 10	Three Tit See Sectio	 3 be blank if desired. B Identification numbers are safeguard "scrambling". E. g., a card of GDA last (-) card of the DA data, will be The actual values are optional but sh additions and sorting of entire deck. Sample Data Sheet
FORTRAN Prok No 1 Prof. J. P. S. NUMBER	BRANCHED SHE LL SAMPLE PR BRANCHED SHE LL SAMPLE PR BRANUAL * * AUGUST 19, * * SPHERE * C ØNE - C ØNE C ØNE - C ØNE UNSYMMETRIC.* AL PRESSURE L Ø ADING, TEM DS, LAYERD BREGIØNS, BØU	61 13 13 13 13 13 13 13 13 13 13 13 13 13

	22 Jr 2733-01	GDA (Geometry Data)	Region 1	See Section 3. 4. 5		sc. 1.4.5)	o not apply to	een set to zero by				SDA (Special Data)	Region 1	See Section 3. 4. 6	D and DAL			DID (Loads Data)	Region 1	See Section 3. 4. 7			
D IC L'SIT CELMAL			GMI	EN	PFLAG BCITTE	0 BCIBM (A) Branched Shell (Sec. 1.4.5)	(A)	RC this case & have been set to zero by ROFF the program.	0		.		EX		Data cards for DLD and DAL	sož must follow.	0.	مى بىنى بىنى بىنى بىنى بىنى بىنى بىنى بى	PILD	TIBT	TITP	. 0	Sample Data Sheet (Cont)
FORTRAN FLYEN			2		- 1	10.	- 1 5 B	6.05		. 0 8			A			49 	3		2		2		Sample

IO DIGIT DECIMAL DATA	DATE PAGE 4 of 22 JOB NO. 2733-01	DESCRIPTION DO NOT KEY PUNCH	DLD, cont Region 1		let ENF	No. of stations	Station No. = 1. (A) First station must be 1.	Load at station 1.	B Cards are inserted at this	TB\$T point by using intermediate	sequence no. and having the	deck sorted. Inserts are	found on pages 7, 8, and 9.			TTØP	lst ENF	No. of stations	First Station	Temp, at station l.		ELAY Region 1	STRIX See Section 3. 4. 8	EIFH.			Sample Data Sheet (Cont)
RAN FIXED	AMER	IDENTIFICATION					е. В.	4 1 +	(• • • • •	5 9	4.5		· · · ·	ι		73	4.6	B			eard.	3	10.5	Sample Dati
FORTRAN	DECK NO PROGRAMMER	NUMBER	405	2.	.0			.0.	0.02	110.					80	2 .	. 0	2	1 · (A)			1.	1				AS A TANK AN ADVINE AND ADVINED

DIGIT DECIMAL DATA	DC NOT KEY FLITCH	DAL, cont Region 1	Although region I does not use material 1, the materials properties tables for all materials, DAL (158) through DAL (283), must be entered	NT with the first region which contains (1) DAL data and the value for ENMAT is the number of materials in these tables.		ENEJ (First material) TMPEJ (1) TMPEJ (2) TMPEJ (2) TMPEJ (3) TMPEJ (4) ta Sheet (Cont)
FIXED IO	VTIFICATION	HL		(1) EMAT		5 3 A ENEJ (First mate TMPEI (1) TMPEI (1) TMPEI (2) TMPEI (2) 6 0 TMPEI (4) Sample Data Sheet (Cont
FORTRAN DECK ND PROGRAMMER	NUMBER	2.5		2.2.	1 2 3	4 - 1 0 0 0 . - 1 0 0 0 . - 1 0 0 0 .

FIXED IO DIGIT DECIMAL DATA	TION DO NOT KEY PUNCH	DAL, cont Region 1	YM1 (1)	<u>YM1 (2)</u>	YM1 (3)	YMI (4)			ENE2 (Second Material)	TMPE2 (1)	(2)	(A) DAL (158) through DAL (284).	the tables of temperature vs.	Young's Modulus & the Coef. of	YM2 (1) thermal Expansion for the 3	(2) materials, are preserved and	used for all regions and Fourier	components. Therefore, the	given temperature range should	bracket all expected temperatures.	ENAI	TMPAJ (1)	(2)	(3)		Sample Data Sheet (Cont)
	IDENTIFICATION			I)	804	6 1			!	-	5. 	2.0		••••• : : :		m	73	7.1			• • • • • • • • • • • • • • • • • • •		90	0	Sample Da
DECK NO PROGRAMMER	a 38Wr	1 6 9	6 . 5 . + 6	6.5.+6		6.0 +6 i/3		1 7 9	2	- 1 0 0 0	1 0 0 0	0.51		1 9 0	1	<u>.</u>				2 2 1	3.	25 - 1 0 0 0 ·	1003			28-1-14 12-14-14-14-14-14-14-14-14-14-14-14-14-14-

- 127 -

Not DATE		FORTRAN	RAN FIXED	10 DIGIT	DECIMAL DATA	
IDENTIFICATION DESCRIPTION DO NOT KEY P. W.P. 1.15 Image: Second	DECK NO.	PROGRA	MMER	DATE	ية ك	JOE NO 2733-01
4.15 DLD, coat. 10. 10. 10. 2ad ENF 2.1 0. 1. 3.1 1. 3.1 2.1 4.3 1. 3.1 2.1 4.3 3.7 5.9 3.7 5.9 2.1 4.4 4.1 2nd sta. 3.7 5.9 2.1 4.4 4.1 2nd sta. 3.7 5.9 2.1 4.4 4.1 4.1 2.1 4.4 2.1 4.4 2.1 4.4 2.1 4.4 2.1 4.4 2.1 4.4 1.1 2.1 2.1 4.4 2.1 4.4 4.1 4.1 1.1 2.1 2.1 4.4 2.1 4.4 4.1 4.1 1.1 4.1 1.1 4.1	NUMBER		IDENTIFICATION	DESCRIPTION	ia Kek Ke	
10 10 10 Inserts for pg. 4 1 2nd EWF An EWF An EWF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 4 1 2nd sta 2 2 2nd sta 2 1 2nd sta 2 1 2nd sta 2 1 4 2 4 4 1 2 4 1 1 2 2 1 2 3 4 3 4 1 2 2 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4		415		-	DLD	cont Region l
1 2nd ENF 4 1 1 10 0 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 2 4 3 4 3 4 3 4 4 4 2 4 2 4 2 4 3 4 4 4 5 4 5 4 1 4 1 4 1 1	1			load	A Inserts for pg. 4	1
4 No. of sta. 1 13 15 15 15 15 15 15 15 22 d sta. 22 d station 4 d d station 22 d station 20 d station <td></td> <td></td> <td>** *</td> <td>2nd ENF</td> <td>)</td> <td>4 Arr</td>			** *	2nd ENF)	4 Arr
1 $\frac{1}{12}$	4		(1		
0. 4 2 0 4 2 0 5 8 . 4 2 0 2nd sta. 5 8 . 3 7 5 2nd sta. 3 . 7 5 2nd sta. 3rd sta. 2 . 5 4 4 4th sta. 2 1 . 4 4 4th sta. 2 1 . 4 5 4th val. 2 1 . 8 1 0 8 8 1 0 4 5 2nd station 1 2 1 . 8 1 0 2nd station 1 2 1 . 2nd station 2nd station 1 2 1 . 2nd station 2nd station						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.			lst val.		· . ; ;
5 8 : 3 · 7 5 3 · 7 5 8 8 · • 5 9 5 7 3 • 5 9 5 7 3 • 5 9 5 7 3 • 5 9 5 7 3 • 5 9 5 7 3 • 5 9 5 7 3 • 5 9 5 7 3 • 5 9 5 7 3 • 6 8 9 • 1 2 9 • 1 2 9 • 1 0 1 • 1 0 1 • 1 0 1 • 4 7 9		~				
3.75 3.75 88. .595 73 21.595 73 21.695 444 21.73 425 12.1 73 12.1 73 12.1 12 20.8 810 12.1 12 2.12 13	1 '	٤.		2nd sta.		
88. 595 21. 425 -5. 425 -5. 45 -5. 45 -5. 45 -5. 45 -5. -45 -5. -425 -5. -44 -44 -68 -5. -44 -44 -44 -44 -44 -44 -44 -4	m	1		2nd val.		
. 5 9 5 73 . 4 4 2 1 . 4 2 5 . 4 4 - 5 . 4 2 5 . 4 4 - 5 . 4 2 5 . 4 5 - 5 . 1 2 . 3 8 1 2 1 . 8 1 0 . 4 5 1 2 1 . 3 8 . 4 5 1 2 1 . 3 8 . 4 5 1 2 1 . 4 5 . 4 7			:*	1	•	
1. 5. 4.2.5 5. 4.2.5 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.)		
5 . 4 2 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			44			
5. 8 1 0 8 2 1. 9		Ň				
4 5 2 1 . 8 1 0 2 1 . 8 . 0 	10	•		4th val.		
2 1 . 4 5 0						
2 1 . 4 5 2 1 . 8 1 0 0 . 0 . 6 . 73						
4 5 2 1 . 8 1 0 0		4				
8 1 0 2 1 . 8 0 . 0 			4			
2 1 . 0 13						
0		1.		2nd station		
4 T	1			Temp. at 2nd s	tation	
• • •	1.		(
	2.			[]		
•	1		4 7	lst station		

		FORTRAN	AN	FIXED	0	DIGIT	DECIMAL	DATA			
ţ	DECK NO.	PROGRAMMER	AER		DATE	J	PAGE 10	~ 23	JOB NO. 2733-01	2733-01	·
L	NUMBER		DENTIF	IDENTIFICATION	DESCR	DESCRIPTION	DO NOT KEY PUNCH	PUNCH			Į
								gda (GDA (Geometry Data)	Data)	I
হা		****	•	••••	GMI				Region 2	i	
्र	109.		. •	•••• • •	EN						ł
E	1.			.	PFLAG						
ز و	é .	4		50	BCITP						
ī.	1.0	-		1 0 0	BCIBM		A Cards are inserted at this.	inserted at	t this		
-		15		ଵ		• •	by using intermediate sequence	inter mediato	e sedneuce		I
R	. 64081	0.71))	RAI	!	No. and h	<u>No</u> , and having the deck serted	eck sorred.	ļ	1
SS SS	5 2 6 6 6 6	875		1	AXL		Inserts a	Inserts are found on Page 13.	Page 13.		I
i.	115.				ANX			. 1			
 				l				:			
Ū				1.0.9				-			
		1						SDA (SDA (Special Date)		;
	•	-		' r 1	ЕХ			i ا ا	Region 2	ļ ,	i
- 52										:	ı
				• •							
(175		5. I G					1		
				1 1 0							
-								DID	DLD (Loads Data)	a)	3
Ē					PILD		•		Region 2		1
25i					TIBT	· i		:	•		,
<u>;</u>	1			-	TITB	-	i				 1
		-			ļ						Ì
	-			1 2 0		و		ł	1 1		-
	14.C. 17 WE 4 75R			Sample Data Sheet (Cont)	ata Shee	ot (Cont					1
						•					

- 131 -

DIGIT DECIMAL DATA	DATE PAGE 12 of 22 JOB NO. 2733-01	DESCRIPTION DO NOT KEY PUNCH	DAL, cont Region 2	AT	EMAT (lst layer)	(2nd layer)	(3rd layer)			; (1)	(2)	(3)				ENØGR (constants)					002 "	GR (interface 2) a/" TOP	(interface 3) $\sum_{i=1}^{i} \sum_{j=1}^{i}$	BOTTOM			eet (Cont)
AN FIXED IO		IDENTIFICATION DES		ENMAT	EMA		С В	1 4 0		POIS (1)			3 3 9 1 9	1.4.1					1 08	1.4.2		GR (j	(j		02	1 4 3	
FORTRAN	DECK NO. PROGRAMMER	NUMBER		2	تة 2	1.	e		152	[3]	<u>25</u> . 3 5	. 3		ĩũ	2 8 4		25	<u>}</u>	49		2.9.5	2	6		40 ⁻¹		

- 132 -

DECK NO PROGRAMMER	RAN FIXED MMER IDENTIFICATION	10 DIGIT DECIMAL DATA DATE PAGE 13 of 22 JOB NO. 2733-01 DESCRIPTION DO NOT KEY PUNCH
6.2.0		
	••••	EXIX (I)
		(2)
		(3)
	· * · · · · · · · · · · · · · · · · · ·	
1!	1 0 1	EM3X (1)
0 2 0		
•		
······································		(3)
		(4) ····································
		EM5X (1) (1st ENF)
		(2)
6.30		
5	- · F .	(3)
		(4)
		EM5X (2nd ENF)
	1 0 3	
9		
5		GPSI, Discontinuity angle of lower boundary
•		•
•		
	1 0 4	
	Sample D	Data Sheet (Cont)
	4	

	FORTRAN FIXED	r DECIMAL DAT	
DECK NO.	PROGRAMMER	DATE PAGE IS OF	- 10B NO. 2(33-01
NUMBER	IDENTIFICATION	DESCRIPTION DO NOT KEY PUNCH	-
			DLD (Loads Data)
<u>5</u>		C.TId	Region 3
.			
[1; 2.		TITP	
69	TC TC MD		
ü			
-	4.0.5		
2.		PNTB	
<u>ده</u>		lst ENF	
37 2 .			
	(1990) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		
- 1	22		• j
	4 1 0 1		
121.			
	: :		
34 1		2nd ENF	
2	573 573		
ار. او:	2.2.2		
	4.1.5		
- 5 ·			
[55] I 2 I .			
. 0			
Ş	73 80		
	2.2.3		
1.44 1.4 1 17 HE J 758	Sample 1	Sample Data Sheet (Cont)	

	.0E NC 2733-01		DAL (Section Properties)	R o in 3																					
DATA	17 . 22	KEY PUINCH	DAL			:		! ; ,	1						1										
DIGIT DECIMAL DATA	•	CO NOT KE		ŧ	1										 !										.
DIGIT	DATE	DESCRIPTION		<u>AY</u>	STRIX	H									ENMAT	EMAT					РфIS (1)				Sample Data Sheet (Cont)
0 0			: ; ;	ELAY	ST	HJIJ			[]	HI					- Zi	EN					ନୁ				ta
		CATION				а, с	تي ي 90	2 4 0	11	l		 89	2 4 1					80	2.4.2			.	 60	2 4 3	ample Da
RAN FIXED	IMMER	IDENTIFICATION	······································	•••••••			21 20 20	2 4	11	ا جم ا	k	73 28	4		· · · ·				4				 7.±		Sample Da
FORTRAN FIXE	DECK NO PROGRAMMER	NUMBER DENTIFICATION		1		1		2 4	11				4	1 4 5		2			4	152	3				ORW 114-C-17 REV. 7-58- Sample Da

DECIMAL DATA	PAGE 18 of 22 JOB NO. 2733-01	DO NOT KEY PUNCH	GDA (Geometry Data)	Region 4											SDA (Special Data)	Region 4					DLD (Loads Data)	Region 4					
10 DIGIT DI	DATE	DESCRIPTION DO		GMI	EN	PFLAG		BCIBM		RAĮ	AXL	ANX				EX						PILD	TBT	TITP		Andrea	Sample Data Sheet (Cont)
FORTRAN FIXED	PROGRAMMER	IDENTIFICATION					1.2	3.0.0	2				28 2	3.0	1				73		1					3 2 0	Sample Da
FOI	DECK NO. PROG	NUMBER		1 .	113.	1.		3.	1	9 4 0	28.	• 0				• 0						1 .	1	1.			0RM 114-C-17 REV. 7-58
				Ē	S.	 [4	6 T	Ū	-	E:	ŝ	E.	\$ •	ē		in l	25	3	\$]	ف		ie.	ŝ	37.	 gj		N N N N

. - 139 -

PROGRAMMER DATE PAGE 20 of 22 9 6 7 9 9 7 9 10ENTIFICATION DESCRIPTION DO NOT KEY PUNCH 9 9 13 13 14 10 1 2 9 19 10 10 10 1 1 1 10 10 10 10 10 1 1 1 10 10 10 10 10 10 1 1 1 10 10 10 10 10 10 1 1 1 10	õ	FORTRAN FIXED	10 DIGIT DECIMAL DATA
IDENTIFICATION DESCRIPTION DO NOT KEY PUNK •		GRAMMER	PAGE 20
$ \begin{bmatrix} 1 & 9 & & & & & \\ 1 & 9 & & & & & \\ 6 & 7 & & & & & \\ 9 & 1 & & & & & \\ 9 & 1 & & & & \\ 9 & 1 & & & & \\ 9 & 1 & & & & \\ 9 & 1 & & & & \\ 1 & 3 & & & & \\ 7 & 0 & & & & \\ 7 & 0 & & & & \\ 7 & 1 & 1 & & \\ 1 & 1 & 1 & & \\ 1 & 1 & 1$	NUMBER	IDENTIFICATION	8
1 1 1 1 1 6 7 6 7 3 4 1 1 3 4 5 3 4 5 7 9 7 3 4 1 1 1 1 3 4 5 5 3 4 1 1 3 4 5 5 3 4 1 1 4 5 5 3 4 5 1 1 3 4 5 5 3 4 1 1 3 3 4 5 5 1 1 3 3 4 5 5 1 1 3 3 4 5 5		9	DAL, cont Region 4
4 5 7 9 1 9 9 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 4 1 3 1 4 1 3 1 3 1 4 1 3			(3
6 7 9 1 1 3 1 3 1 3 4 1 1 3 4 5 7 9 3 4 7 9 3 4 7 9 3 4 7 9 3 4 7 1 3 4 1 1 3 4 1 4 5 3 1 4 5 3 1 4 5 3 1 1 3 4 1 1 3 4 1 1 3 4 1 1 3 4 1 1 3 4 1 1 3 4	1 1		
9 1 1 1 1 1 3 4 1 3 4 1 3 4 5 3 4 1 3 4 5 3 4 1 3 4 5 3 4 1 1 3 4 5 3 1 1 3 4 5 3 1 1 3 4 5 3 1 1 3 4 5 3 1 1 3 4 5 3 1 1 3 4 5 3 1 1 3 4 5 3			
1 3 . 3 4 1 8 2 5 7 9 3 4 5 7 9 3 4 5 7 1 3 4 5 7 1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 6 1 3 4 6 1 3 4 6	1 1		
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	34	(6)
8 7 7 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7	2	1 4	
7 9 7 8 7 5 7 5 7 3 1 3 1 3 1 4 1 3 1 3 1 1 1 1	(4		TH (1, 1)
7 8 7 5 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	~		ł –
7 5 3 4 5 7 1 3 4 5 6 8 3 0 1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 5 1 3 4 5	~		(3, 1)
7 1 6 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	~		(4.1)
	~	3.4	(5, 1)
		0	
4 0 4 0 4 0 4 0 4 4 0 4 4 0 4 4 4 4 4 4 4 4 4 4 4 4 4	9		TH (6,
4 D 3 4 C 3 4 C 4 D 4 D 4 D 4 D 4 D 4 D 4 D 4 D			
3 4 0			
		1	
	4	20 20	
	. 1		TH (1, 2)
	. 1		
			(3, 2)
	1		(4, 2)
3.5.0	<u> </u>	350	(2, 2)

	JOB NO. 2733-01		cont Region 4									-														
DATA	PAGE 21 of 22	PUNCH	DAL																							
DIGIT DECIMAL DATA	PAGE	DO NOT KEY PUNCH								-																
DIGIT	DATE	DESCRIPTION		(6, 2)					ENMAT	EMAT (1)	EMAT (2)				PØIS (1)	(2)					ENÓGR	GSTA (1)	(2)	(3)	(4)	Sheet (Cont)
0		-		TH (6,					EN	EM	,	in in			Ιфа			AC:	1	.	ENG	GST		65	0	e Data S
FIXED		IDENTIFICATION					3.5						3_6						3 6						3.7	Sample Data
FORTRAN	PROGRAMMER	IDENT		1 - r •	^{54,} ę	:				ſ	. 1	,	•		. 		1'				14 - P# 1	•••••	·····		4 4 	
FOR	PROGR		5 0		4			1.15						1.5.2	e e	4				284	ł	•			4	
	DECK NO.	NUMBER									2.				. 3 5	. 3	* ***				4.		67.	91.	1.13.	*** C *7 2+ * **

	FORTRAN		10 DIGIT	TA "	27 22 <u>-</u> Ai
DECK NO.	PROGRAM AER	1 7	DESCRIPTION	DO NOT KEY PUNCH	
	2.9.5			DAL, cont R	- Region 4
60			GR (1, 1)		•••
	3		(2, 1)		
•	ŝ.		(3, 1)		
	8 173	50	(4, 1)		
		371			
Ĩ.					
55					
5-					
64	1				
25		<u></u>			
5					
.		C9			
Ei					
Ξ					
<u> </u>					
[25]		· ·			
37					
\$ 	73	BO			
[<u>6</u>]					
TARM 144-C-17 REV. 7-58-		Sample Da	Sample Data Sheet (Cont)		

õ
1-00075 30
ENF =
01
- 9.0000F 0
•
THETA
LOADSA
INTERNAL LOADS.
AND
<u>X</u> S
DEFL
7
REGION 3. DEFLECTIO

ł

 	N1)	(1)/	N11)	(INd)W	M(THETA)	NEPHI , THETA)
tee	-7.3632E-02	1.47066-02	2.17205-02	3.01645 01	2.00495 0	- 6 0 *
2	2	1.4645E-02	-2077E-0	1995 0	1.8548E 0	-1969E-D
m	-7.3414E-02	-39851	.21476-0	.1240E D	1.732BE 0	.1521E-0
•	2	-4523E-	-2047E-0	. 8298E. 3	1.63995 0	• 2486E-0
ŝ	Ň	1	. 1.8645-0	.6264E 0	1.5732E 0	· 1444E-0
9	2	-4399E-	16575-0	0 30704 .	1,5280E 0	9.3868E-0
~	N		1462E	4234E	1.4991E 0	891E-0
-	N	-4275E-	1299E-C	- 3890E D	1.4018E 0	. 6709E-0
0	-7.2121E-02	-75134-	1176E-0	. 3798E J	1.47	- 6597E-
10	-	1.4150E-02	10936	.38516 3	1.4666E J	.0487E-0
11	2	-4387E-	.10446-0	3970E 0	1.4633E 0	• 5463E-0
12	7	4024E-	1024E-0	4104E 0	1.4605E 0	.9282E-0
13	-7.1222E-02	-3961E-	1026E-0	4220E 0	1.4572E 0	• 5312E-0
14	a	3897E-	1043E-0	4303E 0	1.4531E 0	-8402E-0
15	6	. 38	-10696-		1.4479E 0	8 61 E-0
16	d	-3769E-	.1102E-0	4355E 0	1.4416E 3	-3245E-0
11	C	56-	.11386-0	4330F 0	1.4343E 0	.99936-0
81	-0081E-	-3640E-0	1174E-0	0	1.4263E 0	-9423E-0
51	,9852E-	1.3575E-02	.12096-0	0	1.4177E 0	.8754E-0
2	-6.9621E-02	-3510E-0	12445-0	9	1-4038E 0	C-30118-
21	-306E0	1.3445E-02	1277E	0	1.3995E n	.7591E-
-22-	-6.91596-02	-3975E.	J. 30 8E-0	q	1.39D1E 0	-7198E-0
23	-6.8927E-02	.33146-0	.13395-0		1.3806E 0	•6942E-0
24	.84	-3248E	13685-0.	730E D	1.3712E 0	-6810E-J
25	ě	182E-0	139	630E 0	1.3617E P	67806-0
4	B	30116	1426E-0	532E D	1.3522E D	-6827E-0
27	ř	1.3049E-02	 1454E-0 	1.3433E 01	1.3429E 0	9296-0
28.	.7257E-0	-2983E-	-1482E-0	336E D	1.3335E D	-7365E-0
29	.7521E-0	9166-	.1510E-0	241E 0	1.3242E 0	•7219€-0
30	*1285E-0	-2849E-	. 1539E	147E D	1.3149E 0	.7381E-0
31	- 7048E-0	783E-	.1567E-0		1.3056E 0	.75436-0
32	-6810E-0	Z15E-	-1596E-D	961E 0	. 1.2964E.D.	- 7699E-0
33	-6.6572E-02	1.2648E-02	625E-0		1E 0	° 7848E-0
36	-6.6333E-02	58LE-	-165	777E	779E 0	.7989E-0
35	-6.6094E-02	136-	•1684E-0	685	687E 0	20E-0
36	•5854E-0	446E=	.1713F-0.	593E	595E 0	- 8242E-0
37	.5613E-0	378E-	•1743E	1.2501E 01	502E 0	5E0
38	-5372E-0	310E-	•1773E-D.	409	41DE Q	4626-0
				al a Dacklas	t	

Sample Problem Output

0	1.8661E-0	1.8751E-0	1.83385-0	1.89236-0	0-3+046-1	-318C6 1	1.9157E-0	1.9229E-0	1.9299E-0	1.9366E-0		L.9493E-0	1.9551E-0	1.9508E-0	1.9663E-0	1.9715£-0	1.97655-0	1-9814E-0	L. 9860E-0	1-99045-0	1-9946E-0	1.9986E-0	0024E-0	2.0060E-0	2.00946-0	2.0126E-0	2-01596-0	2.0191E-0	2.0221E-0	2-0250E-0	2.0280E-0	2-0308E-0	2.0333E-0	2.03595-0	2.0380E-0	2-36ELA	2-0409E-0	2.0416E-0	2.0417E-0	2*0408E-0	2.0387E-0	2.0353E-0	
1.2318E 01	2256 0	3E 0	0415 9	948E 0	5E 0	7645.0	1E 0	0 10 0	486E 0	394E 0	302E 0	1209E D	7E 0	025E D	932E 0	840E 0	747E 0	0655E 0	563E 0	470 E 0	378E 0	286E 0	36.0	DIDE	3600	9162E	.8238E	314E	•6390E	-5467E	5436	.3619E	•2696E	.1772E	•0848E	4	3000	8076E	5	227E	л З	E E	
1.2316E D1			2040E	1947E	18556	1763E	.1670E	a1578E	•1485E	.1393E	1.1301E D1	120AE	.1116E	. 1023E	.0931	L.O839E 01	.0746	<u>2666</u>	1.0562E 01	.0469	1.0377E 01	0284	2610	1.0101E 01		9150E	8226E	7303E	6379E	5455	4531E	3607E	2683E	1760E	0835E	<u>9911E</u>	8986E	BOGLE	135	6209E	5283E	4356E	
2.19046-02	2.18346-02	1.965E-0	•1896E-0	•1927E-0	1-3826 L.	-1989E-0	.2021E-0	-2052E-0	-2084E-0	-2116E-0	2.2149E-02	-21815-0	+2214E-0	-2246E-0	.22796-0	-2312E-0	.2346E-0	-2379E-0	°2413E-0	*2447E-0	.2481E-0	•2515E-0	2549E-0	-2584E-0	•2619E-0	-7654E-0	~2689E-0	• 2 7 2 4E	•2759E-0	<u>2795E-0</u>	•2831E-0	•2867E-0	• 2 903E-0	-2940E-0	.2976E-0	-3013E-0	.3050E-0	• 3 08.7E = 0	P	-3162E-0	•3200E	-3238E-0	
1.22425-02	174E-0	L.21.06E-02	1. 2037E-02	1.1969E-02	1.1901E-02	1.1832E-C2	1.17645-02	1.1695E-02	1.1626E-02	1557E=02.	1.14896-02	1.1420E-02	1.1351E-02	1.1282E-02_	1.1213E-02	1.1144E-02	1.1075E-02	1.1006E-02	1.09376-02	1.0868E-02	1.0799E-02	1.0730E-02	1.0661E-02	1.0592E-02	1.05236-02	1.0454E-02	1.0385E-02	-39160-	1.0247E-02	<u>~0178E-</u>	1.0109E-02	-00 40E-	9.9715E-03	- 5028E-		<u>- 7656E-</u>		-6287E-0	-5604E-0	-4921E-0	4239E	-3558E-0	
-6.51305-02	-6.4887E-32	-6.4644E-02	-6.44005-72		39136.	-6.3665E-02	×	-6.3172E-02	926	1976	2428	-6.2178E-02		-6.16785-02	ш.	1125	-6.0922E-02	106696	-6.0416E-02	-6.01615-02	39066°	112%6-		38E19.		.86238	-5.8364E-02	-8105	• 7845E	12845	-5.73236-02	17626	-5.6799E-02	<u>.6536</u>	•6273E	-5.6009E-02	-5.57446-02	-5.5478E-02	-5.5212E-02	4946F	.4678E	-4410F	
96	Ç	4				53							52			20		2	895	59	3	19	62 9	63		6.5	66		-	69			25	13	•	2	16	- 22	84	62	80	81	

(Cont)
Output
Problem
Sample]

- 144 -

•

- 145 -

Q(THETA) 9.9213E-02 5.3437E-02 2.5995E-02 2.5995E-02 1.9259E-02 1.9259E-02 1.9171E-02 1.9259E-02 1.9171E-02 1.9254E-02 1.9254E-02 1.9254E-02 1.9254E-02 1.9254E-02 1.9254E-02 1.9254E-03 1.9255E-03 1.9255E-03 1.1555E-03 1.1155E-03 1.1155E-155 1.1155E

.

Sample Problem Output (Cont)

- 146 -

		!	: 4	i	:
00000000	555555	00000000	occiodor		odegeded
	-3.59526 -3.60726 -3.62856 -3.66876 -3.66876	1001	3.8500 3.8139 3.8264 3.8496 3.8699	-3.6874E -3.6876E -3.6876E -3.9026F -3.9027E -3.9204E -3.9204E -3.9204E	9324
	1 .	1 1			
	1272925	4 4 4 4 4 M	3, 9100 3, 9658 3, 9658 3, 6584 3, 6584 5, 5844 5, 5844 5, 5844 5, 5844 5, 5844 5, 5844 5, 5844 5, 5845 5, 58455, 5845 5, 58455, 5845 5, 5845 5, 5845 5, 58455, 5845 5, 5845 5, 58455, 585	-3.4976E -3.4976E -3.4432E -3.3881E -3.3326E -3.3326E -3.2206E -3.1066E -3.1066E	-3.04866 -2.99016 -2.99016 -2.87086 -2.80996 -2.4806 -2.4805
	1	555555		829292929	cdcoood
	3.915 3.922 3.925 3.929 3.933	3.94753 3.94753 3.94753 3.94753 3.94753 3.9512		-3.9563E -3.9563E -3.9565E -3.9559E -3.9559E -3.9559E -3.9551E -3.9551E -3.9546F	-3.95136 -3.95136 -3.94756 -3.94756 -3.94246 -3.93966 -3.93966 -3.93966
1,04276-03 1,07598-03 1,07598-03 1,07598-03 1,07386-03 9,77996-04 9,77996-04	52696- 60375- 27376- 15116- 03106- 0316-		960 - 0 960 - 0 981 -		6.2339E-04 6.0675F-04 5.8809E-04 5.6877E-04 5.4677E-04 5.2531E-04 5.0556E-04 4.8851E-04
1 -5.53945-01 -5.5410F-01 -5.54286-01 -5.54386-01 -5.54386-01 -5.54386-01	-5.5437E-01 -5.5432E-01 -5.5430E-01 -5.5426E-01 -5.5426E-01	5424E-0 5424E-0 5424E-0 5424E-0 5424E-0 5424E-0 5424E-0	5.5428E 5.5428E 5.5426E 5.5426E 5.5426E	• • • • • • • • • • • • • • • • • • •	<u> ហេត្ត ស្ត្ត ភ្លេ</u> ត្ត ភ្លេត ភេទ
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	19832883		- 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8.52222222	7 4 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4

10	.7274E-0	121	5	55.24	10	0 36466°
•	1795-	923	5	4228	10	2.5
٠	386-0	616		2•3551	5	-9290E 0
	52E-0	516	10	Z•2871	52	2252E 0
	5416-04	3.906	50	i I I N	10	3.915
•	546-0	3.901	5	2.0905	5	3.91046 0
	12E-0	968	5	2.0320	6	.9043E 0
٠	31E-0	891	6	.9798	5	.8977E 0
- ej -	616-0	3.8.86	1	1.9362	ส	-8904E 0
10	1 2 C L	3• 6 81	56	-1.90515 -1.88335	57	3.85245 U
	0-L9	128	13	1.8750		ALLE O
) iii 	365-0	3.866	10	8813	6	3.8535E 0
6	196-0	3.860	10	-1-9009E	10	
4	18E-0	3.855	5	1.9286		3.8295E_0
• 6	0-360	852	10	-1.9580E	5	3.8158E 0
-8.09	47E-0	849	d	-		<u>.8009E 0</u>
-2.78	796-0	846	5	-1.97085	5	7849E 0
4	85E-0	843	5	-915	5	292-
8°9	156-0	3.841	10	1.781	5	3.7591E 0
η I	~ .	3 <u>.839</u>		- 536	2	3.7319E 0
	95E-0	3 . 835	56	-1.1368E		m e
J @	21E-	.825	15	018	38	6827E 0
m	68E-0	814	5	1.4269E	1	1119
•	966-0	197.	10	.8643	5	•6659E 0
N	P.	.772	10	.620	10	-6670E 0
٠	4579E-C2	.738	0	676	5	3.6771E 0
•	q	169,	a	-9281	đ	0 36796 0
	547E-03	3.6314	01	-	20	3.7311
- •	9	.5554		.342		3.7773E 0
	Ŷ	3.4631		. 5093		.8361E 0
- 9	9	.3564		805		-9056E 0
	1	60	10	÷ en		3.9812E 0
	434	1162		1354		. C 552E D

ł

i

+ + +

-

:

;

. 1

- 148 -

л Т	1 6									*						ļ												1 1 1						1							
HETA	202	020	05	02	02	02	02	02	02	22	02	02	02	2	02	3	02	02	02	02	02	2	02	02	02	02	02	8	02	02	02	25	02	a	ĉ	02	20	02	02	3	
SG2 LPHL. THE	6636E	.7752E		.6363E	1.8674E	.9328E	1.9435E	30686°1	•0385E	1016J	.1452E	.2003E	• 2556E	2.3105E	•3646E	2=4177E	2.4695E	• 520 1E	• 5693E	2.61 73E	•6642E	JOOLS.	2.7546E	.7982E	.8407E	2.8823E	• 9229E	2-9626E	•0013E	•0392E	.0761E	.1122E	•1473E	1815E	•2149E	•2475E	•2793E	•	-3,3401E		
SG2 (THETA)	1.30105 04	.1974E 0	.1202E 0	-0455E 0	.8028E 0	.2728E 0	.8670E 0	.5722E 0	.3684F C	-2336E 0	.1476E D	.0934E D	.0576E 0	.0 30.6E 0	• CO59£ 0	-9793E.0	0 30646 °	.9140E 0	.8744E D	.8308E 0	.7840E 0	Z34ZE D	.6837E 0	.6316E 0	-5788E 0	5257E 0	.4726E 0	а Ш	•3668E 0	.3143E 0	.2619E D	.2398E C	.1578E 0	.1060E 0	•°543E 0	.0027E 0	.9512E 0	•8997E D	C	0.30791 .	
562(PHI)	1.7755E 04	2381E 0	.0613E D	3919E .	.6157E 0	.1752E .0	.9700E 0	.9159E 0	.9481E 0	.0198E 0	.0995E J	.1686E D	.2177E 0	.2436E D	.2469E 0	-2307E.3	.1988E D	.1551E D	.1032E D	.0461E D	.9860E 0	-9246E D	.8630E 3	. 8018E D	.7413E 0	a	.6232E 0	.5653E D	.5081E 0	.4513E 3	.3949F 0	.3386E 0	.2825E 0	-2266E 3	.1707E 0	.1148E D	. D589E D	0	.9471E D	-8912E.D	
LETAL	8965 02 4525 02	, О	о ш	9	0	о ш	с ш	о ш	0	сļ ш	0	о ш	С Ш	С Ш	о ш	0	С Ш	0	С Ш	0	0	d	0	q	о ш	о ш	о ш	с і Ш	с ш	а ш	0	0	0	d	0	о 96 9	4 L O	י 4 בי 4	5F 0	되	•
SGIPHI	-1.689		9.1	1-6	5	8• 7	8	1.9	2.0	9	2.I	2	2.3	Ē	r,	2.04	2.4	- -	2.5	2.5	\$	7	~	2.8	- 00	5	2•9	2-2	•	Б. 2	3.0	믁	3.1	9-2	N.	•26	•30	• 33	-3.362	-39	C
TA)	35	: 0	0	9	0	O	0	¢	0	٩	0	Q	C	a	D	q	¢	C:	0	U	0	q	C	O	Ċ	a	0	d	C	a	0	CI	0	q	0	0	ະ	C	0	q	
SI GI THE TA	-1.1049E			-	æ	•		•	-9.23095	-9.3256E	-9.3778E	-9.39335	-9.3794E	-9.3436E	-9.292BE	-9.2325E	-9.1668E		-9.03065	œ		•		•		-8.58855		•	•	•	¢		œ	œ	•		•	•	-7.8221E		
	400	•	*	5	63	60	60	e C	03	23	60	03	03	60	ĉ	63	13	60	03	03	03	d	93 93	03	60	03	03	: B	13	03	60	ŝ	03	a	ec S	60	03	m Ci	03	63	
IHd 1915	-1,8441E -1,5475F	3106E	1.1345E	1.0125E	9.3479E	8,9052E	8.6977E	8.6421E	8.6733F	8. 7446E	R. 8249E	8.8954E	8 • 9 4 6 2 E	8.9741E	8.9797E	<u>8.9658</u> 5	8.9362E	8 .8948 E	8.8452E	8.7902E	8.7321E	8-6727E	8.6131F	8.5537E	8.4952E	4375E	8.38 <u>06</u> E	8.3243E	8.2687E	8.2135E	8.1586E	8.1041E	8.Q496F	7.9950E	7.9405F	7.3360E	7.8314F	7.7767E	7.7219E	7 . 6671E	
-	~	l m	4	ŝ	Q	~	80	0	10	11	12	13	14	15	16	17	18	61	23	21	22	5	24	25	26	27	90	6 ^1	<u>65</u>	31	32	33	34	50	36	37	ę,	39	40	41	

- 150 -

-3.9491E 02 4.4463E 03 -3.9750E 03 -3.9750E 03 -3.9750E 02 -3.94405E 02 4.3915E 03 -3.9750E 03 -3.9750E 02 -3.94405E 02 4.3915E 03 -3.9750E 03 -3.9750E 02 -3.9410E 02 4.28276 03 4.4396E 03 -3.9137E 02 -3.9212E 02 4.17576 03 4.4396E 03 -3.9137E 02 -3.9228E 02 4.1716E 03 4.2466E 03 -3.9171E 02 -3.9238E 02 4.01945E 03 -3.8916F 02 -3.91676 02 -3.9238E 02 4.01945E 03 -3.8176E 02 -3.91676 02 -3.92945E 02 3.9171E 03 4.04946E 03 -3.81766 02 -3.8176E 02 3.9133E 02 3.91336 03 -3.81766 02 -3.81035E 02 3.913356 03 3.913676 03<
3.9491E 02 $4.4463E$ 13 $4.5365E$ 03 -3.9250 $3.9440E$ 02 $4.3915E$ 03 $-3.915E$ 03 -3.9229 $3.9440E$ 02 $4.3945E$ 03 -3.9126 03 -3.9229 $3.9440E$ 02 $4.3945E$ 03 -3.9126 03 -3.9229 $3.9410E$ 02 $4.3369E$ 03 $-3.9431E$ 03 -3.9229 $3.9229E$ 02 $4.2289E$ 03 $-3.9431E$ 03 -3.9926 $3.9228E$ 02 $4.0194E$ 73 $4.22468E$ 03 -3.9916 $3.9228E$ 02 $4.0194E$ 73 $4.02951E$ 03 -3.9916 $3.9228E$ 02 $4.0194E$ 73 $4.02951E$ 03 -3.9916 $3.9228E$ 02 $4.0194E$ 73 $4.02951E$ 03 -3.98165 $3.9910E$ 02 $3.917E$ $3.917E$ $3.91641E$ 03 -3.8775 $3.8970E$ 02 $3.9132E$ 03 -3.92556 03 -3.8775 $3.8910E$ 02 $3.9132E$ 03 $3.9414E$ 03 -3.7256 $3.8910E$ 02 3.4772 3.86176 3.374956 -3.7256 $3.8910E$ 02 3.4772 3.374956 3.374956 -3.77295 $3.8910E$ 02 3.47726 3.374956 -3.772956 $3.8910E$ 02 3.47126 03 -3.772956 $3.8910E$ 02 3.47126
3.9491E $0.9491E$ $0.9409E$ $0.9909E$
3.9491E 02 4.4663E 3 4.5365E 03 -3 3.9469E 02 4.3915E 03 4.5365E 03 -3 3.9469E 02 4.3369E 03 4.5365E 03 -3 3.9410E 02 4.3369E 03 4.5365E 03 -3 3.9410E 02 4.1757E 03 4.5365E 03 -3 3.9236E 02 4.1757E 03 4.5343E 03 -3 3.9236E 02 4.1757E 03 4.54366E 03 -3 3.91716 02 4.1757E 03 4.1492E 03 -3 3.9109E 02 3.9171E 03 4.1492E 03 -3 3.81095E 02 3.9135E 03 3.63554E 03 -3 -3 3.81095E 02 3.9135E 03 3.63554E 03 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3
3.9491E 02 4.9463E 03 4.95955 0 3.94491E 02 4.39155 03 4.48905 0 3.94452E 02 4.39155 03 4.48905 0 3.94452E 02 4.39155 03 4.48905 0 3.94452E 02 4.39155 03 4.43965 0 3.94452E 02 4.17575 03 4.39136 0 3.9315 02 4.17575 03 4.34325 0 3.91055 02 4.17575 03 4.34325 0 3.91056 02 4.17575 03 4.34325 0 3.91056 02 4.17575 03 4.29565 0 3.91056 02 3.91716 03 4.29566 0 3.91056 02 3.91716 03 4.94366 0 3.91056 02 3.16356 03 3.94936 0 3.91056 02 3.16356 03 3.94936 0 3.91056 02
3.9491E 02 4.9463E 03 4.95955 0 3.94491E 02 4.39155 03 4.48905 0 3.94452E 02 4.39155 03 4.48905 0 3.94452E 02 4.39155 03 4.48905 0 3.94452E 02 4.39155 03 4.43965 0 3.94452E 02 4.17575 03 4.39136 0 3.9315 02 4.17575 03 4.34325 0 3.91055 02 4.17575 03 4.34325 0 3.91056 02 4.17575 03 4.34325 0 3.91056 02 4.17575 03 4.29565 0 3.91056 02 3.91716 03 4.29566 0 3.91056 02 3.91716 03 4.94366 0 3.91056 02 3.16356 03 3.94936 0 3.91056 02 3.16356 03 3.94936 0 3.91056 02
3.9491E 02 $4.463E$ $13.915E$ 03 4.53653 $3.94405E$ 02 $4.3915E$ 03 4.53653 $3.9410E$ 02 $4.3915E$ 03 4.53653 $3.9410E$ 02 $4.3369E$ 03 4.53653 $3.9410E$ 02 $4.2827E$ 03 4.53653 $3.9410E$ 02 $4.1737E$ 03 4.93912 $3.937E$ 02 $4.1737E$ 03 4.391312 $3.9329E$ 02 $4.1731E$ 03 4.295132 $3.9109E$ 02 $4.0194E$ 03 4.294313 $3.9109E$ 02 $3.9171E$ 03 4.1492 $3.8108E$ 02 $3.49122E$ 03 3.9414 $3.8108E$ 02 $3.49122E$ 03 3.9412555 $3.8108E$ 02 $3.49122E$ 03 3.76354 $3.8108E$ 02 $3.49122E$ 03 3.763554 $3.8138E$ 02 $3.76382E$ 03 3.763554 $3.7602E$ 02 $3.6726E$ </th
3.9491E 02 4.94691E 02 4.94691E 03 4.45 3.94402E 02 4.39154 03 4.45 3.94402E 02 4.39154 03 4.45 3.94402E 02 4.39154 03 4.45 3.94402E 02 4.333694 03 4.45 3.94126 02 4.17574 03 4.45 3.94126 02 4.17574 03 4.40 3.92286 02 4.1716 03 4.40 3.91096 02 4.01046 03 4.40 3.91096 02 3.91716 03 4.40 3.91096 02 4.01046 03 4.40 3.91096 02 3.91716 03 3.91 3.91096 02 3.91716 03 3.91 3.91116 02 3.49736 03 3.91 3.91096 02 3.41236 03 3.91 3.91116 02 3.49736 03 3.3 3.910316 02
$\begin{array}{c} 3.9491 \mbox{f} 02 \ 4.463 \mbox{f} 3.9440 \mbox{f} 02 \ 4.3915 \mbox{f} 03 \ 3.9440 \mbox{f} 02 \ 4.3915 \mbox{f} 03 \ 3.9440 \mbox{f} 02 \ 4.3915 \mbox{f} 03 \ 3.9329 \mbox{f} 03 \ 4.1231 \mbox{f} 03 \ 3.9329 \mbox{f} 02 \ 4.1231 \mbox{f} 03 \ 3.9329 \mbox{f} 03 \ 3.9329 \mbox{f} 02 \ 4.1231 \mbox{f} 03 \ 3.9329 \mbox{f} 02 \ 4.1231 \mbox{f} 03 \ 3.9329 \mbox{f} 03 \ 3.9329 \mbox{f} 03 \ 3.9471 \mbox{f} 02 \ 3.9471 \mbox{f} 03 \ 3.950 \mbox{f} 03 \ 3.893 \mbox{f} 02 \ 3.4973 \mbox{f} 03 \ 3.893 \mbox{f} 02 \ 3.4973 \mbox{f} 03 \ 3.893 \mbox{f} 03 \ 3.4973 \mbox{f} 03 \ 3.4473 \mbox{f} 03 \ 3.4470 \mbox{f} 03 \ 3.44400 \mbox{f} 03 \ 3.4440$
3.9491E 02 4.463E 02 3.9440E 02 4.3915E 02 3.9440E 02 4.1757E 02 3.9376 02 4.1757E 02 3.9376 02 4.1757E 02 3.9107E 02 3.9171E 02 3.9171E 02 3.47257E 03 3.9105E 02 3.47257E 03 3.9107E 02 3.47256 03 03 3.9107E 02 3.4123E 03 03 3.9108E 02 3.4123E 03 03 3.91031E 02 3
3.9491E 02 4.9469E 02 3.9440E 02 4.3915 3.9440E 02 4.2827 3.9329E 02 4.1757 3.9329E 02 4.0194 3.9111E 02 3.9133 3.9133 02 3.9133 3.9133 02 3.9133 3.9133 02 3.9163 3.9133 02 3.9163 3.9133 02 3.9163 3.9163 02 3.9
3.9491E 02 4.9461E 3.94402E 02 4.9469E 3.94402E 02 4.336 3.94102 02 4.336 3.94102 02 4.173 3.9329E 02 4.173 3.9329E 02 4.173 3.9109E 02 4.173 3.9114 02 4.173 3.9114 02 4.173 3.9109E 02 3.913 3.9114 02 3.913 3.9114 02 3.913 3.9114 02 3.913 3.9114 02 3.913 3.9114 02 3.913 3.9131 02 3.913 3.9131 02 3.913 3.916331 02 3.916 3.9170556 02 3.917
3.9491E 02 4.9 3.9412E 02 4.9 3.9412E 02 4.9 3.9322E 02 4.9 3.9329E 02 4.9 3.9329E 02 4.9 3.9329E 02 4.9 3.9329E 02 4.9 3.9329E 02 4.9 3.9329E 02 3.9 3.9309E 02 3.9 3.9492E 02 3.9 3.9492E 02 3.9 3.9592E 02 3.9 3.9592E 02 3.9 3.9592E 02 3.9 3.9502E 02 3.9 3.9502E 02 3.9 3.9502E 02 3.9 3.9502E 02 3.9 3.9502E 02 2.9 3.5592E 02
23.9440 23.9440 23.9440 23.9440 23.9440 23.9440 23.9440 23.9440 23.9440 23.94000 23.94000 23.9400 24.9400 24.9400 25.9400 25.9400 25.9400 25.9400 25.9400 25.9400 25.9400 25.9400 25.9400 25.94000 25.94000 25.94000 25.94000 25.94000 25.94000 25.94000 25.94000 25.94000 25.94000 25.94000 25.94000 25.94000 25.94000 25.940000 25.940000 25.940000 25.9400000 25.94000000 25.94000000000000000000000000000000000000
23.9440 23.9440 23.9440 23.9440 23.9440 23.9440 23.9440 23.9440 23.9440 23.94000 23.94000 23.9400 24.9400 24.9400 25.9400 25.9400 25.9400 25.9400 25.9400 25.9400 25.9400 25.9400 25.9400 25.94000 25.94000 25.94000 25.94000 25.94000 25.94000 25.94000 25.94000 25.94000 25.94000 25.94000 25.94000 25.94000 25.94000 25.940000 25.940000 25.940000 25.9400000 25.94000000 25.94000000000000000000000000000000000000
๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
ം എത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത്
그렇는 것은 것은 것은 정말 같은 것은 것은 것을 빠른 때로 제한 것은 것은 바로 등을 가지면 주셨다.
<u>ି ମୂର୍ମ୍ ମୂର୍ବ୍ୟୁବ୍ୟୁବ୍ୟୁବ୍ୟୁବ୍ୟୁବ୍ୟୁବ୍ୟୁବ୍ୟୁବ୍ୟୁବ୍ୟ</u>

:

Sample Problem Output (Cont)

- 151 -

ENF = 1.000E 30 REGION 3. DEFLECTIONS AND INTERNAL LOADS, THETA = 0.90006-39

2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3	<u> 1000E-3</u> 7000E-3 700E-3
x) (200
	•
	7
7.6817E-03	9.00
7.42235-0	1 0 M
7.3537E-0	39
	39.
7.3390E-03	6 6 6 6
7.44545	- 0 - 0
7-52635-03	39
	39
-	<u>ମ</u>
7.8156E-0	0 0 M 0
1 2 10 0C=U3	39
8.1173E-03	39
8.2156E-0	39
	:
6.40005-03 8.50375 03	2 0
	: } 6
	39
8.7868E-0	39
8.8811E-03	
	r 0 1
i •	39
9.2611E-03	39
9.3570E-03	39
9.4532E-0	-0000E-39
9.5499E-0	39
	39 .
9.7441E-03	39
9-841 7E	9

- 152 -

39	-6.95275-02	- CC	0-346F0.	21:52	3115 0	3E 6 3E - 3
C	5	Ċ	1.0386-52	1.22196 01	1.2719E 01	: 2
4	-6.9033E-n2	00.	- 391365-7	.2127E	127E 0	0000E-3
- 42	.87	-30000-3	.0735E-0	.2035F	030E 0	9005-3
43	-6. 9537E-02		-34E0.	.1943E	1942E 0	00000-3
\$		à۵.	-0433E-0	BSIE	1850E 0	5-300CC
53	8	100	* 0533E-0	3651	0	000025-3
\$	2	*	.0632E-0	999	C	00000
1	. 75	0.0000E-39	•0732E-0	574	C	000006-3
84	N	0.00006-39	•0832E-0	1482	1480E U	0300E-3
- 49	2	0-00006-39		1390		000E3
50	-6.6777E-02	ă۵,		I.1297E 31	1296E	20006-3
5	3	100		1205	1203E	E-3C000
22	~6.6268E-02	ń٨.	1.12356-02		1111E	0000E-30000
53	3	ų,	1.1337E-C2			0000E-30000
3	5	C+0007E-39	1.1438F-02			C000E-3
55	3	m)	1.1540E-02		C834E	0000E-3
\$	ŝ	ŵ	1.1642E-02		0742E	05006-3
ユ	-6.4983E-02	1	1.1744E-02		2650E	0000E-3
58	-6.4724E-02	C. 3000E-39	1.19475-02	1.0560E 31	0557E	00006-3
50	-6.4464E-02	m.	1.19496-02		0465E	0000 E-3
ç	-6.4203E-02	0.0000E-39	-	0	0373E	0000E-3
3	-6.3942E-02	Ϋ́.	1_2155E-02	0283	0.280 E	0000E-3
62	-6.3680E-02	0. 0000E-39	1.2258E-02	о ш	188E	03006-3
53	-6.3417E-02	-20000-3	1.2361E-02	0098E 0	096E	3000E-3
49	-6.3153E-02	0.0000E-39	•2465E-0		-000-	0.00005-39
65	-6.2889E-02	D.0000E-39.		9139E.	-91116	0000E-3
66	-6.2624E-02	AA.		8217E	8187E	0000E-3
52	-6.2359E-02	-30000-	1.23 15-02	. 7294E	.7264E	0000E-30000
69	-6.2092E-02	0.0000E-39		•6372E	•6341E	000016-3
99	-4-1825E-12	-0000E-3	1	-5449E	-5418E	E-30000-
2	-6.1558E-02	0.0000E-39	1.3(3696-02	.4527E	4495E	-100C0.
4	2	-0000E-3		.3604E	.3572E	*0000E-3
72	-6.1020E-02	0.0000E-39	1.32986-02	9.2681E 00	w	39E-3
2	-6.0750E-02	-0000E-3	۴.	-1759E	-1725E	-00000-3
*	-6.0480E-02	. 0.0000E-39	1.35085-02	0836E	802 E	00E-1
ង	-6-0208F-02	-2000C-3	۳	8.9913E DC	-9879E	00E-3
22	-5.99362-02	0.0000E39		8990E	956 E	ŵ
11	-5.9663E-02	0.0000E-39	.3824E-0	. 8066E	-8032E	00E-3
78	.939	<u>е</u>	1.3930F-02	.7142E	-7109E	.0000E-3
52	-3116-0	-3000C-	40355-0	• 6218E	•6135 €	-3C0C0-
8	.884	0.0000E-39	141E-0	• 5294E		0.0000E-39
2	q	-0000E-3	42F - 1		En la	-2000-3

•

. †

C.FQGQE-39 0.0757E-39 0.00075-39	0000E-3	0000E-30000	0700E-3	0000E-3 0200E-3	0000E-3	0000E-3	000000-300000	0000F-3	0000E-3	00000	00006-3	0000E-3	0010E-3	0000E-3		0000E-3	00005-3	000016-3	C000E-3	000010-3	00006-3	0.0000E-3			00000	00006-3	0000E-300CU	0000E-3	00UJE-3	0000E-3	00006-3	
8.3414E 00 8.2490E 30 8.1667E 30	•0644E		•6963E	.5132E	.4220E	•3309E	1 490 F	•0578E	•9663E	• 8 7 4 0 E	°,7806€	<u>= 6854E</u>	•5881F		0 0 0 0 1 L L L L L L L L L L L L L L L	•1643E	-0480 E	.9280E	•8057E	•68345	•5650E	• 4556 E	20021 2041 E	36165	.2772E	•3543E	•5060E	36541.	.0755F	•5016E	•C120E	
8.2521E 00 8.2521E 00		842E	024E	123E 228E	339E	456E	577E	8106	3016	985E	021E	002E	30196	122E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	426E	724E	908E	025E	1556	423E	0000		200	9155	635E	778E	ZOBE	633E	356E	212E	
1.4353E-02 1.4460E-02	1.4673E-02	1.4993F-02	1-5100E-02	1.5314E-02	L.5421E-02	1.55286-02	1.5740F-02	1.58456-02	1.59496-02	1.6053E-32	1.61566-02	1.6258E-02	1.63595-02	1.554515-02	1.0304F=02	L.6777E-02	1.6891E-02	1.7012E-02	1.7145E-02	1.7291E-02	1.7453E-02	1.76345-02	I DUE TE-US	1 82955-02	1.85456-02	1.8796E-02	1.9029E-02	1.9221E-02	1.9338E-02	1.9339F-02	1.91745-02	
0.0000E-39 0.0000E-39 0.0000F-39	0000	2000E	- OC DOE-	00000	-30000ª	-30000-	0000E-	-30C00.	-30000.	-30000 ·	-30000 ·	- <u>10000</u>	- 3000E-			0000E-	DOCOE-	-30000-	-3000ú	- 30000	-90000	.0000E-			-30000	-2000L-	-30000	-30000-	-30000.	-30000.	. 0000E -	
-5.8289E-02 -5.8012E-02 -5.7735E-02	5.745	689 661	5.633(517	548	5.5201	4634	5.4345	606	5.3774	5•3486	5-319	5•2901	2-201	203600	5.174]	541.2	1159	5.0860	0565	0270	2256			.8790	8494	8198	7901	605	1361	<u> </u>	•
833	50 0	0 00 00	68	<u> </u>	92	6	96	- 6	16	86	66		101	201	104	105	106	107	108	109	110			114	115	. 116	117	118	119	120	121	

- 154 -

- 155 -

4 5,5305E-01 0.0000E-39 -1.9745E 01 -0.0000E-39 4 5,5305E-01 0.0000E-39 -1.9745E 01 -0.0000E-39 4 5,5305E-01 0.0000E-39 -1.9745E 01 -0.0000E-39 4 -5,5305E-01 0.0000E-39 -1.9745E 01 -0.0000E-39 5 -5,5305E-01 0.0000E-39 -1.6775E 01 -0.0000E-39 5 -5,5305E-01 0.0000E-39 -1.2102E 01 -0.0000E-39 5 -5,5305E-01 0.0000E-39 -1.2102E 01 -0.0000E-39 5 -5,5305E-01 0.0000E-39 -1.2102E 01 -0.0000E-39 5 -5,5305E-01 0.0000E-39 -1.21012E 01 0.0000E-3			0 J2001+2	1	うし ししつつ
<pre>-5.5305Fc-01 0.0000E=39 -1.98.5E 01 -6.9864E 01 -0.0000E=3 -5.5310E-01 0.0000E=39 -1.88.5E 01 -6.9864E 01 -0.0000E=3 -5.5310E-01 0.0000E=39 -1.877E 01 -6.7244E 01 -0.0000E=3 -5.5310E-01 0.0000E=39 -1.877E 01 -6.7244E 01 -0.0000E=3 -5.5303E-01 0.0000E=39 -1.877E 01 -6.5168 01 -0.0000E=3 -5.5303E-01 0.0000E=39 -1.6278E 01 -6.2104E 01 -0.0000E=3 -5.5303E-01 0.0000E=39 -1.6278E 01 -6.2104E 01 -0.0000E=3 -5.5303E-01 0.0000E=39 -1.6278E 01 -6.2104E 01 -0.0000E=3 -5.5303E-01 0.0000E=39 -1.6278E 01 -6.2000E=3 -5.5303E-01 0.0000E=39 -1.6278E 01 -6.2000E=3 -5.5303E-01 0.0000E=39 -1.6378E 01 -6.20000E=3 -5.5303E-01 0.0000E=39 -1.6378E 01 -6.20000E=3 -5.5303E-01 0.0000E=39 -1.6387E 01 -6.20000E=3 -5.5303E-01 0.0000E=39 -1.6387E 01 -6.20000E=3 -5.5303E-01 0.0000E=39 -1.22038E 01 -0.00000E=3 -5.5303E-01 0.0000E=39 -1.22178E 01 -6.20000E=3 -5.5313E-01 0.0000E=39 -1.22178E 01 -5.6482E 01 -0.00000E=3 -5.5313E-01 0.0000E=39 -1.21718E 01 -5.6482E 01 -0.00000E=3 -5.5313E-01 0.0000E=39 -1.2174E 00 -5.4825E 01 -0.00000E=3 -5.5333E-01 0.0000E=39 -1.2174E 00 -5.4825E 01 -0.00000E=3 -5.5333E-01 0.0000E=39 -1.2185E 00 -5.4825E 01 -0.00000E=3 -5.5333E-01 0.0000E=39 -1.2186E 00 -5.4825E 01 -0.00000E=3 -5.5333E-01 0.0000E=39 -1.3186E 00 -5.4825E 01 -0.00000E=3 -5.5333E-01 0.0000E=39 -1.3186E 00 -5.4825E 01 -0.00000E=3 -5.5333E-01 0.0000E=39 -1.3186E 00 -5.4325E 01 -0.00000E=3 -5.5333E-01 0.00000E=39 -1.3186E 00 -5.4325E 01 -0.00000E=3 -5.5333E-01 0.0000E=39 -1.3186E 00 -5.4325E 01 -0.00000E=3 -5.5333E-01 0.0000E=39 -1.3186E 00 -5.4325E 01 -0.00000E=3 -5.5333E-01 0.0000E=39 -1.3186E 00 -5.4305E 01 -0.00000E=3 -5.5333E-01 0.0000E=39 -1.3186E 00 -5.22035E 01 -0.00000E=3 -5.5333E-01 0.0000E=39 -1.3186E 00 -5.22035E 01 -0.00000E=3 -5.5333E-01 0.00000E=39 -1.3186E 00 -5.22035E 01 -0.00000E=3 -5.5333E-01 0.000</pre>					
<pre>-5.5315E-01 0.0000E-39 -1.6776 01 -6.7216 01 -0.0000E-3 -5.5315E-01 0.0000E-39 -1.6776 01 -6.7216 01 -0.0000E-3 -5.5315E-01 0.0000E-39 -1.6776 01 -6.7216 01 -0.0000E-3 -5.5305E-01 0.0000E-39 -1.6776 01 -6.5208E 01 -0.0000E-3 -5.5305E-01 0.0000E-39 -1.6776 01 -6.5208E 01 -0.0000E-3 -5.5305E-01 0.0000E-39 -1.6765 01 -6.3104E 01 -0.0000E-3 -5.5303E-01 0.0000E-39 -1.6463E 01 -6.3104E 01 -0.0000E-3 -5.5303E-01 0.0000E-39 -1.22012E 01 -6.3104E 01 -0.0000E-3 -5.5303E-01 0.0000E-39 -1.22012E 01 -6.01035E 01 -0.0000E-3 -5.5303E-01 0.0000E-39 -1.22012E 01 -6.3104E 01 -0.0000E-3 -5.5303E-01 0.0000E-39 -1.22012E 01 -6.01035E 01 -0.0000E-3 -5.5303E-01 0.0000E-39 -1.2212E 01 -5.4463E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.2212E 01 -5.4463E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.2171E 01 -5.4481E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.1228E 00 -5.4481E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.1228E 00 -5.4481E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.1228E 00 -5.4481E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.21828E 00 -5.4481E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -2.6586E 00 -5.4395E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -2.6586E 00 -5.4312E 01 -0.0000E-39 -5.5331E-01 0.0000E-39 -2.6586E 00 -5.4312E 01 -0.00000E-3 -5.5331E-01</pre>	-3,929/6-		2.042/E U	1.020JE	
-5.5315E-01 0.0000E-39 -1.8675E 01 -6.857E 01 -0.0000E-3 -5.5315E-01 0.0000E-39 -1.6687E 01 -6.5724E 01 -0.00000E-3 -5.5305E-01 0.0000E-39 -1.6687E 01 -6.5724E 01 -0.00000E-3 -5.5305E-01 0.0000E-39 -1.6687E 01 -6.5305E 01 -0.00000E-3 -5.5305E-01 0.0000E-39 -1.6687E 01 -6.5305E 01 -0.00000E-3 -5.5305E-01 0.0000E-39 -1.6686E 01 -0.00000E-3 -5.5305E-01 0.0000E-39 -1.2630E 01 -6.0196E 01 -0.00000E-3 -5.5305E-01 0.0000E-39 -1.2630E 01 -5.2445E 01 -0.00000E-3 -5.5312E-01 0.0000E-39 -5.1258E 00 -5.6155 01 -0.00000E-3 -5.5312E-01 0.0000E-39 -5.1258E 00 -5.6155 01 -0.00000E-3 -5.5312E-01 0.0000E-39 -5.1258E 00 -5.6155 01 -0.00000E-3 -5.5312E-01 0.0000E-39 -5.1258E 00 -5.6435E 01 -0.00000E-3 -5.5312E-01 0.0000E-39 -5.1258E 00 -5.6435E 01 -0.00000E-3 -5.5312E-01 0.0000E-39 -5.1258E 00 -5.6435E 01 -0.00000E-3 -5.5312E-01 0.0000E-39 -1.3848E 00 -5.2445E 01 -0.00000E-3 -5.5325E-01 0.0000E-39 -1.3848E 00 -5.2445E 01 -0.00000E-3 -5.5325E-01 0.0000E-39 -1.3848E 00 -5.2445E 01 -0.00000E-3 -5.5325E-01 0.00000E-39 -1.3848E 00 -5.2445E 01 -0.00000E-3 -5.5325E-01 0.00000E-39 -1.3848E 00 -5.2445E 01 -0.00000E-3 -5.5325E-01 0.0000E-39 -1.3848E 00 -5.2445E 01 -0.00000E-3 -5.5325E-01 0.00000E-39 -1.3848E 00 -5.2445E 01 -0.00000E-3 -5.5325E-01 0.00000E-39 -1.3848E 00 -5.2445E 01 -0.00000E-3 -5.5437E-01 0.00000E-39 -1.3848E 00 -5.2445E 0			1.9766F 0	6.9997F	
-5.5318E-01 0.0000E-39 -1.8725 01 -6.7246 01 -0.0000E-3 -5.5310E-01 0.0000E-39 -1.68776 01 -6.57246 01 -0.0000E-3 -5.5304E-01 0.0000E-39 -1.68776 01 -6.57246 01 -0.0000E-3 -5.5304E-01 0.0000E-39 -1.68756 01 -6.5146 01 -0.0000E-3 -5.5304E-01 0.0000E-39 -1.5075 01 -6.5146 01 -0.0000E-3 -5.5304E-01 0.0000E-39 -1.28756 01 -6.3116 01 -0.0000E-3 -5.5304E-01 0.0000E-39 -1.28536 01 -6.3116 01 -0.0000E-3 -5.5304E-01 0.0000E-39 -1.28536 01 -6.3116 01 -0.0000E-3 -5.5304E-01 0.0000E-39 -1.28156 01 -0.0000E-3 -5.5304E-01 0.0000E-39 -1.0711E 01 -6.09356 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.0711E 01 -5.4516 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.07146 01 -5.4516 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.45166 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.75376 00 -5.40166 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.75376 00 -5.40167 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.75376 00 -5.40106 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.38646 00 -5.40106 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.38646 00 -5.40106 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.38646 00 -5.24167 01 -0.0000E-3 -5.5322E-01 0.0000E-39 -1.38646 00 -5.24167 01 -0.0000E-3 -5.5323E-01 0.00000E-39 -1.38646 00 -5.24166 01 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.4376 00 -5.24346 01 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.38646 00 -5.24346 01 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.38646 00 -5.24346 01 -0.0000E-3 -5.5437E-01 0.00000E-39 -1.44776 00 -4.70096 01 -0.00000E-3 -5.	-5.53156-	.00006-3	L.8675E 0	6.8571E	0.000 6-3
 5.5135F-01 0.0000E-39 -5.5305F-01 0.0000E-39 -1.6276 01 -5.5305F-01 0.0000E-39 -1.62505 01 -5.5305F-01 0.0000E-39 -1.2306 01 -6.23046 0.0000E-39 -1.2306 01 -6.23046 0.0000E-39 -1.2306 01 -6.23046 0.0000E-39 -1.2306 01 -6.01966 01 -0.00006-39 -1.2306 01 -0.00006-39 -1.23016 0.00006-39 -1.13016 01 -0.00006-39 -1.13016 01 -0.00006-39 -1.13016 01 -0.00006-39 -1.13016 01 -0.00006-39 -1.1446 01 -0.00006-39 -5.43156 01 -0.00006-39 -5.44485 01 -0.00006-39 -5.44485 01 -0.00006-39 -5.44485 01 -0.00006-39 -5.44486 01 -0.00006-39<td>-5.5218E-</td><td>· 2000E-3</td><td>1-8075E 0</td><td>5.791DE</td><td>0.0000 E-3</td>	-5.5218E-	· 2000E-3	1-8075E 0	5.791DE	0.0000 E-3
<pre>-5.5310E-01 0.0000E-39 -1.6877E 01 -6.6572E 01 -0.0000E-3 -5.5304E-01 0.0000E-39 -1.5677E 01 -6.5504E 01 -0.0000E-3 -5.5304E-01 0.0000E-39 -1.5677E 01 -6.514E 01 -0.0000E-3 -5.5303E-01 0.0000E-39 -1.2305E 01 -6.0194E 01 -0.0000E-3 -5.5303E-01 0.0000E-39 -1.2305E 01 -6.0194E 01 -0.0000E-3 -5.5303E-01 0.0000E-39 -1.21301E 01 -6.0194E 01 -0.00000E-3 -5.5312E-01 0.0000E-39 -1.0771E 01 -6.0194E 01 -0.00000E-3 -5.5312E-01 0.0000E-39 -1.0771E 01 -5.9451E 01 -0.00000E-3 -5.5312E-01 0.0000E-39 -1.0771E 01 -5.0451E 01 -0.00000E-3 -5.5313E-01 0.0000E-39 -5.7237E 00 -5.4451E 01 -0.00000E-3 -5.5313E-01 0.0000E-39 -5.7237E 00 -5.44526E 01 -0.00000E-3 -5.5331E-01 0.00000E-39 -5.7237E 00 -5.44526E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -5.7237E 00 -5.44526E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -5.7237E 00 -5.44526E 01 -0.00000E-3 -5.5331E-01 0.00000E-39 -1.33048E 00 -5.44526E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -2.24826E 00 -4.9999E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -2.24826E 00 -5.4458E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -2.44548E 00 -5.44538E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -2.24826E 00 -5.4458E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -2.24826E 00 -5.4738E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -2.24826E 00 -5.4738E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -2.24826E 00 -5.4738E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -2.32484E 00 -5.4738E 01 -0.00000E-3 -5.5331E-01 0.00000E-39 -2.3484E 00 -5.4738E 01 -0.00000E-3 -5.5331E-01 0.00000E-39 -2.44448E 00 -5.4748E 00 -5.4748E 01 -0.00000E-3 -5.5438E-01 0.00000E-39 -1.3306E 00 -5.3306E 01 -0.00000E-3 -5.5438E-01 0.00000E-39 -1.3306E 00 -5.3306E 01 -0.00000E-3 -5.5438E-01 0.00000E-39 -1.3306E 00 -5.4786E 01 -0.00000E-3 -5</pre>	-5.5315E-0	• 0000E-3	1.7476E 0	.7244E	0.0000 E-3
-5.5308E-01 0.0000E-39 -1.6676E 01 -6.5893E 01 -0.0000E-3 -5.5304E-01 0.0000E-39 -1.5672E 01 -6.5146 01 -0.0000E-3 -5.5303E-01 0.0000E-39 -1.2672E 01 -6.3813E 01 -0.00000E-3 -5.5303E-01 0.0000E-39 -1.2630E 01 -6.0935E 01 -0.00000E-3 -5.5303E-01 0.0000E-39 -1.2630E 01 -6.0935E 01 -0.00000E-3 -5.5303E-01 0.0000E-39 -1.2012E 01 -6.0935E 01 -0.00000E-3 -5.5303E-01 0.0000E-39 -1.0146E 01 -5.8451E 01 -0.00000E-3 -5.5312E-01 0.0000E-39 -1.0146E 01 -5.8451E 01 -0.00000E-3 -5.5312E-01 0.0000E-39 -1.0144E 01 -5.8498E 01 -0.00000E-3 -5.5312E-01 0.0000E-39 -1.0144E 01 -5.8451E 01 -0.00000E-3 -5.5312E-01 0.0000E-39 -1.0171E 01 -5.4826E 01 -0.00000E-3 -5.5312E-01 0.0000E-39 -5.1278E 00 -5.4826E 01 -0.00000E-3 -5.5312E-01 0.0000E-39 -5.1278E 00 -5.4926E 01 -0.00000E-3 -5.5312E-01 0.0000E-39 -5.128E 00 -5.4926E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.128E 00 -5.4926E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.128E 00 -5.4926E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.3106E-01 +4.6538E 01 -0.0000E-3 -5.5447E-01 0.0000E-39 -1.3106E-01 +4.6538E 01 -0.0000E-3 -5.5447E-01 0.0000E-39 -1.3106E-01 +4.6538E 01 -0.00000E-3 -5.5447E-01 0.0000E-39 -1.3106E-01 +4.6538E 01 -0.00000E-3 -5.5447E-01 0.00000E-39 -5.6266E 00 -4.3006E 01 -0.00000E-3 -5.5447E-01 0.00000E-39 -1.3106E-01 +4.6538E 01 -0.00000E-3 -5.5447E-01 0.00000E-39 -1.3106E-01 +4.6538E 01 -0.00000E-3 -5.5447E-01 0.00000E-39 -1.3106E-01 +4.6538E 01 -0.00000E-3 -5.5447E-01 0.00000E-39 -1.3106E 01 -4.2099E 01 -0.00000E-3 -5.5447E-01 0.00000E-39 -5.6266E 00 -4.3005E 01 -0.00000E-3 -5.5447E-01 0.00000E-39 -5.6266E 00 -4.2099E 01 -0.00000E-3 -5.5447E-01 0.00000E-39 -5.6266E 00 -4.2099E 01 -0.00000E-3 -5.5447E-01 0.00000E-39 -5.6266E 00 -4.2099E 01 -0.00000E-3 -5.5447E-01 0.00000E-39 -1.3106E-01 -4.2099E 01	-=5.5310E-0	.000 <u>0</u> E-3	1.6877E 0	.6572E	0.2000E-3
-5.5305E-01 0.0000E-39 -1.5677E 01 -6.5108E 01 -0.0000E-3 -5.5304E-01 0.0000E-39 -1.5075E 01 -6.3104E 01 -0.0000E-3 -5.5303E-01 0.0000E-39 -1.3240E 01 -6.01046E 01 -0.0000E-3 -5.5303E-01 0.0000E-39 -1.2012E 01 -6.0196E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.1391E 01 -6.0196E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.1391E 01 -6.0196E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.1391E 01 -5.0196E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.1391E 01 -5.0196E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.1391E 01 -5.0196E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.0174E 01 -5.6398E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.1797E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.1797E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.1791E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.1797E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.1797E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.1797E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.1728B 00 -5.4826E 01 -0.0000E-3 -5.5332E-01 0.0000E-39 -5.1737E 00 -5.4740E 01 -0.0000E-3 -5.5332E-01 0.0000E-39 -5.1528E 00 -5.4746E 01 -0.00000E-3 -5.5332E-01 0.00000E-39 -5.7	-5.530BE-0	.0000E-3	1.6276E 0	•5893E	0.0000 E-3
 5304E-01 C.0000E-39 -1.5072E 01 -6.4514E 01 -0.0000 E-3 55303E-01 C.0000E-39 -1.32463E 01 -6.2381E 01 -0.0000 E-3 55303E-01 C.0000E-39 -1.32462E 01 -6.035E 01 -0.0000 E-3 55303E-01 C.0000E-39 -1.3212E 01 -6.035E 01 -0.0000 E-3 55303E-01 C.0000E-39 -1.2312E 01 -6.035E 01 -0.0000 E-3 55313E-01 C.0000E-39 -1.0171E 01 -5.9451E 01 -0.0000 E-3 55313E-01 C.0000E-39 -9.51728 00 -5.4326E 01 -0.0000 E-3 55314E-01 C.0000E-39 -5.7537E 00 -5.4326E 01 -0.0000 E-3 55314E-01 C.0000E-39 -5.7537E 00 -5.4326E 01 -0.0000 E-3 55315E-01 C.0000E-39 -5.7537E 00 -5.1268E 01 -0.0000 E-3 55335E-01 C.0000E-39 -5.7537E 00 -5.25445E 01 -0.0000 E-3 55335E-01 C.0000E-39 -1.21176E 00 -5.3226E 01 -0.0000 E-3 55335E-01 C.0000E-39 -1.23166-01 -4.4009E 01 -0.0000 E-3 55335E-01 C.0000E-39 -1.23166-01 -4.4009E 01 -0.0000 E-3 55437E-01 C.0000E-39 -1.23166 00 -4.4009E 01 -0.0000 E-3 55437E-01 C.0000E-39 -1.23166 00 -4.4009E 01 -0.0000 E-3<	-5+53056-0	.0000E-3	1.5677E 0	5208E	0000 E-3
-5.5304E-01 G.0000E-39 -1.4463E 01 -6.3114E 01 -0.0000E-3 -5.5303E-01 0.0000E-39 -1.3853E 01 -6.3114E 01 -0.0000E-3 -5.5303E-01 0.0000E-39 -1.3853E 01 -6.0100E-3 -5.503E 01 -0.0000E-3 -5.5303E-01 0.0000E-39 -1.2121E 01 -6.0136E 01 -0.0000E-3 -5.5303E-01 0.0000E-39 -1.01146E 01 -6.0306E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -9.5179E 01 -6.0306E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -9.5179E 01 -6.0306E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.01146E 01 -5.6336E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.01446E 01 -5.6336E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.01446E 01 -5.6336E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -6.4826E 01 -0.0000E-3 -5.7537E 01 -0.	-5.5304E-0	. OC/00E-3	1.5072E 0	4514E	0.0000 E-3
-5.5303E-01 0.0000E-39 -1.3853E 01 -6.3104E 01 -0.0000E-3 -5.5303E-01 0.0000E-39 -1.2600E 01 -6.0196E 01 -0.0000E-3 -5.5309E-01 0.0000E-39 -1.2176E 01 -6.0196E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.01146E 01 -5.9451E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -9.5179E 01 -0.00000E-3 -5.5312E-01 0.0000E-39 -9.5179E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -9.5179E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -9.5179E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -9.5179E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -9.5179E 00 -5.7170E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -9.5179E 00 -5.7170E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -9.5179E 00 -5.7170E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -9.51737E 00 -5.7170E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.0144E 00 -5.7170E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.7537E 00 -5.7244E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.7537E 00 -5.7246E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.7537E 00 -5.7246E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.3104E-01 -4.6538E 11 -0.0000E-3 -5.5333E-01 0.0000E-39 -1.3104E-01 -4.6538E 11 -0.0000E-3 -5.5432E-01 0.0000E-39 -1.3104E-01 -4.6538E 11 -0.0000E-3 -5.5432E-01 0.0000E-39 -1.3104E-01 -4.6538E 11 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.3104E-01 -4.6538E 10 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.3104E-01 -4.6538E 10 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.3104E-01 -4.6538E 10 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.3104E-01 -4.6538E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.3104E-01 -4.500E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.3104E-01 -4.2005E 01 -0.0000E-3 -5.5437E-01 0.00000E-39 -1.3104E-01 -4.2005E 01 -0.0000E-3 -5.5437E-01 0.0	-5-5304E-0	-0000E-3	1-4463E 0	3813E 0	0000 E-3
-5.5302E-01 C.0000E-39 -1.3240E 01 -6.033EE 01 -0.0000E-3 -5.5309E-01 0.0000E-39 -1.12012E 01 -6.0195E 01 -0.0000E-3 -5.5310E-01 0.0000E-39 -1.12012E 01 -6.0195E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -9.5179E 01 -5.8698E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -9.5179E 00 -5.7177E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -9.5179E 00 -5.7177E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -9.5179E 00 -5.7177E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -6.3856E 00 -5.615E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -6.3856E 00 -5.615E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.728E 00 -5.615E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.728E 00 -5.615E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.728E 00 -5.610E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.728E 00 -5.610E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.728E 00 -5.7406E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.728E 00 -5.7406E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -5.728E 00 -5.7406E 01 -0.0000E-3 -5.5327E-01 0.0000E-39 -5.728E 00 -5.24046E 01 -0.0000E-3 -5.5327E-01 0.0000E-39 -2.2266E 00 -4.7400E 01 -0.0000E-3 -5.5337E-01 0.0000E-39 -1.3848E 00 -4.7400E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.3868E 00 -4.7400E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.3868E 00 -4.7400E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.3868E 00 -4.7400E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -2.2288E-00 -4.7400E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -2.25826E-01 -4.5658E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 -2.25826E-01 -4.7601E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -2.25826E-01 -4.5658E 01 -0.00000E-3 -5.5437E-01 0.00000E-39 -2.25826E-01 -4.5658E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -2.25826E-01 -4.7601E 01 -0.00000E-3 -5.5437E-01 0.00000E-39 -2.25826E-01 -4.5658E 01 -0.00000E-3 -5.5437E-01 0.00000E-39 -2.26826E 00 -4.2000E 01 -0.00000E-3 -5.5437E-01 0.00000E-39 -2.56826E 00 -4.2000E 01 -0.00000E-3 -5.5447E-01 0.00000E-39 -2.9926E 00 -4.2000E 01 -0.00000E-3 -5.5447E-01 0.00000E-39 -2.9926E 00 -4.2000E 01 -0.00000E-3 -5.5447E-01 0.00000E-39 -2.9926E 00 -4.0000E 01 -0.00000E-3 -5.5428E-01 0.00000E-39 -2.9926E 00 -4.2000E 01 -0.00000E-	-5.53036-0	- 3000C-3	1.3853E 0	3104E D	0.0030 6-3
-5.5303E-01 0.0000E-39 -1.2630E 01 -6.1666E 01 -0.0000E-3 -5.5310E-01 0.0000E-39 -1.0131E 01 -5.60196E 01 -0.0000E-3 -5.5310E-01 0.0000E-39 -1.0146E 01 -5.8698E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -9.5179E 01 -5.8698E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -9.5179E 00 -5.7170E 01 -0.0000E-3 -5.5318E-01 0.0000E-39 -9.5179E 00 -5.4826E 01 -0.0000E-3 -5.5318E-01 0.0000E-39 -6.3850E 00 -5.4826E 01 -0.0000E-3 -5.5318E-01 0.0000E-39 -6.3850E 00 -5.4826E 01 -0.0000E-3 -5.5318E-01 0.0000E-39 -5.7537E 00 -5.49037E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -1.3848E 00 -5.1770E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -1.3848E 00 -4.9037E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -1.3848E 00 -4.9037E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -1.3848E 00 -4.9037E 01 -0.00000E-3 -5.5332E-01 0.0000E-39 -1.3848E 00 -4.2095E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -1.43106 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -1.437E 00 -4.2095E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -5.3588E 00 -4.2095E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -5.3688E 00 -4.2095E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -5.3588E 00 -4.2095E 01 -0.00000E-3 -5.5437E-01 0.00000E-39 -5.3588E 00 -4.2095E 01 -0.00000E-3	-5.53026-	-3000C-	1.3240E 0	6.2388E 0	0.0000E-3
-5.5316E-01 0.0000E-39 -1.0146E 01 -6.0935E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -1.01146E 01 -5.8698E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -9.5179E 00 -5.7937E 01 -0.0000E-3 -5.5312E-01 0.0000E-39 -9.5179E 00 -5.7937E 01 -0.0000E-3 -5.5314E-01 0.0000E-39 -9.5176E 00 -5.4826E 01 -0.0000E-3 -5.5314E-01 0.0000E-39 -5.32680E 00 -5.4826E 01 -0.0000E-3 -5.5314E-01 0.0000E-39 -5.7537E 00 -5.4826E 01 -0.00000E-3 -5.5314E-01 0.0000E-39 -5.7537E 00 -5.4826E 01 -0.00000E-3 -5.53316-01 0.0000E-39 -1.3868E 00 -4.8253E 01 -0.0000E-3 -5.53316-01 0.0000E-39 -1.31666-01 -4.4700E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -1.3868E 00 -4.3903E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -1.31668E 00 -4.2004E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -5.3688E 00 -4.2004E 01 -0.00000E-3 -5.5437E-01 0.00000E-39 -5.3688E 00 -4.2004E 01 -0.00000E-3 -5.5437E-01 0.000000E-39 -5.3688E 00 -4	-5.53035-0	- JOOOE -	1.2630E 0	6.1666E D	0000 E-3
-5.533/3E-01 0.0000E-39 -1.1391E 01 -6.0196E 01 -0.0000 E-3 -5.533/3E-01 0.0000E-39 -9.8179E 01 -5.8698E 01 -0.0000 E-3 -5.533 9E-01 0.0000E-39 -9.82179E 00 -5.7170E 01 -0.0000 E-3 -5.533 9E-01 0.0000E-39 -9.82179E 00 -5.6396E 01 -0.0000 E-3 -5.533 9E-01 0.0000E-39 -9.82680E 00 -5.6396E 01 -0.0000 E-3 -5.533 9E-01 0.0000E-39 -6.3850E 00 -5.4826E 01 -0.0000 E-3 -5.533 9F-01 0.0000E-39 -5.753 7E 00 -5.7770E 01 -0.0000 E-3 -5.533 9F-01 0.0000E-39 -5.753 7E 00 -5.7770E 01 -0.0000 E-3 -5.533 9F-01 0.0000E-39 -5.753 7E 00 -5.7770E 01 -0.0000 E-3 -5.533 9F-01 0.0000E-39 -5.753 7E 00 -5.7770E 01 -0.0000 E-3 -5.533 9F-01 0.0000E-39 -1.53848E 00 -4.4937 8E 01 -0.0000 E-3 -5.533 9F-01 0.0000E-39 -1.53848E 00 -4.4909 91 -0.0000 0E-3 -5.533 9F-01 0.0000E-39 -2.62866E 00 -4.4909 91 -0.0000 0E-3 -5.533 9F-01 0.0000E-39 -2.62866E 00 -4.4909 91 -0.0000 0E-3 -5.533 9F-01 0.0000E-39 -2.62866E 00 -4.4909 91 -0.0000 0E-3 -5.533 9F-01 0.0000 0E-39 -1.538 46 00 -4.4909 91 -0.0000 0E-3 -5.533 9F-01 0.0000 0E-39 -2.62866E 00 -4.4909 91 -0.0000 0E-3 -5.533 9F-01 0.0000 0E-39 -2.62866E 00 -4.4909 91 -0.0000 0E-3 -5.533 9F-01 0.0000 0E-39 -2.538 96 00 -4.4909 91 -0.0000 0E-3 -5.533 9F-01 0.0000 0E-39 -2.538 96 00 -4.4909 91 -0.0000 0E-3 -5.533 9F-01 0.0000 0E-39 -1.338 96 00 -4.4909 91 -0.0000 0E-3 -5.543 9F-01 0.0000 0E-39 -1.338 96 00 -4.4909 91 -0.0000 0E-3 -5.543 9F-01 0.0000 0E-39 -1.348 96 00 -4.4900 91 -0.0000 0E-3 -5.543 9F-01 0.0000 0E-39 -1.348 96 00 -4.4900 91 -0.0000 0E-3 -5.543 9F-01 0.0000 0E-39 -1.348 96 00 -4.4900 91 -0.0000 0E-3 -5.543 9F-01 0.0000 0E-39 -1.348 96 00 -4.400 91 -0.0000 0E-3 -5.543 9F-01 0.0000 0E-39 -1.348 96 00 -4.400 91 -0.0000 0E-3 -5.543 9F-01 0.0000 0E-39 -1.348 96 00 -4.400 91 -0.0000 0E-3 -5.543 9F-01 0.0000 0E-39 -1.348 96 00 -4.400 91 -0.0000 0E-3 -5.543 9F-01 0.0000 0E-39 -1.348 96 00 -4.4000 0E 01 -0.0000 0E-3 -5.543 9	-5.53C6E-0	- 00000-	1.2012E 0	6.0935E.D	0.0000.6-3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-5.5309E-0	- 0000E-	1.1391E 0	6.0196E 0	0000 E-3
-5.5312E-01 0.0000E-39 -1.01466 01 -5.86986 01 -0.0000E-3 -5.53795E-01 0.0000E-39 -9.51796 00 -5.7737E 01 -0.0000E-3 -5.53795E-01 0.0000E-39 -8.8927E 00 -5.6396E 01 -0.0000E-3 -5.5315E-01 0.0000E-39 -6.3850E 00 -5.4826E 01 -0.0000E-3 -5.5315E-01 0.0000E-39 -5.7537E 00 -5.4826E 01 -0.00000E-3 -5.5315E-01 0.0000E-39 -5.7537E 00 -5.4826E 01 -0.00000E-3 -5.5315E-01 0.0000E-39 -5.7537E 00 -5.2414F 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -5.7537E 00 -5.2414F 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -5.12288 00 -5.2414F 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -1.3106E-01 -4.4999E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -1.3106E-01 -4.4909E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -1.3106E-01 -4.4909E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -1.3106E-01 -4.4790E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -1.3106E-01 -4.4790E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -1.3106E-01 -4.4790E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -1.3106E-01 -4.4790E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -1.3106E-01 -4.4790E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -1.3106E-01 -4.4000E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -1.3106E-01 -4.4000E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -1.3106E-01 -4.4000E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -5.5437E 00 -4.2005E 01 -0.00000E-3 -5.5437E-01 0.00000E-39 -5.5432E 01 -0.00000E-3 -5.5437E-01 0.00000E-39 -5.5437E 00 -4.2005E 01 -0.00000E-3 -5.5437E-01 0.00000E-39 -5.5432E 01 -0.00000E-39 -5.5437E 01 -0.00000E-39 -5.5437E 01 -0.00000E-39 -5.5437E 01 -5.5000E-39 -5.5437E 01 -0.00000E-39 -5.5437E 01 -0.00000E-39 -5.5437E 01 -0.00000E-39 -5.5437E 01 -0.00000E-39 -5.543	-5.53126-0	-30000-	1-0771E 0	5.9451E 0	0.0000 E-3
-5.5312E-01 0.0000E-39 -9.5179E C0 -5.7170E 01 -0.0000E-3 -5.5309E-01 0.0000E-39 -8.8927E 00 -5.7170E 01 -0.0000E-3 -5.5314E-01 0.0000E-39 -7.6144E 00 -5.65615E 01 -0.0000E-3 -5.5314E-01 0.0000E-39 -7.6144E 00 -5.4826E 01 -0.0000E-3 -5.5314E-01 0.00000E-39 -5.7537E 00 -5.4936E 01 -0.00000E-3 -5.5314E-01 0.00000E-39 -5.7537E 00 -5.4936E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -5.7286E 00 -4.4999E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -5.1228E 00 -4.8253E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -1.3848E 00 -4.7400E 01 -0.00000E-3 -5.5331E-01 0.0000E-39 -1.3848E 00 -4.7400E 01 -0.00000E-3 -5.5332E-01 0.0000E-39 -1.3106E-01 -4.6538E 21 -0.00000E-3 -5.5332E-01 0.0000E-39 -1.3106E-01 -4.6568E 01 -0.00000E-3 -5.5332E-01 0.0000E-39 -1.3106E-01 -4.6568E 01 -0.00000E-3 -5.5332E-01 0.0000E-39 -1.3106E-01 -4.6568E 01 -0.00000E-3 -5.5332E-01 0.00000E-39 -1.3106E-01 -4.6568E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -1.3166E-01 -4.7400E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -1.3166E-01 -4.6568E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -1.3166E-01 -4.7400E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -1.3166E-01 -4.7400E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -1.3166E-01 -4.7400E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -1.3468E 00 -4.1181E 01 -0.00000E-3 -5.5437E-01 0.00007E-39 -1.3468E 00 -4.1181E 01 -0.00000E-3 -5.5437E-01 0.00007E-39 -5.9326E 00 -4.1181E 01 -0.00000E-3 -5.5437E-01 0.00007E-39 -5.9326E 00 -4.1181E 01 -0.00000E-3 -5.5437E-01 0.00007E-39 -5.9326E 00 -4.1181E 01 -0.00000E-3	-5.5312E-0	- 0000E-	1.0146E 0	5.8698E	0.0000 E-3
-5.53(9E-01 0.0000E-39 -8.8927E 00 -5.7170E 01 -0.0000E-3 -5.5309E-01 0.0000E-39 -8.2680E 00 -5.615E 01 -0.0000E-3 -5.5314E-01 0.0000E-39 -7.6420E 00 -5.615E 01 -0.0000E-3 -5.5314E-01 0.0000E-39 -5.7537E 00 -5.4036E 01 -0.0000E-3 -5.5314E-01 0.0000E-39 -5.7537E 00 -5.4714E 01 -0.0000E-3 -5.5314E-01 0.0000E-39 -5.7537E 00 -5.4714E 01 -0.0000E-3 -5.5314E-01 0.0000E-39 -5.7537E 00 -5.4770E 01 -0.0000E-3 -5.5314E-01 0.0000E-39 -5.7537E 00 -5.7770E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -5.7537E 00 -5.7770E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -5.6266E 00 -4.9099E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -1.3848E 00 -4.7400E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -1.3848E 00 -4.7400E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -1.3106E-01 -4.6538E 21 -0.0000E-3 -5.5332E-01 0.0000E-39 -1.3106E-01 -4.6538E 21 -0.0000E-3 -5.5332E-01 0.0000E-39 -1.3106E-01 -4.6538E 21 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.3106E-01 -4.6538E 21 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.3106E-01 -4.2099E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.3106E-01 -4.2095E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.3106E-01 -4.2000E 01 -4.2095E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.3106E-01 -4.2095E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.3106E-01 -4.2095E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 -5.4946E 00 -4.2095E 01 -0.0000E-3 -5.5233E-01 0.0000E-39 -5.4946E 00 -4.2095E 01 -0.0000E-3 -5.5233E-01 0.0000E-39 -5.4946E 00 -4.2095E 01 -0.0000E-3	-5-5312E-0	-30000.	9.5179E C	5.7937E	0.0000E-3
-5.5309E-01 C.0070E-39 -8.2680E 00 -5.6396E 01 -0.0000E-3 -5.5314E-01 0.0000E-39 -7.6420E 00 -5.4826E 01 -0.0000E-3 -5.5314E-01 0.0000E-39 -5.7537E 00 -5.4826E 01 -0.0000E-3 -5.5318E-01 0.0000E-39 -5.7537E 00 -5.2444F 01 -0.0000E-3 -5.5318E-01 0.0000E-39 -5.7537E 00 -5.0770E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -3.2485E 00 -4.9099E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -2.6266E 00 -4.9099E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -1.3106E-01 -4.4700E 01 -0.0000E-3 -5.5332E-01 0.0000E-39 -1.3106E-01 -4.4700E 01 -0.0000E-3 -5.5332E-01 0.0000E-39 -1.3106E-01 -4.4700E 01 -0.0000E-3 -5.5332E-01 0.0000E-39 -1.3106E-01 -4.4700E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.23068E 00 -4.2095E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 -1.31046F 00 -4.2095E 01 -0.00000E-3	-5+53C9E-0	-30000 *	8.8927E 0	5.7170E	0.0000 E-3
-5.53(9E-01 0.000(-39 -7.6420E 00 -5.56)5E 01 -0.0000(-3) -5.53)(E-01 0.0000(-39 -5.7537E 00 -5.4826E 01 -0.0000(-3) -5.53)(E-01 0.0000(-39 -5.7537E 00 -5.4826E 01 -0.0000(-3) -5.53)(E-01 0.0000(-39 -5.1228E 00 -5.24)(4F 01 -0.0000(-3) -5.53)(E-01 0.0000(-39 -5.1228E 00 -5.7770E 01 -0.0000(-3) -5.5331E-01 0.0000(-39 -3.2485E 00 -4.9099E 01 -0.0000(-3) -5.5331E-01 0.0000(-39 -3.2485E 00 -4.9099E 01 -0.0000(-3) -5.5331E-01 0.0000(-39 -3.2485E 00 -4.4790E 01 -0.0000(-3) -5.5331E-01 0.0000(-39 -1.38848E 00 -4.4790E 01 -0.0000(-3) -5.53325E-01 0.0000(-39 -1.38848E 00 -4.4790E 01 -0.0000(-3) -5.53325E-01 0.0000(-39 -1.3106(-01 -4.4790E 01 -0.0000(-3) -5.53325E-01 0.0000(-39 -1.3106(-01 -4.4790E 01 -0.0000(-3) -5.5437E-01 0.0000(-39 -1.3106(-01 -4.2095E 01 -0.0000(-3) -5.5437E-01 0.0000(-39 -1.3468 00 -4.181E 01 -0.0000(-3) -5.5437E-01 0.0000(-39 -3.0466 00 -4.1181E 01 -0.0000(-5) -5.5371E-01 0.0000(-39 -3.0466 00 -4.2093E 01 -0.0000(-5) -5.5371E-01 0.0000(-39 -3000(-5) -3.4313E 01 -0.0000(-5) -5.5332E-01 0.0000(-5) -3000(-5) -3000(-5) -5.5325E 01 -5.5205E 01 -5.5205E 01 -5.5205E 01 -5.5205E 00 -5.5371E-01 0.0000(-5) -5.5537E-01 0.0000(-5) -3000(-5) -3000(-5) -5.5371E-01 0.0000(-5) -5.5205E 01 -5.5205E 00 -5.5371E-01 0.0000(-5) -5.5205E 00 -5.5371E-01 0.0000(-5) -5.5371E-01	-5.5309E-0	- 00 00E-	8.2680E 0	5.6396E.	0 .0000 E-3
-5.5311E-01 C.0000E-39 -7.0144E 00 -5.4826E 01 -0.0000E-3 -5.5314E-01 0.0000E-39 -6.3850E 00 -5.4826E 01 -0.0000E-3 -5.5318E-01 0.0000E-39 -5.1238E 00 -5.2414E 01 -0.0000E-3 -5.5321E-01 0.0000E-39 -5.1228E 00 -5.770E 01 -0.0000E-3 -5.5321E-01 0.0000E-39 -3.8734E 00 -5.7770E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -3.2485E 00 -4.9937E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -2.00945E 00 -4.9099E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -2.00945E 00 -4.9099E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -1.3106E-01 -4.7400E 01 -0.0000E-3 -5.5332E-01 0.0000E-39 -1.3106E-01 -4.5668E 01 -0.0000E-3 -5.5332E-01 0.0000E-39 -1.3106E-01 -4.5008E 01 -0.0000E-3 -5.5332E-01 0.0000E-39 -1.3106E-01 -4.3006E 01 -0.0000E-3 -5.5337E-01 0.0000E-39 1.1174E 00 -4.3006E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 1.1174E 00 -4.2099E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 1.7437E 00 -4.3006E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 1.7437E 00 -4.3006E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 1.7737E 00 -4.3006E 01 -0.0000E-3 -5.5537E-01 0.0000E-39 1.7737E 00 -4.2009E 01 -0.0000E-300E-5 -5.5537E-01 0.0000E-39 1.7737E 00	-5,5309E-0	- 3000E-	7.6420E 0	5.5615E	C.0000E-3
-5.5314E-01 0.0000E-39 -6.3850E 00 -5.4030E 01 -0.0000E-3 -5.5315E=01 0.0000E-39 -5.7537E 00 -5.3226E 01 -0.0000E-3 -5.5318E-01 0.0000E-39 -5.1228E 00 -5.1597E 01 -0.0000E-3 -5.5321E-01 0.0000E-39 -3.8734E 00 -5.0770E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -3.2485E 00 -4.9099E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -3.2485E 00 -4.9099E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -3.2485E 00 -4.9099E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -1.3848E 00 -4.8253E 01 -0.0000E-3 -5.5335E-01 0.0000E-39 -1.3848E 00 -4.8253E 01 -0.0000E-3 -5.5335E-01 0.0000E-39 -1.3848E 00 -4.8253E 01 -0.0000E-3 -5.5335E-01 0.0000E-39 -1.3848E 00 -4.7400E 01 -0.0000E-3 -5.5337E-01 0.0000E-39 -1.3848E 00 -4.7400E 01 -0.0000E-3 -5.5337E-01 0.0000E-39 -1.3848E 00 -4.4790E 01 -0.0000E-3 -5.5337E-01 0.0000E-39 -1.3106E-01 -4.4790E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.3437E 00 -4.3005E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 -5.3688E 00 -4.2099E 01 -0.0000E-3 -5.5537E-01 0.0000E-39 -5.3688E 00 -4.2099E 01 -0.00000E-3 -5.5537E-01 0.0000E-39 -5.5426E 00 -4.2099E 01 -0.0000E-3 -5.5537E-01 0.0000E-39 -5.5426E 00 -4.2009E 01 -0.00000E-3 -5.5537E-01 0.0000E-39 -5.5426E 00 -4.2009E 01 -0.00000E-3 -5.5537E-01 0.0000E-39 -5.5426E 00 -4.2009E 01 -0.00000E-3 -5.5537E-01 0.0000E-39 -5.5426E 00 -4.2009E 01 -0.00000E-5 -5.5537E-01 0.0000E-39 -5.5426E 00 -4.2009E 01 -0.0000E-5 -5.5537E-01 0.0000E-39 -5.5426E 00 -4.2009E 01 -0.0000E-5 -5.5537E-01 0.0000E-39 -5.5426E 00 -4.2009E 01 -0.0000E-5 -5.5537E-01		-3000C-	7.0144E_0	5.4826E	0.0000 E-3
-5.5315E=01 0.0000E-39 -5.7537E 00 -5.22414F 01 -0.0000E-3 -5.5318E-01 0.0000E-39 -5.1228E 00 -5.1597E 01 -0.0000E-3 -5.5321E-01 0.0000E-39 -5.1228E 00 -5.0770E 01 -0.0000E-3 -5.5327E-01 0.0000E-39 -3.2485E 00 -4.9099E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -3.2485E 00 -4.9099E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -2.6266E 00 -4.8253E 01 -0.0000E-3 -5.5335E-01 0.0000E-39 -1.3848E 00 -4.8253E 01 -0.0000E-3 -5.5337E-01 0.0000E-39 -1.3848E 00 -4.8000E 01 -0.0000E-3 -5.5337E-01 0.0000E-39 -1.3848E 00 -4.8000E 01 -0.0000E-3 -5.5337E-01 0.0000E-39 -1.3106E-01 -4.4790E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 -1.3437E 00 -4.2305E 01 -0.0000E-3 -5.5537E-01 0.0000E-39 -5.9526E 00 -4.0000E-3 -5.5537E-01 0.0000E-39 -5.0506E 00 -4.0000E-3 -5.5537E 01 0.0000E-39 -5.0506E 00 -4.0000E-300E-300E-300E-300E-300E-300E-300	-5, 5314E-0	-30000.	6.3850E 0	5.4030E	-0000 E-3
-5.5318E-01 0.000E-39 -5.1228E 00 -5.2414F 01 -0.0000E-3 -5.5321E-01 C.0C30E-39 -4.4989E 00 -5.0770E 01 -0.0000E-3 -5.5327E-01 0.0000E-39 -3.8734E 00 -5.0770E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -3.2485E 00 -4.9099E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -2.6266E 00 -4.8253E 01 -0.0000E-3 -5.5335E-01 0.0000E-39 -1.3848E 00 -4.8253E 01 -0.0000E-3 -5.5337E-01 0.0000E-39 -1.3106E-01 -4.4790E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 1.1174E 00 -4.3005E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 1.7437E 00 -4.3005E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.20999E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.20995 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.20995 01 -0.00000E-3 -5.55371E-01 0.0000E-39 2.3688E 00 -4.20995 01 -0.00000E-3 -5.55371E-01 0.0000E-39 3.6146F 00 -4.02552E 01 -0.0000E-3	-5.5315E-0	* 0000E-	5.7537E 0	5.3226E	-0000-E-3
-5.5321E-01 C.0C30E-39 -4.4989E 00 -5.0770E 01 -0.0000E-3 -5.5327E-01 C.0000E-39 -3.8734E 00 -5.0770E 01 -0.0000E-3 -5.5331E-01 C.0000E-39 -3.2485E 00 -4.9099E 01 -0.0000E-3 -5.5331E-01 C.0000E-39 -2.6266E 00 -4.8253E 01 -0.0000E-3 -5.5335E-01 0.0000E-39 -1.3848E 00 -4.8253E 01 -0.0000E-3 -5.5337E-01 0.0000E-39 -1.3848E 00 -4.8000E 01 -0.0000E-3 -5.5337E-01 0.0000E-39 -1.3106E-01 -4.4790E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 1.1174E 00 -4.3005E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 1.7437E 00 -4.3005E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.2099E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.2099E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.2099E 01 -0.00000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.2099E 01 -0.00000E-3 -5.55371E-01 0.0000E-39 2.3688E 00 -4.0000E-3 -5.55371E-01 0.0000E-39 2.3688E 00 -4.0000E-3 -5.55371E-01 0.0000E-39 2.3688E 00 -4.0000E-3 -5.55371E-01 0.0000E-39 2.9926E 00 -4.0000E-30 -5.55371E-01 0.0000E-39 2.9926E 00 -4.0000E-3 -5.55371E-01 0.0000E-39 2.9926E 00 -4.0000E-3 -5.55371E-01 0.0000E-39 2.9926E 00 -4.0000E-3 -5.55371E-01 0.0000E-39 2.9926E 00 -4.0000E-3 -5.55377E 01 0.0000E-39 2.0926E 00 -4.0000E-3 -5.55377E 01 0.0000E-38 2.0926E 00 -4.0000E-300E-3000E-3000E-300E-3000E-3000E-3000E-300E-300E-300E-300E-300E-30 2.9926E 00 -4.0000E-30000E-300E-300E-300E-30 2.0920E-30 -5.0000E-5000E-30 2.9	-5.5318E-0	- 3000E-	5.1228E D	5.2414E	-0000 E-3
-5.5323E-01 C.0000E-39 -3.8734E 00 -5.0770E 01 -0.0000E-3 -5.5327E-01 0.0000E-39 -3.2485E 00 -4.9937E 01 -0.0000E-3 -5.5331E-01 C.9000E-39 -2.6266E 00 -4.9099E 01 -0.0000E-3 -5.5355E-01 0.0000E-39 -1.3848E 00 -4.8253E 01 -0.0000E-3 -5.5335E-01 0.0000E-39 -1.3848E 00 -4.7400E 01 -0.0000E-3 -5.5332E-01 0.0000E-39 -1.3106E-01 -4.6538E 01 -0.0000E-3 -5.5392F-01 0.0000E-39 -1.3106E-01 -4.4790E 01 -0.0000E-3 -5.5392F-01 0.0000E-39 1.1174E 00 -4.3903E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 1.7437E 00 -4.3903E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.2099E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.2099E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.2009E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.2009E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.2009E 01 -0.0000E-3 -5.5537E-01 0.0000E-39 2.59926E 00 -4.0000E-3 -5.5537E-01 0.0000E-39 2.59926E 00 -4.0000E-3 -5.5537E-01 0.0000E-39 2.59926E 00 -4.0000E-3 -5.5537E-01 0.0000E-39 2.59926E 00 -4.0000E-30 2.59926E 00 -5.2938E-3000E-30	-5.5321E-0	-30000.	0 36864ª	5.1597E	•0000E-3
-5.5327E-01 0.0000E-39 -3.2485E 10 -4.9937E 01 -0.0000E-3 -5.5331E-01 0.0000E-39 -2.6266E 00 -4.9099E 01 -0.0000E-3 -5.5355E-01 0.0000E-39 -2.0045E 00 -4.8253E 01 -0.0000E-3 -5.5355E-01 0.0000E-39 -1.3848E 00 -4.7400E 01 -0.0000E-3 -5.5332E-01 0.0000E-39 -1.3106E-01 -4.4790E 01 -0.0000E-3 -5.55427E-01 0.0000E-39 1.1174E 00 -4.3903E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 1.174E 00 -4.3903E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 1.7437E 00 -4.3903E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 1.7437E 00 -4.3005E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.2099E 01 -0.0000E-3 -5.55437E-01 0.0000E-39 2.6926E 00 -4.1181E 01 -0.0000E-3 -5.55417E-01 0.0000E-39 3.6146F 70 -4.0252E 01 -0.0000E-3 -5.55371E-01 0.0000E-39 3.6146F 70 -4.0252E 01 -0.0000E-3	-5.5323E-0	-30000°	3.8734E 0	5.0770E	-0000 E-3
-5.5331E-01 C.7000E-39 -2.6266E 00 -4.9099E 01 -0.C0J0E-3 -5.5356E-01 0.0000E-39 -2.0045E 00 -4.8253E 01 -0.0000E-3 -5.5355E-01 0.0000E-39 -1.3848E 00 -4.7400E 01 -0.0000E-3 -5.5372E-01 0.0000E-39 -1.3106E-01 -4.6538E 01 -0.0000E-3 -5.5392F-01 0.0000E-39 -1.3106E-01 -4.4790E 01 -0.0000E-3 -5.5412E-01 0.0000E-39 1.1174E 00 -4.3903E 01 -0.0000E-3 -5.5439E-01 0.0000E-39 1.7437E 00 -4.3903E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 1.7437E 00 -4.3005E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.2099E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.6926E 00 -4.1181E 01 -0.0000E-3 -5.55437E-01 0.0000E-39 3.6146F 70 -4.0252E 01 -0.0000E-3 -5.55371E-01 0.0000E-39 3.6146F 70 -4.0252E 01 -0.0000E-3	-5.5327E-D	- <u>20006</u> -	3.2485E 1	9937E	D000 E-3
-5.5340E-01 0.0000E-39 -2.0045E 00 -4.8253E 01 -0.0000E-3 -5.5355E-01 0.0000E-39 -1.3848E 00 -4.7400E 01 -0.0070E-3 -5.5372E-01 0.0000E-39 -1.3106E-01 -4.6538E 01 -0.0000E-3 -5.5392F-01 0.0000E-39 -1.3106E-01 -4.4790E 01 -0.0000E-3 -5.5412E-01 0.0000E-39 1.1174E 00 -4.3903E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 1.7437E 00 -4.3903E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.2099E 01 -0.0000E-3 -5.5417E-01 0.0000E-39 2.6926E 00 -4.1181E 01 -0.0000E-3 -5.55417E-01 0.0000E-39 3.6146F 00 -4.00052E 01 -0.0000E-3 -5.55417E-01 0.0000E-39 2.6926E 00 -4.1181E 01 -0.0000E-3 -5.55417E-01 0.0000E-39 3.6146F 00 -4.00052E 01 -0.0000E-3	-5.5331E-0	. JODDE-3	2.6266E 0	4.9099E 0	• CO 10 E-3
-5.5355E-01 0.0000E-39 -1.3848E 00 -4.7400E 01 -0.0000E-3 -5.5373E-01 0.0000E-39 -7.5826E-01 -4.6538E 01 -0.0000E-3 -5.5392F-01 0.0000E-39 -1.3106E-01 -4.4790E 01 -0.0000E-3 -5.5412E-01 0.0000E-39 1.1174E 00 -4.3903E 01 -0.0000E-3 -5.5439E-01 0.0000E-39 1.7437E 00 -4.3005E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.2099E 01 -0.0000E-3 -5.5417E-01 0.0000E-39 2.9926E 00 -4.1181E 01 -0.0000E-3 -5.5417E-01 0.0000E-39 3.6146F 00 -4.0052E 01 -0.0000E-3 -5.55437E-01 0.0000E-39 3.6146F 00 -4.0000E-3	-5 5340E-0	.0000E-3	2.0045E.0	4.8253E 0	-0000E-3
-5.5373E-01 0.0000E-39 -7.5826E-01 -4.6538E 01 -0.0000E-3 -5.5392F-01 0.0000E-39 -1.3106E-01 -4.5668E 01 -0.0000E-3 -5.5412E-01 0.0000F-39 4.9362E-01 -4.4790E 01 -0.0000E-3 -5.5439E-01 0.0000E-39 1.1174E 00 -4.3903E 01 -0.0000E-3 -5.5439E-01 0.0000E-39 1.7437E 00 -4.3006E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.2099E 01 -0.0000E-3 -5.5417E-01 0.0000E-39 2.9926E 00 -4.1181E 01 -0.0000E-3 -5.5371E-01 0.0000E-39 3.6146F 0 -4.0252E 01 -0.0000E-3 -5.5371E-01 0.0000E-39 4.2306E 00 -4.0252E 01 -0.0000E-3	-5.5355E-0	• 0000E-3	1.3848E 0	4.7400E D	-30000
-5.5392F-01 0.0000E-39 -1.3106E-01 -4.5668E 01 -0.0000E-3 -5.5412E-01 0.0000F-39 4.9362E-01 -4.4790E 01 -0.0000E-3 -5.5439E-01 0.0000E-39 1.1174E 00 -4.3903E 01 -0.0000E-3 -5.5439E-01 0.0000E-39 1.7437E 00 -4.3006E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.2099E 01 -0.0000E-3 -5.5417E-01 0.0000E-39 2.9926E 00 -4.1181E 01 -0.0000E-3 -5.5371E-01 0.0000E-39 3.6146F f0 -4.0252E 01 -0.0000E-3 -5.5371E-01 0.0000E-39 4.2306E 00 -4.0252E 01 -0.0000E-3	-5.5323E-0	■20000E=3	-5.826E-0	4.6538E. 1	C000E-3
-5.5412F-01 0.0000F-39 4.9362F-01 -4.4790F 01 -0.0000F-3 -5.5428E-01 0.0000E-39 1.1174E 00 -4.3903E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 1.7437E 00 -4.3006E 01 -0.0000E-3 -5.5437F-01 0.0000E-39 2.3688E 00 -4.2099E 01 -0.0000E-3 -5.5417E-01 0.0000E-39 2.9926E 00 -4.1181E 01 -0.0000E-3 -5.5371E-01 0.0000F-39 3.6146F 0 -4.0252E 01 -0.0000E-3 -5.5371E-01 0.0000F-39 3.6146F 0 -4.0252E 01 -0.0000E-3	-5.5392F-0	• 0000E-3	•3106E-0	5668E 0	~0000 E-3
-5.5428E-01 0.0000E-39 1.1174E 00 -4.3903E 01 -0.0000E-3 -5.5439E-01 0.0000E-39 1.7437E 00 -4.3006E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.2099E 01 -0.0000E-3 -5.5417E-01 0.0000E-39 2.9926E 00 -4.1181E 01 -0.0000E-3 -5.5371E-01 0.0007F-39 3.6146F f0 -4.0252E 01 -0.0000E-3 -5.5371E-01 0.0007F-39 3.6146F f0 -4.0252E 01 -0.0000E-3	-5-5412E-0	- 0000F-3	-9362E-0	4 790E D	-0000 E-3
-5.5439E-01 G.2000E-39 1.7437E 00 -4.3006E 01 -0.0000E-3 -5.5437E-01 0.0000E-39 2.3688E 00 -4.2099E 01 -0.0000E-3 -5.5417E-01 0.0000E-39 2.9926E 00 -4.1181E 01 -0.0000E-3 -5.5371E-01 0.0007F-39 3.6146F 0 -4.0252E 01 -0.0000E-3 -5.5371E-01 0.0007F-39 4.2306E 00 -3.9313E 01 -0.0000E-3	-5.5428E-	.0000E-3	.1174E 0	3903E 0	-0000 E-3
-5.5437E-01 0.0000E-39 2.3688E 00 -4.2099E 01 -0.0000E-3 -5.5417E-01 0.0000E-39 2.9926E 00 -4.1181E 01 -0.0000E-3 -5.5371E-01 0.0000F-39 3.6146F (0 -4.0252E 01 -0.0000E-3 -5.5293E-01 0.0000F-39 4.2306E 00 -3.9313E 01 -0.0000E-3	-5.5439E-	- 3000C -	.7437E 0	3006E 0	-0000 E-3
-5.5417E-01 0.0000E-39 2.9926E 00 -4.1181E 01 -0.0000E-3 -5.5371E-01 0.0000F-39 3.6146F C0 -4.0252E 01 -0.0000E-3 -5.5293E-01 0.0000E-39 4.2306E C0 -3.9313E 01 -0.0000E-5	-5.54375-	-0000E-3	.3688E 0	2099E 0	-0000 E-3
-5.5371E-01 0.0000F-39 3.6146F C0 -4.0252E D1 -D.0000E-3 5.5293E-01 .0.0000E-39 4.2306E C0 -3.9313E D1 -D.00000E-3	-5.5417E-	- 3000E-3	•9926E 0	1181E 0	-0000E-3
5.5293E-01 . 0.0030E-39 4.2306E CO -3.9313E 01 -D.0030E-3	-5.5371E-	.0001F-3	.6146F C	.0252E D	-0000 E-3
		-30200-	-2306E C	.9313E D	-30000*

- 156 -

(Cont)
Output
Problem
Sample

;

-0.0000 E-39 -0.0000 E-39 -0.00	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
-2. 5525E 01 -3. 57398E 01 -3. 57398E 01 -3. 57398E 01 -3. 5745E 01 -3. 55455E 01 -3. 5545E 01 -2. 5525E 01 -2. 5525E 01 -2. 5525E 01 -2. 5525E 01 -2. 55239E 01 -2. 55239E 01 -2. 55239E 01 -2. 2335E 01 -2. 23555 -2. 23355 -2. 23555 -2. 235555 -2. 235555 -2. 235555 -2. 235555 -2. 235555 -2. 235555 -2. 235555 -2. 235555 -2. 235555 -2. 2355555 -2. 2355555 -2. 23555555 -2. 2355555555555555555555555555555555555	22222 22222 22222 22222 22222 22222 2222
4, 8482E 00 5, 4673E 00 6, 0831E 00 7, 9221E 00 9, 1438E 00 9, 1438E 00 9, 1438E 00 1, 0948E 01 1, 1542E 01 1, 2139E 01 1, 2728E 01 1, 2728E 01 1, 5737E 01 1, 575	9381 9381 9381 9381 9381 9381 9383 9386 9383 9386 9386 9386 9386 9386
0.00006-39 0.00006-39 0.00006-39 0.00006-39 0.00006-39 0.00006-39 0.00006-39 0.00006-39 0.00006-39 0.00006-39 0.00006-39 0.00006-39 0.00006-39 0.00006-39 0.00006-39 0.00006-39 0.00006-39 0.00006-39 0.00006-39 0.00006-39	0.000000000000000000000000000000000000
· · · · · · · · · · · · · · · · · · ·	С 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
888 887 888 888 888 888 888 888 888 888	

.

ļ 1

- 158 -

(Cont)	
Output	
Problem	
Sample	

42	-7.4368F	03	-7.9381F 03	-0-00005-39	.0053F 0	-5030F 0	0.00
43	758E	60	7.8765E 0	1.	6.9558E 03	6.4539E 03	-0.000E-39
44	147E	03	8148E C	ŝ	.9062E 0	.4048E 0	.0000
\$\$	536E	03	7530E 0	0-0000E-3	.8567E 0	.3558E 0	.CD00E-3
46	925E	03	5912E. C	0-00006-3	• 8971E 9	.3068E 0	00E-300
24	31.2E	60	6293E 0	ņ	.7577E 0	.2579E 0	8
48	599E	d	5673E 0	0.0000E-3	. 7083E D	•2091E_0	00E-3
6÷		603	05 3E	m	590E 0	-1604€ 1	-0000E-3
3	47.2E	63	4432E U	C-300C0-3	.6096E 0	.1117E 0	.0000F-3
51	3858E	03	3810E 0	0.0000E-3	.5603E 0	.0631E 0	0000E-3
52	5	63	3187E 0	0.0000E-3	.5113E 0	• D146E 0	2000E-3
53	-	60	2564E 0	0.0006-3	.4617E 0	.9661E 3	P000E-3
54	_	E	1940F 0	ιų.	.4124E 0	-2178E 0	20005-3
55	Ĕ	03	1315E 0	0.0000E-3	.3632E 0	.8695E 0	2000E-3
	8	63	0 309 0	÷	.3140E D	.8212E 0	CD00E-3
57	5174E	03	0064E 0	0.0000E-3	.2648E 0	.7731E 0	D000E-3
58	-4558E	63	6.9437E 0	ų.	-2156E 0	.7250E U	00006-3
59	3943E	60	-6.8809E 03	ŵ	•1665E 0	770E 0	Ú OC
3	28E	Ы	6.8181E Q	0.0000E-3	1173E.0	.6221E 0	00006-3
19	ш	60	6.7552E 0	÷.	.0682E 0	.5812E 0	0000E-3
29	195E		6.6922E D	0.0000E-3	.0192E 0	5334E 0	C00E-3
63	479E	03	6291E 0	ů.	.9701E 0	.4857E 0	0000E-3
99	364E		6.5660E 0	ų.	.921DE D	.4381E D	00006-3
65	248E	603	-6.5028E C3	ů.	.8719E 0	.3905E 0	•0000E-3
99	JIE		6.4395E D	0-DDDDE-3	.8228E 0	-3430E.D.	006-300
67	15E	60	, 3762E	ų.	.7738E 0	.2956F D	-0000E-3
68	398E		-312TE D	0-U000E-3	.724BE 0	.2482E 0	006-3
69	782E	03	6.2492E 0	0-3000E-	.6757E 0	.2009F 0	. OF 00E-3
2	166E		.1857E 0	ŵ.	.6266E 0	.1537E 0	÷.
11	350E		6.1220E 0	ē.	• 5775E n	•1066F 9	- 00 00 E-3
2	3345		6.0583E 0	0.0000E-3	-5284E.Ω	•0595E Q	· CC 00 E-3
13	318E		945E 0	0+0000F-	•4793E 0	• 0 3521 0	-0C JOE
14	5.4702E		5-9307E C	• 0000E-3	.4301E D	.9656E 0	• 0000E-3
5	.4086E	03	5.8667E 0	0+0006-3	.3809E 0	.9187E 0	-00000E-3
9	5 - 34 70E		5-8027E 0	0-0000E-3	.3318E 0	.8720E 0	• 00000 •
11	535	0	5.7386E 0	0.0000E-3	• 2927E 0	•8253E 0	-0107E-3
	-2236E	d	5.6744E	0.0000E-3	0 33552 0	TIBOL O	-1000).
5	5.1019F	5	• • 1016 0	- 3000E-	• 12431 0	0 41261.	
8	1.00.2E		5.5457E D	0.0000E-3	.1351E 0	.6856E 0	0000.
81	•0385E	5	.4813E 0	• J100E -3	.0858F 0	•6393E 7	• OF 00F-3
82	• 9768E	00	.4167E 0	-3000C	.0366E 0	•593UE 0	000.
83	.91516.	ő	.3520E 0	0000E-3	. 4874E 0	•5469E 0	-
84	θĒ.	5	-2872F D		82E 0	009 2 3	0
				Sample P	rohlem	Outnut (Cont)	
))))		

- 159 -

000.	0309E-3	.0000E-3	-300-00-	30E-3	-300CO-	.0000E-3	-0000E-3	00E-3	.0000E-3	-30000-	. OF 00E-3	-0000E-3	.0309F-3	0.0000E-3	0-0000E-3	.0002E-3	000	0000E-3	00006-3	006-3	00006-3	0000E-3	0000E-3	036-3	-0000E-3	000E-3	.0000E-3	00E-300	0.000E-3	.0000E-3	000F-3	. 0000E-3	0.06-3	-30001-	
4551E 4094E	638E U 1846 J	2732E 0	2280E 0	.1829E 0	.1377E D	0923E 0	.0465E 0	.0001E 0	.9530E 0	.9747 E_0	.8551E 3	.8039E 0	.7511E 0	.6964E 0	.6402E 0	.5830E 3	5257E 03	•4698E C3	.4174E 03	•3714E.03	. 3355E 03	.3141E.03	.3125E 03	.3362E 0	.3909E 0	•4815E 0	.6116E 0	.7816E 0	0 3878E 0	.2199E 0	4593E 0	6764E J	8283E 0	8569E.0	
	13E 775 7	• 6945E 0	•6466E D	• 5990E 0	.5518E 0	.5049E 0	.4581E 0	.4113E 0	.3640E 0	.3160E_0	.2664E 0	.2144E 0	.1591E 0	.0993E 0	.0337E 0	.9612E 0	-8809E 1	.7924E 0	•6956E 0	.5920E 0	•4843E 0	23775 L	.2792E 0	•1997E 0	.1532E 0	1571E Ú	•2326E 0	-4038E 0	.6964E 0	1355E 0	•7428E 0	.5313E.0	.5302E 0	273E 0	
-0.0000E-39	0.000E-3	3003E-3	0-30-0E-3	<u> 0000E-3</u>	00006-3	00006-3	00006-3	1000E-3	00006-3	5-3000t	00006-3	00E-3	00E-3	COE-300	00E-3	00E-3	ŝ	006-3	00E-3	006-3	0.06-3	KOF-3	00E-3	0.0000E-3	.0000E-3	'n	. 0000E-3	- 2000 - 3	-30000-	i.	.0000E-3	-0000E-3	-0000E-3	-3000C-	
-5.2223E 03	.0923E 0	.9624E 0	.8976E C	• 8330E 0	87E 0	.7048E 0	.6414E 0	•5786E 0	.5164E 0	548E 0	.3937E C	.3327E C	2715E 0	93 <u>E</u> 0	1452E 0	0779E 0	0059E 0	9274E 0	.8401E 0	3.7421E 0	.6313E 0	.5060E D	3.3655E 0	.2106E.0	.04395 0	2.8713E 0	2.7C23E 0	2.5511E 0	2.4374E C	.387	.4334E 0	2-6143E_0	2.9736E 0	-5575E 0	
	597E 0	-5484E 0	.4881E 0	4283E 0	.3689E 0	.3099F 0	.2511E 0	.1923F 0	1332E 0	0732E 1	0118E 0	3.9481E 0	3.8811E C	3.80965 0	7330E 0	6495E 0	3.5582E 0	4587E 0	3.3512E 0	3.2370E_0	1187E 0	DOLLE D	2.8916E 0	2.8003E 0	2.7411E 0	о ш	2.7917E 0	-9461E 0	.2198E 0	6.37.8E 0	.22165° 0	.9846E 0	9268E J	<u>0266E 0</u>	
85. 86	7 8 88	6	60	16	92	66	9¢	95	96	- 6	60 C	66	100	101	102	103	104	501	106	107	108	109	110	-111	112	113	114	115	116	711 .	118	119	120	121	

1 1

- - - - -

ļ

; ; ;

· · · · · ·

1

1

- 160 -

Sample CRT Results

Sample CRT Results (Cont)

Sample CRT Results (Cont)

Sample CRT Results (Cont)

• . • •

Sample CRT Results (Cont)

Sample CRT Results (Cont)

Sample CRT Results (Cont)

- 167 -

Sample CRT Results (Cont)

Sample CRT Results (Cont)

Sample CRT Results (Cont)

Sample CRT Results (Cont)

Sample CRT Results (Cont)

- 172 -

Sample CRT Results (Cont)

Sample CRT Results (Cont)

- 174 -

Sample CRT Results (Cont)

Sample CRT Results (Cont)

- 176 -

The machine printout for region III immediately follows the data sheets. The complete solution (i.e., $n_f = 0$ and 1 combined) is shown for 0 = 0 and 90 degrees. To illustrate the graphical plots, results of particular quantities of regions II and IV are shown following printous. Some results for regions I, II were discussed in Section 3.4.5 on output form.

3.7 UTILITY SUBROUTINES

3.7. MAD, MSU, MMY, INV

These four subroutines perform matrix addition, subtraction, multiplication, and inversion, respectively. They are extremely simple in their approach and must be recompiled to change dimensions for use in other decks. There are no error indications given other than the usual NAASYS trapping information for underflows, overflows, and divide checks. When data have been entered correctly, these subroutines will present no problems.

3.7.2 DINTRP, ENTERP

These subroutines perform linear double and single interpolation. DINTRP makes use of ENTERP in interpolation for values along a particular curve.

In DINTRP, when the first argument is not bounded by the given table (curves), the statement

"ARGUMENT EXCEEDS EXTENT OF TABLE IN DINTRP." is printed, followed by

ARGUMENT = (1 PE 12.4) TABLE VALUES (printed 6/line) and the job is terminated.

When the argument in the single interpolation subroutine, ENTERP, exceeds the limits of the table, the routine selects the value at either end of the table and continues after printing

"LIMITS OF TABLE EXCEEDED BY ARGUMENT = (1 PE 12, 4) (1 PE 12, 4) = VALUE USED FROM TABLE"

Values entered in the tables should always be given in increasing algebraic order, both in terms of the numbers used to designate each curve of the family, and the values assigned to the points along the curve.

3.7.3 CODIMA

CODIMA is a curve-fitting subroutine has the following properties:

- 1. he straight portions of any curve defined by three points on a straight line, a stra ht line will be fitted.
- 2. To the smooth portion of any curve, a smooth curve will be fitted.
- 3. The method maintains continuous first derivative except at the ends of a straight segment.
- 4. The method will fit curves with "corners" or "sharp turns" without the large deviation usually found in other methods.

An interpolation method is developed in such a way that some of the considerations taken when an engineer fits a curve with a french curve are formulated. This is the CODIM (controlled deviation interpolation method) concept.

The method will interpolate in a more engineering manner in the following respects:

- 1. The first derivative is continuous except at the ends of straight segmen^{*-} defined by three points on a straight line.
- 2. No large deviation will be found when slope changes are large.
- 3. Ability to change value and slope rapidly.
- 4. Ability to fit straight lines on straight line portions of the curve and fit smooth arcs through the smooth portions of the curve.

The method fits a polynomial through an interval with information given by "previous points" (points to the left) and another polynomial through the interval with information given by "subsequent points" (points to the right). These two polynomials are then compared for compatibility. If they differ, a weighted average of the polynomials is taken in such a way that the polynomial that deviates less from the straight line connecting the points defining the interval is given more weight. For simplicity, parabolas are used over higher-degree polynomials in the CODIMA version.

3.7. STCOMB

STCOMP is used to combine the station numbers at which the thicknesses are entered in the DAL data region with the station numbers for the inner and outer layer temperatures (set up in DATLDS) to form a common set of stations to be used in the computations for DNAX, D, EK, ENT, and EMT.

3.7.5 <u>CRTG</u>

CRTG is a system of subprograms (some MAP compiled) designed to enable a FORTRAN programmer to use the S-C 4020 CRT plotter for graphing the types most frequently required in engineering and scientific applications.

The output is intended to be imitative of the results obtainable by hand plotting on standard graph paper. Printed and graphical output may be intermixed in any amount.

The system establishes a fairly natural correspondence between the programmer's representation of data and its appearance on the graph. A simple curve may be produced with one CALL statement. For complicated graphs, the full power of FORTRAN may be used to describe the data. Scaling is automatic and includes all curves on a graph.

The drawing of grids and placement of output on the frame are automatic.

Some restrictions of CRTG are as follows:

- 1. Requires an S-C 4020 to process the output
- 2. Requires NAASYS and the NAASYS library routines for the S-C 4020
- 3. Uses the system CRT file, 'UNIT16'
- 4. Requires the use of nonstandard RETURN statements, a language feature introduced with 7090/7094 FORTRAN IV, Version 13
- 5. CRTG will fail to express applications that require unusual grids.
- 6. A special version of NAASYS library routine DXDYV is required. This is included in the deck,

3.8 ERROR INDICATIONS, PITFALLS, RECOMMENDATIONS

Several of the error indications resulting from improper data input have already been discussed. To reiterate, they were as follows:

1. A bad index on a DECRD card (Section 3.4.2)

- 2. Omission of the negative sign on the last card of a data array (Section 3.4.2).
- 3. Omission of some or all of the title cards (Section 3.4.4)
- 4. Limits of pressure r temperature tables exceeded by arguments when using the indicator = 3 option (Section 3. 4. 7. 1).

One should be very careful to check the output from the program to see that it corresponds to the input that he entered. Better yet, an independent check of input data may prevent a wasted run on the machine. In addition to the four errors indicated above, such things as sign convention, angle measurements, and compatibility of units are common pitfalls.

WI ECCENTS	F REVOLUTION CENTRIC DISCONTINUITIES AND BRANCHING	10000000
RESPONSIBL	NSIBLE ENGINEER AND PROGRAMMER P• CAPPELLI	00000000000000000000000000000000000000
REFERENCE	** ATAA JOURNAL . VOL . 1. 40. 8. ALIGIST	
	AND VOL. 2. NO. 3. MARCH 1964. PG. 590FF	16000000
	S 134, 136, 141	000003
DATA NOMENCI	MENCLATURE **	000000050
	L = UNIT OF LENGTH	000000
•	P = UNIT OF	0000000
	ш.	00000000
V	REFERENCE LENGTH (L)	00000000
S	ESS (L)	00000000
EO	SONNGS	06000000
S160	CRENCE STRESS (P/L++2)	00100000
IXId	PLOTS CURVE WHEN NON-ZFRO	00000120
IHIA	PATH IND. FIRST CASE ALWAYS = 0.NORMAL, #OTHERS MAY =	00000135
CI IN		00000136
ED2	+ = SUMMING - MITH DRIVIG AT FNEDR VALUES	091000000
	- = DISCRETE FOURIER VALUESA DRINTED FA. TIME, NO COT	
ENFO	IER COMPONENT	00000143
ENFILL	CĽ;	0,0000144
ENFOR(1)	PRINT VALUES.	24100000
THETA(1)	HORIZONTAL ANGLE (DEGREES) TEN MAXIMUM	00000150
		00000179
LAPE USAGE		00000180
- •		0000018
	- T AND A FAIRLES	610000
• • •		0000018
010		0000 184
0144	ING TAPES	00000182
1	ATA AND GEOMETRY /R	0000 186
11	FOURIER SERIES LOADS TAPE	0000018
		000001900
		03600000
		06600000
DAILUS 9	A. INILD AND SUMS SUBROUTINES ARE REPEATED.	00000391

Shells of Revolution

•

FOR EACH THETA AND PLOTS RESULTS ON NON-FERO INDICATOR. PIXI-	000000
	00000410
DIMENSION BCD(36), ENFOR(4), THETA(11), ENFI(11)	00000420
	00000240
ALENCE (DA(1), EKK), (DA(2), AO), (DA(3),	1.0000055
). E0).(DA(5). SIG0).(DA(6). PIXI)	1+0000055
1. SUM 1.(DA(9). ENFO).(DA(10). ENFI)	1.0000055
3(DA(23), THETA)	0000055
al management of the second	0000064
t DA(35) + NTPW+ NTP	0000065
106 ENF. IF	0000065
COMMON SDA(3098)	000000
ZERO SELECTED DATA AREAS	0000002
00 0	000000000
2 DA(1) = 0.0	0000066
	000000698
ENFL PTHL FUFOR AND THELA VALUES MUST BE READ FOR EA. CASE	00000201
DO 3 I = 10,35	00000202
1 = -1.E+	00000703
	00000749
	00000150
ĭ	00000151
WRITE (6+21) BCD .	0000015
21 FORMAT(1H1 /(18X+ 12A6 //))	0000015
INITIALIZE SUM TAPES. INDICATORS	5_00000_S
•	
NTPR = 10	00000161
SL2 = -1.	00000762
[fR =]	0000076
	791.00000
PTHI = 0.	0000016
	0000016
	00000169
30 CALL DECRD (DA)	00000110
	12200000
• IHI	1100000
•	TT000000
	0000017
ENFO	00000 782
M .61	3200000

. ļ

1 . . .

Shells of Revolution (Cont)

- 182 -

<pre>FNF1(11) = -1.6+10 60 T0(1) = -1.6+10 FNETA(11) = -1.6+10 FNETA(11) = -1.6+10 FNETA(11) = -1.6+10 FNETA(11) = -1.6+10 FNETA(11) = 0.6 ENF0. ENF1. FNETA(0.6) SIG0. SUM. FNETA(11) = 0.6 ENF0. FNETA(11) = 0.6 ENF0. FNETA(11) = 0.6 ENF0. FNETA(11) = 0.6 ENF1. 2 EE13.4.7/7 7x.30HFOURIER COMMENTS (ENF1) = -// Z4X. 2 EE13.4.7/7 7x.30HFOURIER COMMENTS (FNET) = -// Z4X. 2 EE13.4.7/7 7x.30HFOURIER COMMENTS (FNET) = -// Z4X. 2 EE13.4.7/7 7x.90HFOURIER COMMENTS (FNET) = -// Z4X. 2 EE13.4.7/7 7x.90HFOURIER COMMENT FNETS (THETA) = -// Z4X. 2 EE13.4.7/7 7X.90HFOURIER COMMENTS (FNET) = -// Z4X. 2 EEXEMPLE = EXX. 2 EEXEMPLE = FUNC = EEX. 2 CALL PANDX = EEX. 2 CALL PANDX = EEX. 2 EEVEND & 0.9 GO TO 60 FIF (ENF) 60.930.3B FIF (ENF) 60.930.3B FIF (ENF) 00.30.3B FIF (ENF) 00.30.3B FIF (FNET) 70.1.70 FIF (ENF) 00.30.3B FIF (FNET) 70.1.70 FIF (FNET) 70.1.70</pre>	00000785 00000785 00000787 00000787 00000789		4670000195 00000195 100000795	00000798	00000800 00000801 00000802	000000000000000000000000000000000000000	20800000000000000000000000000000000000	00000810	0000041	00000840 00000840 00000840	0000088	00000890 00000890 000008990	000000000000000000000000000000000000000	00000920 00000925 00000930	00000340 00000440 00000440
(11) = -1.5+1 70 34 7(1) = -1.6+1 7(1) = -1.6+1 7(1) = -1.6+ 7(1) = -1.6+ 3.4/24X 5513.4 7.40 = .613.4 7.40 = .613.4 8 ND NTPR ND NTPR ND NTPR ND NTPR ND NTPR ND 11 ND NTPR ND 11 ND 2 E (M1 0.00 0.36.36 0.000 00 E (1.47 10.400 ± ± .613.4 10.400 ± ± .600 ± .400 ± ± .600 ± .400 ± ± .600 ± .400 ± .500 ± .500 ± .400 ± .500 ± .400 ± .500 ± .500 ± .400 ± .50	• THETA, A0, H0, E0, SIGO, SUM,	OF SHELL REGIONS (E NFI) - // 24X. TA) - //24X.	- •// /X•/HAU =•E13•A 4. 4X•7HSIGO =•E13•4 //7X• 4X•7HPTHI =E13•4// 7X• 4/ 1H8• 24X• 62H(FLAG -1•OE	AND THETA VALUES.))	ččč		δē	ŏŏ		DATA AND SET UP GEOM. /KEG.		LDS			PLOT RESULTS of Revolution (Cont)
	<pre>(11) = -1.6+10 f(0 34 f(4) = -1.6+10 A(11) = -1.6+10 A(11) = -1.65+10 f(11) = -1.65+100 f(11) =</pre>	AT (1H1, EAFOX = 01PE13.4/// 3.4/24X: 6E13.4	344/24X* 5E1344/// 76HO =+61344 4X 3M =+61344 4X+7H PRINT ENFS (LWFOR)	NDICATES LAST ENFINE		<u>9</u> 9 9	- ~ 4	= A0 + 5760 /E0 = SIG0 + H0 ++3 /	= SIGO + HC 2 = (H0 /A0) ++2	*	VD KTPW)			SUMS UM .EQ. 0.) GO TO ENF) 60.38.38	PIXI) 70,1,70 ND NTPW

00000955 00000960 00010000				
CALL PIX GO TO I END				

- 184 -

ÚECK NG. 84-903 00000400	420	43C 440	423	4 0 0 4 7 0	C87	C . 45°	5. ind		530		-					ىرىمىيىنى مەرمەم مەرمەمەم مەرمەمەم مەرمەمەمەمەمەم			
SIBFTC MAUD C MATRIX ADD SUBROUTINE		C E NO OF ROWS C E NO OF COLD			SUBROUTINE MADIL.+M.A.FC)	DIMENCION A(4+4)+ B'4++)+ C(4++)	D0 30 1=1.1 50 30 1=1.0	5.0 C(1+J)=A(1+J)+B(1+J)	RETURN	END			-			والمحافظ			

1

ļ

Matrix Add Subroutine

- 185 -

FIDS FIDS	
C. Line Cohenitine	
Matrix Subtract Subroutine	

ļ

INFTC MMPY MATRIX MULTIPLY S ARGUMENTS	DECK NO. 8K-971 00-03017 20 34
000	40 90 00
C X(I+X) MRA C Y(K+J) MMY C Z(I+J) MSR	40 80
<pre>SUBROUTINE MMY(L+M+N+X+Y+Z) DIMENSION X(4+4)+ Y(4+4)+ Z(4+4) DO 30 I=1+L</pre>	
30	130 140 150
RETURN END	17.
	!
	:
	1
8 • , • • • • • • • • • • • • • • • • • •	

İ

Matrix Multiply Subroutine

٠

JTINE DEPARTMENT OF NO. FK-MD. 48444 BY D.J.HALLMM. DEFT 56.LA 268 (N) OF MATRIX A COMPILED FOR 4 X 4 268 RETURN =1.00RMAL. NOT=1.6FR 268 RETURN =1.00RMAL. NOT=1.6FR 268 RETURN =1.00RMAL. NOT=1.6FR 268 RETURN =1.00RMAL. NOT=1.6FR 269 RETURN =1.00RMAL. NOT=1.6FR 261 N. L.
BY D.J. BY D.J. CURN CURN CURN RE INTE AND COL AND COL AND COL AND COL AND COL

ł

- 198 -

.'

2[.]

040.
· · ·
0.5.00 0.5.00
v51v
u520
いすいの
0250
0560
0570
0780 0
0590
0,610
0614
<u>362C</u>
0630
0640
365 0
0000
0670
0 6 80
0647
0.7.0
U 7.50 0.740
0.420
0760
0780
0190
GBCC
0810
0820
0830
0840
0850
860
0830 08 <u>40</u> 0850 860

- 189 -

	08/0 Asof
6000 MI=LC(M)	
MJELK(M) C DELCENED DOWS OF INVERSE	
005-6200	0010
TEMP=A(M.J)	0630
A(M+J)=-A(M[+J)	0940
11 + J) = TEMP	0650
	0960
6205 D0 6210 J=1.NN	0980
TEMPEA(10M)	. 0340
	1010
	1030
0001 1FRR0R=1	1040
1	1050
S	1060
	1 080
	2030
FND	
	1
Cont Terroration Subroutine (Cont)	out)
Waitin Alla Maria Mari	

٠

|

.

.

- 190 -

PARABOLIC CURVE FITING SUBROUTINE (THREE POINTS) CONTHOID SUBROUTINE CODIMA (M1, X, Y, X1, Y1, N2, SMAPF) CONTHO12 SUBROUTINE CODIMA (M1, X, Y, X1, Y1, N2, SMAPF) CONTHO12 X LOCATION OF POINTS TO BE INTERPOLATED CONTHO12 X LUCATION OF POINTS TO BE INTERPOLATED CONTHO12 X MNEMERS ANGUMENT CONTHO12 X MNEMERS CONTHO12 CONTHO12 X SHAPE CONTHO23 CONTHO24 DIO TN TN TN CONTHO24 DIO TN TN				
<pre>SUBROUTINE CODIMA (N1, x, Y, x1, v1, N2, SHAPF) ArGUMENTS ArGUMENTS N0, of POINTS TO ITERPOLATE X LOCATION OF POINTS TO BE INTERPOLATED X LOCATION OF POINTS TO BE INTERPOLATED X LOCATION OF POINTS TO BE INTERPOLATED X LOCATION ARGUMENT N2 NDEPENDENT ARGUMENT N2 ND M = 1,N1 N2 ND M =</pre>		FITTING	(THREE	COMICOD
SOBROUTINE CODIMA (MI, X, Y, XI, YI, N2, SMAPE) AGUMENTS N1 (CC, OF DOINTS TO TERPOLATE X LOCATION OF POINTS TO BE INTERPOLATED X LOCATION OF POINTS TO BE INTERPOLATED X MARGRAS SHAPE 0 = FITS END WITH STRAIGHT LINE 1 = CURVE.LAST 3 PTS. DIMENSION X(1), V(1), V(1), D(2), A(2), B(2), C(2) N2 (0) = 0 = FITS END WITH STRAIGHT LINE 1 = CURVE.LAST 3 PTS. DIMENSION X(1), V(1), V(1), D(2), A(2), B(2), C(2) IOD IN = 0 XX = SMAPE DO BOO N = 1.N1 IF (N2-2) 110.115.120 10 IN = 0 XX = SMAPE DO BOO N = 1.N1 IF (N2-2) 110.115.120 10 IN = (V1(N2-1))/(XI(2)-XI(1)).+ (X(N)-XI(1)).+VI(1)) 115 Y(N) = (Y1(N2)-YI(1))/(XI(2)-XI(1)).+ (X(N)-XI(N2-1))) 120 J = 1 121 ITS (1)-X(N) 130.140.150 130 J = 1 130 J = 1 130 J = 1 130 J = 1 130 J = 241 131 ITS.115.115.115.115.1160 130 J = 241 130 J = 241 131 ITS.115.115.1160 130 J = 1 132 IF(XI)-XI(N2-1))/(XI(N2)-XI(N2-1)).+(X(N)-XI(N2-1))) 130 J = 1 131 ITS.115.115.115.1160 132 IF(XI) = 1 133 IF(XI) = 1 133 IF(XI) = 1 134 ITS.115.115.1160 135 IF(XI) = 1 135 IF(XI) = 1 137 ITS.115.115.1160 138 IF(J-2) 115.115.1160 139 IF(J-2) 115.115.1160 130 ITS (0 000 130				CODIMOUS
ARGUMENTS ARGUMENTS N. OCATION OF POINTS TO ITERPOLATE X LOCATION OF POINTS TO BE INTERPOLATED X LOCATION ARGUMENT N. LOCATION ARGUMENT N. MO. OF ARGUMENT N. MO. NILLINITION AND AND AND AND AND AND AND AND AND AN		CODIMA (NI. X. Y.	YI+ N2+	CODIMOIO
<pre>ABOMENTS AND AND AND AND AND AND AND AND AND AND</pre>				CODIMO11
<pre>NI NO. OF POFATS TO ITERPOLATE X LOCATION OF POINTS TO BE INTERPOLATED X INDERPENDENT ARGUMENT Y DEFENDENT ARGUMENT X DEFENDENT ARGUMENT X ENSWERS NO. OF ARGUMENTS SHAFE 0 = FITS END WITH STRAIGHT LINE 1 = CURVE.LAST 3 PTS. DIMENSION X(1).Y(1).Y(1).D(2).A(2).B(2).C(2) IND IN = 0 XX = SHAPE DO BOD N = 1.NI IF (N2-2) 110.115.120 II Y(N) = Y(1(2) CO TO BOD II + Y(1(2) II + Y(1(2) II + Y(1(2) II + Y(1(2)) CO TO BOD II + Y(1(2)) CO T</pre>				CODIMOIZ
<pre>x LOCATTON OF POINTS TO BE INTERPOLATED x INDERENT ARGUMENT X' NO F TO STATUTON X(1), VI(1), VI(1), STAIGHT LINE 1 = CURVE,LAST 3 PTS, DIMENSION X(1), VI(1), VI(1), STAIGHT LINE 1 = CURVE,LAST 3 PTS, DIMENSION X(1), VI(1), VI(1), STAIGHT LINE 1 = CURVE,LAST 3 PTS, DIMENSION X(1), VI(1), VI(1), STAIGHT LINE 1 = CURVE,LAST 3 PTS, DIMENSION X(1), VI(1), VI(1), STAIGHT LINE 1 = CURVE,LAST 3 PTS, DIMENSION X(1), VI(1), VI(1), STAIGHT LINE 1 = CURVE,LAST 3 PTS, DIMENSION X(1), VI(1), VI(1), STAIGHT LINE 1 = CURVE,LAST 3 PTS, DIMENSION X(1), VI(1), VI(1), STAIGHT LINE DO BOO N = 1,NI IF (N2-2) 110,115,120 ISO J = D,H I</pre>		NC. OF	TERPOLATE	COD1M013
Y MASHERS Y MASHERS Y MOSPENDENT ARGUMENT Y DEPENDENT ARGUMENT NO. OF ARGUMENTS DIMENSION X(1),*Y(1),*YI(1),01(2),4(2),6(2) DIMENSION X(1),*Y(1),*XI(1),01(2),6(2) DO 800 N = 1.01 TF (N2-2) 110,115,120 TF (N2-2) 110,115,120 TS (TY(1))-X(N) 130,140,150 TS (TY(1))-X(N)-X(N)-X(N)-X(N)-X(N)-X(N)-X(N)-X(LOCATION OF	8	CODIM014
<pre>XI INCEPENDENT ARGUMENT YI DEFENDENT ARGUMENT N2 N0:0 = FITS END WITH STRAIGHT LINE 1 = CURVE.LAST 3 PTS. DIMENSION X(1).*Y(1).*Y(1).*D(2).A(2).B(2).C(2) IOO IN = 0 XX = SMAPE D0 800 N = 1.0N IF (N2-2) 110.115.120 IIO Y(N) = YY(12) IIO Y(12) IIO Y(12) I</pre>				CODIMOI
<pre> YI DEFENDENT ARGUMENT YI DEFENDENT ARGUMENTS No. oF ARGUMENTS DIMENSION X(1).*Y(1).*YI(1).*DI(2).A(2).B(2).C(2) DIMENSION X(1).*YI(1).*XI(1).*DI(2).B(2).C(2) DO BOO N = 1.NI If (N2-2) 110.115.120 If (N2-2) 115.155.145 If (N1-2) 115.155.145 If (N2-1) 110.115.11).* (X(N)-XI</pre>		INDEPENDENT	11	CODIMOLE
N2 N0.0 OF ARGUMENTS SHAPE 0 = FITS END WITH STRAIGHT LINE 1 = CURVE.LAST 3 PTS. DTMENSION X(1).Y(1).X(1).X(1).X(1).SD(2).G(2) 9 TS. DTMENSION X(1).Y(1).X(1).X(1).SD(2).A(2).B(2).C(2) 9 TS. DTMENSION X(1).Y(1).X(1).X(1).SD(2).A(2).SD(2).C(2) 9 TS. DTMENSION X(1).Y(X(1).Y(1).Y(1).SD(2).C(2).SD(2).C(2) 9 TS. DTMENSION X(1).Y(1).Y(1).Y(1).Y(1).Y(1).Y(1).Y(1).Y		DEPENDENT AR		CODIMOI
<pre>SHAPE 0 = FITS END WITH STRAIGHT LINE 1 = CURVE.LAST 3 PTS. DIMENSION X(1).Y(1).XI(1).VI(1).D(2).A(2).B(2).C(2) INO IN = 0 XK = SHAPE D0 800 N = 1.NI D0 800 N = 1.NI D0 800 N = 1.NI D0 800 N = 1.NI D0 800 N = 1.NI D1 Y(N) = YI(N2) G0 T0 800 115 Y(N) = YI(12)-YI(1))/Y(XI(2)-XI(1))* (X(N)-XI(1))+YI(1) G0 T0 800 115 Y(N) = YI(12)-YI(1))/Y(XI(2)-XI(1))* (X(N)-XI(1))+YI(1) G0 T0 800 110 J = 1 120 J = 1 120 J = 1 120 J = 1 130 J = 0 130 J = 0 130 J = 0 130 J = 1 130 J = 1</pre>		NO.		CODIMOIE
<pre>PimeNSION X(1).v(1).v(1).v1(1).ol(2).A(2).B(2).C(2) Ino IN = 0 Xx = SWAPE D0 800 N = 1.NI If (N2-2) 110.115.120 If (N1) = v1(N2) If (N2-2) 110.110.110.140.150 If (N1) = v1(N1) If (N2) If (N</pre>		0 = FITS END WITH	1 = CURVE,LAST	PTS.
<pre>DIMENSION X(1).v(1).v(1).v(1).v(2).A(2).B(2).C(2) IOO IN = 0 X = SWAPE DO 800 N = 1.NI IIO V(N) = v1(N2) IIO v(N) = v1(N2) IIO v(N) = v1(N2) III v(N) = (v1(2)-v1(1))/(X1(2)-X1(1))* (X(N)-X1(1))+v1(1)) GO TO 800 III v(N) = (v1(2)-v1(1))/(X1(2)-X1(1))* (X(N)-X1(1))+v1(1)) III v(N) = v1(L) II</pre>				CODIMO20
<pre>100 [N = 0 XK = SWAPE D0 600 N = 1.N1 IF (N2-2) 110.115.120 If (N2-2) 110.115.120 If (N2-2) 110.115.120 If (N2-2) 120.115.120 If (N1) = YI(N2) GO TO 600 I15 Y(N) = YI(2)-XI(1))/(XI(2)-XI(1))* (X(N)-XI(1))+YI(1)) GO TO 600 I20 J = 1</pre>		DIMENSION X(1)+Y(1)+X1(1)+Y1(1	<pre>() D(2) A(2) B(2) C(2)</pre>	CODI MO25
<pre>100 IN = 0</pre>				CODIM025
<pre>XK = SHAPE D0 800 N = 1.NI IF (N2-2) 110-115.120 10 70 800 115 Y(N) = Y1(N2) 60 70 800 115 Y(N) = (Y1(2)-Y1(1))/(X1(2)-X1(1)) + (X(N)-X1(1))+Y1(1)) 60 70 800 120 J = 1 120 J = J+1 120 J = J+1 130 J = J+1 140 Y(N) = Y1(J) 60 70 800 130 J = J+1 1 0 0 800 130 IF(J-N2) 125.125.145 145 Y(N) = (Y1(N2)-Y1(N2)-X1(N2)-X1(N2-1))+(X(N)-X1(N2-1)) 10 0 800 150 IF(J-2) 115.155.160 150 IF(J-2) 115.155.155 150 IF(J-2) 115.155.155 150 IF(J-2) 115.155 IF(J-2) 115.155 150 IF(J-2) 115.155 IF(J-2)</pre>	100	H		CODIMO3C
D0 800 N = 1.NI IF (N2-2) 110.115.120 60 70 800 115 Y(N) = (Y1(2)-Y1(1))/(X1(2)-X1(1)) + (X(N)-X1(1))+Y1(1)) 60 70 800 125 IF(X1(J)-X(N)) 130.140.150 120 J = 1 120 J = 1 130 J = J+1 130 J = J+1 150 IF(J-2) 115.155.160 150 IF(J-2) 115.155 IF(N		COD I MO 40
DO 600 N = 1.NI IF (N2-2) 110.115.120 10 Y(N) = YI(N2) GO TO 800 115 Y(N) = (YI(2)-YI(1))/(XI(2)-XI(1))* (X(N)-XI(1))+YI(1)) GO TO 800 120 J = 1 120 J = 1 130 J = 1 13				COD1M049
<pre>If (N2-2) 110.115.120 110 Y(N) = Y1(N2) 60 T0 800 115 Y(N) = (Y1(2)-Y1(1))/(X1(2)-X1(1))* (X(N)-X1(1))+Y1(1) 60 T0 800 120 J = 1 120 J = 1 120 J = 1 130 J = J+1 130 J = J+1 130 J = J+1 130 J = (Y1(N2)-Y1(N2-1))/(X1(N2)-X1(N2-1))*(X(N)-X1(N2-1)) 130 J = J+1 1</pre>		800 N #		CODIMOSC
<pre>IF (N2-2) 110.115.120 110 Y(N) = Y1(N2) 60 T0 800 115 Y(N) = (Y1(2)-Y1(1))/(X1(2)-X1(1))* (X(N)-X1(1))+Y1(1)) 60 T0 800 125 IF(X1(J)-X(N)) 130.140.150 120 J = J 130 J = J+1 130 J = J+1 130 J = Y1(J) 130 J = Y1(J) 130 J = Y1(J) 130 J = J+1 145 Y(N) = (Y1(N2)-Y1(N2-1))/(X1(N2)-X1(N2-1))*(X(N)-X1(N2-1)) 130 J = J+1 150 IF(J-N2) 125.155.160 150 IF(J-2) 115.155.160 155 K = 3 155 K =</pre>	_			CODIM059
<pre>110 Y(N) = YI(N2) G0 T0 800 115 Y(N) = (YI(2)-YI(1))/(XI(2)-XI(1))* (X(N)-XI(1))+YI(1)) G0 T0 800 120 J = 1 120 J = 1 120 J = 1 140 Y(N) = YI(J) G0 T0 800 130 J = J+1 If(J-N2) 125:125:145 145 Y(N) = (YI(N2)-YI(N2-1))/(XI(N2)-XI(N2-1))*(X(N)-XI(N2-1)) 130 J = J+1 I + YI(N2)-YI(N2-1)/(XI(N2)-XI(N2-1))*(X(N)-XI(N2-1)) 130 J = J+1 I + YI(N2)-YI(N2-1)/(XI(N2)-XI(N2-1))*(X(N)-XI(N2-1)) 130 J = J+1 10 + YI(N2)-YI(N2-1)/(XI(N2)-XI(N2-1))*(X(N)-XI(N2-1)) 130 J = J+1 10 + YI(N2)-YI(N2-1)/(XI(N2)-XI(N2-1))*(X(N)-XI(N2-1)) 130 J = J+1 130 J = J</pre>		(2-2)		CODIMO60
<pre>G0 T0 800 115 Y(N) = (Y1(2)-Y1(1))/(X1(2)-X1(1))* (X(N)-X1(1))+Y1(1)) G0 T0 800 120 J = 1 125 IF(X1(J)-X(N)) 130,140,150 125 IF(X1(J)-X(N)) 130,140,150 130 J = J+1 140 Y(N) = Y1(J) G0 T0 800 130 J = J+1 10 J = J 130 J = J+1 10 0 000 150 IF(J-N2) 125,125,145 145 Y(N) = (Y1(N2)-1))/(X1(N2)-X1(N2-1))*(X(N)-X1(N2-1)) 130 J = J+1 10 10 + Y1(N2 - 1) 10 0 000 150 IF(J-N2) 115,155,160 155 K = 3 1</pre>	110	N		COD1M070
<pre>115 Y(N) = (Y1(2)-Y1(1))/(X1(2)-X1(1))* (X(N)-X1(1))+Y1(1) 60 T0 800 120 J = 1 125 IF(X1(J)-X(N)) 130,140,150 140 Y(N) = Y1(J) 140 Y(N) = Y1(J) 130 J = J+1 140 Y(N) = Y1(J) 130 J = J+1 140 Y(N) = Y1(N2)-Y1(N2)-X1(N2)-X1(N2-1))*(X(N)-X1(N2-1)) 130 J = J+1 145 Y(N) = Y1(N2) - Y1(N2)-Y1(N2)-X1(N2)-X1(N2-1))*(X(N)-X1(N2-1)) 130 J = J+1 150 If(J-2) 115,155,160 150 If(J-2) 115,155,160 155 K = 3 155 K = 3 155 K = 3 155 Y = 3 150 If(J = 1) 150 If(J</pre>		GO TO 800		CODIMOBO
<pre>115 T(N) = (Y1(2)-Y1(1))/(X1(2)-X1(1))* (X(N)-X1(1))+Y1(1)) 60 T0 800 125 IF(X1(J)-X(N)) 130,140,150 140 Y(N) = Y1(J) 60 T0 800 130 J = J+1 15 Y(N) = (Y1(N2)-Y1(N2-1))/(X1(N2)-X1(N2-1))*(X(N)-X1(N2-1)) 185 Y(N) = (Y1(N2)-Y1(N2-1))/(X1(N2)-X1(N2-1))*(X(N)-X1(N2-1)) 1 + Y1(N2 - 1) 60 T0 800 150 IF(J-2) 115,155,160 150 IF(J-2) 115,155,160 151 IF(J-2) 115,155,160 151 IF(J-2) 115,155,160 152 IF(J-2) 115,155,160 153 IF(J-2) 115,155,160 154 IF(J-2) 115,155,160 155 IF(J-2) 115,155,160 157 IF(J-2) 115,155,160 157 IF(J-2) 115,155,160 158 IF(J-2) 115,155,160 159 IF(J-2) 115,155,160 150 IF(J-2) 150 IF(J-2) 115,155,160 150 IF(J-2) 115,155,160 150 IF(J-2) 115,155,150 150 IF(J-2) 115,155,150 150 IF(J-2) 150 IF(J-2)</pre>				COD I MD 86
<pre>60 10 800 120 J = 1 125 IF(XI(J)-X(N)) 130,140,150 140 V(N) = Y1(J) 60 T0 800 130 J = J+1 1</pre>	115	Y(N) = (YI(2) - YI(1)) / (XI(2) - X)		CODIM090
<pre>120 J = 1 125 FfXf(J)-X(N)) 130,140,150 140 v(N) = Y1(J) 60 T0 60 130 J = J+1 145 Y(N) = (Y1(N2)-Y1(N2-1))/(X1(N2)-X1(N2-1))*(X(N)-X1(N2-1)) 1 + Y1(N2 - 1) 60 T0 800 15 F(J-2) 115,155,160 15 F(J-2) 115,155,155 15 F(J-2) 115,155 15 F(J-2) 115 15 F(J-2) 115,155 15 F(J-2) 115 15 F(J-2) 15 15 F(J-2) 115,155 15 F</pre>				CODIMIGO
<pre>120 J = 1 125 If(X!(J)-X(N)) 130.140.150 140 V(N) = Y1(J) 60 T0 600 130 J = J+1 15 Y(N) = (Y!(N2)-Y!(N2-1))/(X!(N2)-X!(N2-1))*(X(N)-X!(N2-1)) 1 + Y1(N2) - Y1(N2)-Y1(N2)-X!(N2-1))*(X(N)-X!(N2-1)) 1 + Y1(N2) - Y1(N2) - Y1(N2)-X!(N2-1))*(X(N)-X!(N2-1)) 1 + Y1(N2) - Y1(N2</pre>				CODIM1005
$\begin{array}{llllllllllllllllllllllllllllllllllll$	120			CODIMIIC
<pre>140 Y(N) = Y1(J) G0 T0 600 130 J = J+1 IF(J-N2) 125.125.145 145 Y(N) = (Y1(N2)-Y1(N2-1))/(X1(N2)-X1(N2-1))*(X(N)-X1(N2-1)) 1 + Y1(N2 - 1) G0 T0 800 150 IF(J-2) 115.155.160 156 IF(J-2) 115.155.160 156 K = 3 JJ = 1 G0 T0 185 C T0 185 C T0 185</pre>	621	2		CODIMIZO
<pre>Go TO B00 130 J = J+1 150 J = J+1 150 J = V1(N2)-Y1(N2-1))/(X1(N2)-X1(N2-1))*(X(N)-X1(N2-1)) 150 F(J-2) 115.155.160 150 F(J-2) 115.155.160 155 K = 3 155 K = 3 15 K = 3 15 K = 3 15 K = 3 15 K = 7 1</pre>	140	(C) LA = (N)A		CODIM130
<pre>130 J = J+1 145 Y(N) = (YI(N2)-YI(N2-1))/(XI(N2)-XI(N2-1))*(X(N)-XI(N2-1)) 145 Y(N) = (YI(N2)-YI(N2-1))/(XI(N2)-XI(N2-1))*(X(N)-XI(N2-1)) 1</pre>		GO TO BOO		CODIM140
<pre>130 J = J+1 150 J = J+1 145 Y(N) = (YI(N2)-YI(N2-1))/(XI(N2)-XI(N2-1))*(X(N)-XI(N2-1)) 145 Y(N) = (YI(N2)-YI(N2-1))/(XI(N2)-XI(N2-1))*(X(N)-XI(N2-1)) 156 IF(J-2) 115.155.160 156 IF(J-2) 115.155.160 155 K = 3 155 K = 3 15 J = 1 60 T0 185 7 Three Points) 7 Three Points)</pre>				COD1M149
<pre>IF(J-N2) 125.125.125.145 145 Y(N) = (YI(N2)-YI(N2-1))/(XI(N2)-XI(N2-1))*(X(N)-XI(N2-1)) 1</pre>	130	[+7 #		CODIM150
<pre>145 T(N) = (Y1(N2)-Y1(N2-1))/(X1(N2)-X1(N2-1))=(X(N)-X1(N2-1)) 1</pre>		Z		CODIM160
<pre>1 + Y1(N2 - 1) 60 T0 600 150 IF(J-2) 115.155.160 155 K = 3 J = 1 60 T0 185 7 Three Points) 61 Three Points)</pre>	142	Ħ	[2]+X](N2+])]+(X(N)+X](N2+]))	CODIM170
60 T0 800 150 IF(J-2) 115,155,160 155 K = 3 JJ = 1 GO TO 185 Parabolic Curve Fitting Subroutine (Three Points)		·		CODIM180
<pre>150 IF(J-2) 115.155.160 155 K = 3 J = 1 G0 T0 185 Curve Fitting Subroutine (Three Points)</pre>		20		CODIM190
F(J-2) 115,155,160 K = 3 JJ = 1 GO TO 185 Parabolic Curve Fitting Subroutine (Three Points)				CODIM199
 x = 3 J = 1 Go To 185 (Three Points) 	150			COD1 M200
• 1 TO 185 Parabolic Curve Fitting Subroutine (Three Points)	561			CODIM210
10 185 Parabolic Curve Fitting Subroutine (Three Points)		# i		COD1M220
(Three Points)		10 185	abolic Curve Fitting Subroutine	CODIM230
			(Three Drints)	

•			
CODIN240 CODIN250 CODIN250 CODIN260 CODIN260 CODIN290 CODIN290 CODIN290	CODIM320 CODIM320 CODIM320 CODIM320 CODIM320 CODIM320 CODIM320 CODIM320 CODIM320 CODIM320 CODIM320 CODIM320 CODIM320 CODIM320	CODIN450 CODIN450 CODIN450 CODIN460 CODIN460 CODIN460 CODIN500 CODIN500 CODIN500	CODIM530 CODIM540 CODIM540 CODIM560 CODIM560 CODIM580 CODIM580 CODIM599 CODIM599 CODIM599 CODIM599 CODIM530 CODIM530
8888888	88888888888888888888888888888888888888	, , , , ,	88888888888888888
Į		1	Fitting Subroutine
	• •		Fitting
		i	Curve F
		l,	
	3 ×2+ <u>71</u> ×21-71		1) (X1(2) - (X1(3) - (XM1 + XM2 (XM1 + XM2 (XM1 + XM2 (XM1 + XM2 (N2-1) (N2-1) Parabolic
		1))) +C 2)) +C 2)) +C ())-X ())-X () +C () -X]()	
145	I(K) I(K) I(K-2) I(K-2) I(K-1) I(K) I(K-1) I(K-1) I(K-1) I(K-1) I(K-1) I(K-1) I(K-1) I(K-1) I(K-1) I(K-1) I(K-2) I(K) I(K) I(K) I(K) I(K) I(K) I(K) I(K	L - (2) - (2	+ (1-0-AL)+YI(21-322-322 ((2) - Y1(1)) / ((3) - Y1(2)) / ((3) - Y1(2)) / ((2)
	YNYYNY XX		+ (1.0 21.322. 521.322. 52.41 4(2-51 1(3) - + (2-51) + (2
• 30			*2112 * 10 F
i ji	<pre>M = 1.2 (K-1)-X1(K) (K)-X1(K-2) (K)-X1(K-2) (K-2)-X1(K-1) (K-1)-Y1(K) (K-2)-Y1(K-1) (K-2)-Y1(K-1) (K-2)+X2 (K-2)+X2 (K-2)+X2 (K-1)+X2 (K-1)+X2 (K(K-1)+X2 (X1+X1</pre>	N)+(A(1) N)+(A(1) N)+(A(2))+(A(2) N)+(A(2))+(A(2	FYI(2) + (1.0- (PE) 321.322. WBS (YI(2) - Y WBS (YI(3) - Y WBS (XM] - + XK #(P2-S] S50 F YI(N2-1)) F YI(N2) + (1.0) (PE) 331.332.
IF(J_N2) 170+16' K = N2-1 JJ = 2 GO TO 185 IF(J-IN) 180+30' JJ = 3 K = J			 AL*YI(2) (SHAPE) 33 (SHAPE) 34 (SHAPE) 35 ABS (Y) ABS

```
XMI = ABS (YI(N2 - 1) - YI(N2)) /(XI(N2 -1) - XI(N2))
XM2 = ABS (YI(N2 -2) - YI(N2 -1)) / (XI(N2 -2) - XI(N2 -1))
XX = 1° - ABS (XM1 -XM2) / (XM1 + XM2)
P2 = S + XK*(P1-S)
                                         50 E1 = ABS (P1-S)
E2 = ABS (P2-S)
IN = J
IF(E1+E2) 700,700,750
00 Y(N) = S
60 T0 800
50 YUM = E1 * AL + (2, - AL) * E2 * P1
YEN = E1 * AL + (2, - AL) * E2
                                                                                                                             800 CONTINUE
                                                                                                                                               900 RETURN
END
                            332
                                             350
                                                                                 700
                                                                                                  750
  331
                                    v
                                                                                                                                        υ
```

Parabolic Curve Fitting Subroutine (Three Points) (Cont)

ţ

¢

.

+

r

∢

÷

1

۹

5 DUK	ACOLOMAL DATA REAU SURVOUPING	•
SURROUT INF	LINE DATINK	00000011
		0000013
	DATA MAY BE ENTERED AS CONSTANTS THROUGHOUT (SEE EX BELOW	00000000 • (MC
AS DISCRETE	VALUES, FOURIER SERIES FOR UNSYMMETRICAL LOA	1
CURVE	FITING TABLE LOOKUP OR A COMBINATION OF THESE	00000022
** NOMENCLATURF	FOR SDA DATA **	
	L"= UNIT OF	LENGTH 0000049
	P = UNIT OF	
Nda	F POINTS	0000001
*GEOMI	INDICATOR	0000052
	N OF INT	00000053
** *UK	IG VALUE - PHI D	00000054
*VK	<u></u>	00000055
×wK	* * * - N DIRECTION	00000056
*ENK	- MOMENT	
IS4*	VGLE AT THE END OF THE REGION	S E E
*ECX	CITY OF REFERENCE SURFACE AT BOTTOM DI	ISCONT. 00000059
*BCIT	DARY CONDITION INDIC	0000060
* BC1B	* * • BOTTOM	0000061
*PFLAG	INDICATOR NON-ZERO PRINTS ALL INPUT DA	
*STRI	ND STRESS PRINT (OTHER = INNER	SURFACE) 0000063
10d**	S RATIO	0000064
+DEL	RETWEEN STATIONS. ARC LENGTH	0000065
EX	DICATOR. USE ONLY WHEN	- 1
	STANTS=ALL CONSTANTS. +1=S	PROP. 00000067
	AND TENP. LDS., +2=SYMMETRICAL PRES	NO TEMP0000068
	T ALL DATA FOR MULTIPLE REG	* 00000069
*TLOC(5)	USED BY DATLDS TO PRESERVE TABLE LOCATION	0000079
		0000080
(I) C **	STIFFNESS	0000081
**EK(1)	FNFSS	0000082
**ENT([)	TEMPERATURE LOAD (DIM)	0000083
**ENT(T)	-	0000084
**PFE(1)	ER COMPONENT FOR LOAD -	0000085
(1)H14**	DITTO * * * - THETA DIRECTION	0000086
([)Nd**	1	0000087
**E](])	MODULUS OF ELASTICITY FOR N SUMMATIONS	ļ
(I) <u>1</u> ##	- 22 -	* 0000089
	Regional Data Read Sub	

HOX(I) R / AU AMATI: RHO' TRHO I) DISTANCE THD(I) DISTANCE THD(I) VERTICAL M1(4-4) DIAGONAL M3(4-4) DIAGONAL M3(4-4) DIAGONAL M5(4) COLUMN BO M1N_EM3N_EM5N A			X X X X X X X X X X X X X X X X X X X	
7RHC ANCE DIMEN * * ONAL ONAL ONAL	FUIRAL ANIS		00000000	
DIMEN DIMEN A * * DIMEN MN BO MN BO MN BO			0000093	
DIMEN *** ONAL ONAL MN BO	XIS (L) CC	M SUBROUTINE	00000044	
***	CURVATURE - THEY	NO	00000095	
TCAL ONAL MN BO P	*		000000000	
ONAL ONAL MN BO	STANCES (L		26000000	
ANN N	*OMEGA	= 6.	0010000	
Z	RY DISPLACEMENT MATRIX	*	10100000	
A A	MATRIX *L* TOP OF OPEN	SHELLS	00000102	
a	E FOR BCIB =		00000105	
	LERS FUR ZND STRESS		00000106	
			00000107	
3C1			00000215	
		USUALLY IN	00000276	
5				i
DIMENSION D(150) FK(150)	FNT(150) - FMT(150).	DEE(150).	61200000	
PIHITSO1.			00000201	
		•		
		4 · · • • • • • • • • • • • • • • • • •	00000382	
	V. CENTON, GEOMI V	1005	66200000	
			000000000000000000000000000000000000000	
			1000000	
. PFLAG	NL		•00000303	
DA(16+17+18 AND	STORAC		0000304	
4(SDA(20), TLOC),	ì	6 IOd	00000305	
۵	• EK) • (SDA(326) • ENT) •	476), EMT)	+00000311	
PFE) • (. PTH).(SDA(926). PN)	• E1)	+0000312	
3(SDA(1226)+ T 1.(SDA(1376	1+ALF)+(SDA(1526)+ DNA)	(12X+(00000313	
RHOX) , () . GAMA) . (SDA(1974) . R) .	WTHD)	•0000014	
<u>`</u> •).EM1).(SDA(2442). EM3)	1.EM51	+0000315	
V (SDA () • EMAN) • (SDA (2494) • FM5N	(23.(0	-	
7(SDA(2648)+P012)+(SDA(2799	9) • T2) • (SDA(2949) • DNA2)		0000317	
			00000339	
ENCE (DA(1).).(DA(2). A0)	· Ho	+00000340	
I (DA(4) + E3) + (DA(5) +) • (DA(6) • PIXI)	•(DA(7), PTHI).	+0000041	
2(DA(8), SUM),(DA(9),	ENFO) . (DA(10) . ENFI) . (DA) + FNFOR)	+0000042	
3(DA(25). THETA)			0000343	
			0000349	
V DA(351, NTPW	PR. K1	• S1• S2•	0000350	
I KKE, S03, S04, S06, ENF,	IFR. KLM	i	00000351	
	Regional Data Read Subroi	Subroutine (Cont)		
-1		•		

- 195 -

	00000397 00000398 00000400 00000401 00000401 00000403 00000403 00000405 00000405	X51 0000408 00000410 00000411 00000411 00000416 00000416 00000418 00000418 00000419 00000420 00000421 00000421	00000423 00000424 00000425 00000425 00000425 00000428 00000429 00000430
TEST INDICATOR FOR FIRST PASS TEST FOR ÑĖW LÖÄDS ČAŠE ONLY ZERO LUADS AREAS		SET UP R. RHOX. GAMA. WTH. WFE. READ REGION DATA CHECKOUT CONSTANT DATA	
NS = 1.KKE 1 10.200.10 •NE. 0.1 GO TO 200	0. 0. 0. 0. 0. 0. 0. 0.	GEOM(NS) = 1. DECRD (SDA) EN) 20.60.40 1. /(E0 * H0) 1. / S06 A0 * 54	D * 53 EK * 53 /HO **2 ENT * 54 EMT * 55 /HO **2 PFE * 55 PTH * 55 PTH * 55 PT

- 196 -

30000434 01000434 01000437 01000437 00000438 00000438 000004440 00000446 00000446 00000445 00000445		0000468 00000469 00000470 00000472 00000473 00000473 00000475 00000475 00000475	00000478 00000480 00000485 00000485 00000485 00000483 00000488 00000488
$ \begin{bmatrix} I(1) &= T \\ ENI(1) &= FNT \\ ENI(1) &= ENT \\ EMI(1) &= PFE \\ ALF(1) &= PFE \\ PTH(1) &= PTH \\ DNA(1) &= PNN \\ 30 PN(1) &= PNN \\ 31 S1 &= 1 - POI \\ S2 &= 1 - POI \\ S2 &= 1 - POI \\ G0 T0 305 \\ C &= 1 - POI \\ C &= 1 $	SZ 1 + POI ENOT 0. 1 + POI ENOT 0. 1 + POI IF(EX .= EQ. 2.) 60 T0 50 CONSTANT SECTION PR CONSTANT SECTION PR CONSTANT SECTION PR S3 E1 /(1 - POI **2) S4 2 ABS(DNA) /H0 + D S3 /E0 54 54 EK 54 42 60 D S3 /E0 40 + D D(2) /E0 /H0 + 3 EK FK(2) /E0 /H0 + 3	$ENT = EIENT = 0,ENT(1) = 0,ENT(1) = 0,ALF(1) = 1,1(1) = 1,E(1) = 1,\\E(1) = 1,\\$	45 DNA(1) = DNA Gr 10 305 CONSTANT PRESSURES, NO TEMPERATURES 50 55 = A0 /SQ6 PM = PN * 55 PTH = PTH * 55 DO 55 1 = 2.N Regional Data Read Subroutine (Cont

- 197 -

PFL(1) = PFL PTH(1) = PTH GO TO TO = PTH GO TO TO = PTH CALL DATLDS(NS) SET UP PN, PFE, PTH, TWP CALL DATLDS(NS) = SET UP PN, PFE, PTH, TWP CALL DATLY, STS, 40HSECTION AND MATERIAL OROPERTIES - REGION, 14) FF18.2 = SE0, 0.) 60 TO TO FF18.2 = SET UP D, EK, FNT, FMT, F1, T, ALF, DNA FCMATLYRI NS) = SET UP D, EK, FNT, FMT, F1, T, ALF, DNA SA(16) = ENOT	PFE(1) = Atury		c たまうつつつい	:
PTH(1) E PH 00000491 00 10 70 0000491 00 10 70 0000050 EFPTH 61 001 0000051 FFPTLG 001 000052 0000052 FFPTLG 001 000052 0000052 FFPTLG 001 0000052 0000052 FFPTLG 001 0000052 0000052 FFRES 551 UP EK 0000052 FFRES 60 10 100 0000052 FFRES 551 UP EK EK 0000052 FFRES 60 10 100 0000052 0000052 FORT 551 0000052 0000052 0000055 FORT 551 551 551 551 551 FRES 561 551 551 561 552 FRES 561 551 561 552 561 551			10030494	
Got To To <thto< tr=""> Terreptic Te<</thto<>			00000495	
Call DatLDS(NS) SET UP PN, PFE, PTH, TWP 00000001 F[FPHH = Git 0 + 3 G0 TO 120 0000051 00000521 F[SL2.62, 0+ 3 G0 TO 71 00000521 00000522 F[SL2.62, 0+ 3 G0 TO 71 00000522 00000522 F[SL2.62, 0+ 3 G0 TO 71 00000522 00000522 F[SL2.62, 0+ 3 G0 TO 71 00000522 00000522 FRASTER (317, 35, 14, 27% 40HSETION AND WATERIAL PROPERTIES - REGION, 1410000524 00000525 FRARAT (141, 27% 40HSETION AND WATERIAL PROPERTIES - REGION, 1410000524 00000525 FRARAT (141, 27% 40HSETION AND WATERIAL PROPERTIES - REGION, 1410000524 00000525 FRARAT (141, 27% 400007100 SAVE DATA ON TAPE IZ OR 13 0000534 00000534 SPATIAL (141, 27% 400071001 SAVE DATA ON TAPE IZ OR 13 0000534 00000534 SPATIAL (15, 15, 1600071 SAVE DATA ON TAPE IZ OR 13 0000534 00000534 SPATIAL (141, 15, 1600071 SAVE DATA ON TAPE IZ OR 13 0000534 00000534 SPATIAL (17, 171, 11, 11, 11, 11, 11, 11, 11, 11,	10		09000497	
Call DATLOS (NS) SET UP PN, PFE, PTH, TWD 00000950 IF(PFLKa = UT, 0,) G0 T0 721 0000920 0000920 IF(PFLKa = UT, 0,) G0 T0 71 0000920 0000920 IF(PFLKa = UT, 0,) G0 T0 74 0000920 0000920 WRITE (57:27) *60.1) G0 0000922 00009225 F(RBS(FX) *60.1) G0 000 0000922 F(RBS(FX) *60.1) G0 000 0000924 F(RBS(FX) *60.1) G0 000 0000924 F(RBS(FX) *60.1) G0 000 0000934 Call DALLYRI NS) SET UP D+ EK+ ENI+ F1+ T+ ALF - DNA 00000324 SA(16) = ENOT SET UP D+ EK+ ENI+ F1+ T+ ALF - DNA 00000334 SA(16) = ENOT SAVE DATA ON TAFE 12 OR 13 00000334 SA(16) = ENOT 00000340 00000346 MRITE (KFPW) (SDA(1)+ I= 1+3098) 00000346 00000346 MARTE (A) (SDA(1)+ I= 1+3048) 000000346 00000346			00000498	
Call DatESt MS) 0000050 IFCPTHI delt off 00 10 120 0000051 IFERTKE : 0.0. GO TO TY 0000052 IFERTKE : 0.0. GO TO TO TO 0000052 IFERSTY := 0.0. 1.0 0010052 IFTABSTEY := 0.0. 1.0 0010052 CALL DATLYRI NS) SET UP D: EK. FNI : FIL : ALF. DNA ON00529 SDA(10) = ENOT SAVE DATA ON TAPE 12 OR 13 0000549 SDA(10) = ENOT SAVE DATA ON TAPE 12 OR 13 0000549 SDA(10) = ENOT AWAYS PRINT ON NEGATIVE PFLAG SDA(10) = ENOT ON 0000549 SDA(11) = 1,30091 ON000549 SDA(10) = ENOT ON 0000549 SDA(10) = ENOT ON 0000549 SDA(10) = ENOT ON 0000549 SDA(10) = ENOT ON 0000540 STAVE DATA ON TAPE 12 OR 13 0000540 <td>SET UP</td> <td>PFE, PTH,</td> <td>0000000000</td> <td>10.11 2 11 11 11 11 11 11 11 11 11 11 11 11</td>	SET UP	PFE, PTH,	0000000000	10.11 2 11 11 11 11 11 11 11 11 11 11 11 11
IF(F)HI -61 0.000551 00000551 IF(R)L -0.0 00 0000522 CMRIE 6.71 00 00000522 CMRIE 6.72 00000522 00000522 CMRIE 6.72 00000522 00000522 CMRIE 6.72 00100526 00000523 CMRIE 0.71 00000520 00000523 CMLL DATLYRI NS 5ET UP D+ EK+ FNI+ F1+ T+ ALF+ DN 00000523 SA116) = ENOT 5ET UP D+ EK+ FNI+ F1+ T+ ALF+ DN 00000523 SA116) = ENOT 0010103 5A 00000533 PRTE (KPW) (SOA11+ I = 1+30081 5AVE DAT ON TAPE I 2 OR I3 00000533 PRTE 60 TO 103 SAVE DAT ON TAPE I 2 OR I3 00000542 00000542 PRTE 60 TO 103 ALWAYS PRINT ON NEGATIVE 00000542 00000542 PRTE 60 TO 103 ALWAYS PRINT ON NEGATIVE 00000542 00000542 PONDIO TOTO 001 103 ALWAYS PRINT ON NEGATIVE 00000542 PONDIO TOTO TOTO 00000542 00000554	CALL DATLDS(NS)		00000200	
FIFELS 60 TO 120 00000510 FIFELS 0000052 0000052 FIFELS 0001052 0000052 FIFELS 0001052 0000052 FIFELS 0001052 0000052 FIFELS 0000052 0000052 FIFELS 0000052 0000052 FIFELS 0000052 0000052 FIFELS 0000052 0000052 FIFERS 0000053 0000053 SDA(16) ENOT 0000054 SALL DATVRI NS SAVE DATA ON TAPE IN 0000054 SALL DATVRI NS SAVE DATA ON TAPE IN 0000054 SALL DATVRI NS SAVE DATA ON TAPE IN 0000054 SALL DATA ON TAPE IN SAVE DATA ON TAPE IN 0000054 SALL DATA ON TAPE IN SAVE DATA ON TAPE IN 0000054 WRITE (KTVPU) (SDATA) SAVE DATA ON TAPE IN 0000054 FIFTAPLUS (SO TO 103 ALWYS PRINT ON REGATIVE PELAG 0000054 FIFTAPLUS (SO TO 103 ALWYS PRINT ON REGATIVE PELAG 0000054 FIFTAPLUS			00000501	
FIFTELS = EGO. 0.0. GO TO TI 00000520 WITE (5.72) * 50 0.0.00 GO TO TA 00000524 WITE (5.72) * 50 0.0 0.0000526 FFRASTERT) = EO. 1.1) GO TO	IF(PTHI .61. 0.)		00000210	
IFISL: 660. 0.01 60 T0 T4 00000521 FFRE (6.77) 867 10 000 FFRE (6.77) 867 10 100 Call DATURE (1) 1 1 1 Solisb 5 57 10 0000033 Solisb 50000334 00000334 00000344 Solisb 5 00000344 00000344 Solisb 5 00000344 00000344 Solisb 5 00000344 00000344 WRITE 6.10 00 00000344 00000344 FFFELGE 00 00000344 00000344 00000344 MRITE 6.10 00 10 11 11 11 11 FFFELGE 00 00 00 0000344 00000344 00000344 MRITE 6.10 10 <td>IF(PFLAG .LT. 0.) 60 TO</td> <td>1</td> <td>00000520</td> <td></td>	IF(PFLAG .LT. 0.) 60 TO	1	00000520	
CALL DATLYRI 0000522 FORMIE (14.72) 0000525 FORMIE (14.72) 00100526 FORMIE (14.23) 00100526 FORMIE (14.20) 00000530 FORMIE (14.20) 00100526 SET UP D. EK. FNT. FMT. F1. T. ALF. DNA 00000530 00000556 00000554 SDA(16) ENOT SAVE DATA DATA ON TAFE SDA(16) ENOT SAVE DATA N TAFE SAVE<	IF(SL2 .EQ. 0.) GO TO		00000521	
FORMATIL ILI CONTOS24 IFTABSTEXT COTOD052 00000525 IFTABSTEXT COTOD052 00000525 CALL DATTYRL NS 5ET UP D. ÉK. FNT. FMT. EL. T. ALF. DNA 00000525 CALL DATTYRL NS 5ET UP D. ÉK. FNT. FMT. EL. T. ALF. DNA 00000525 SDATI6J ENOT SAVE DATA ON TAPE IZ OR 13 00000555 SDAT16J ENOT SAVE DATA ON TAPE IZ OR 13 00000555 SDAT16J ENOT SAVE DATA ON TAPE IZ OR 13 00000546 SDAT16 ENOT 00000546 00000546 SAVE DATA ON TAPE IZ OR TO 103 ALWAYS PRINT ON NEGATIVE PFLAG 00000546 IF(5L2<60.0.1) GO TO 103	WRITE (6,72)	No	00000522	;
IF(ABS(FX):=60.1:) G0 10 100 CALL DATLYR(NS) SET UP D: EK; FNI; FMI; E1; T. ALF; DNA 0000535 SDA(16) E AOT SET UP D: EK; FNI; FMI; E1; T. ALF; DNA 0000535 SDA(16) E AOT SAVE DATA ON TAPE 12 OR 13 0000535 WRITE (KTPW) (SDA(1); I = 1;3008) SAVE DATA ON TAPE 12 OR 13 0000547 00000547 PRITE (KTPW) (SDA(1); I = 1;3008) SAVE DATA ON TAPE 12 OR 13 0000547 00000547 PRITE (KTPW) (SDA(1); I = 1;3008) ALWAYS PRINT ON NEGATIVE PFLAG 00000547 PRODOF ALWAYS PRINT ON NEGATIVE PFLAG 00000547 00000547 POD000547 OR FOR FIRST FOURTER COMPONENT 00000546 00000546 POD000547 OR 000546 00000546 00000546 POD000547 OR FOR FIRST FOURTER COMPONENT 00000546 00000546 PORTITI: (11): 1 (11): 1 = 1,N) DATA ON THE COMPONENT 00000546 00000556 PORTITI (11): 1 (11): 1 = 1,N) DATA ON SECOND STRESS PRINT 00000546 00000556 PRRAT T(11): 1 (11): 1 = 1,N) DATA ON SECOND STRESS PRINT 00000556 00000556 PATICIT T(11): 1 (11): 1 = 1,N) DATA ON SECOND STRESS PRINT D00000566 000000566 </td <td>FORMAT(1H1, 27X, 40HSECTION AND MATERIAL</td> <td>- REGION.</td> <td></td> <td></td>	FORMAT(1H1, 27X, 40HSECTION AND MATERIAL	- REGION.		
CALL DATLYRI DS DST UP DS DS <thds< td=""> <thds< th=""> DS <</thds<></thds<>	IF (ABS(FX) EQ. 1.) GO TO 10		<u>500000</u>	
Call Datuk Dist up Dist up <thdist th="" up<=""> <thdist th="" up<=""> <thdist td="" u<=""><td></td><td></td><td>00000526</td><td></td></thdist></thdist></thdist>			00000526	
Call Daturer NS) 00000530 SDA(16) = ENOT SAVE DATA ON TAPE I2 OR 13 0000594 SDA(16) = ENOT SAVE DATA ON TAPE I2 OR 13 0000594 SPRIFE (KTPW) (SDA(1), 1 = 1,3098) SAVE DATA ON TAPE I2 OR 13 0000394 PFRPEAG =.T* 0.3, 60 TO 103 ALWAYS PRINT ON NEGATIVE PFLAG 00000546 PFRPEAG =.T* 0.3, 60 TO 103 ALWAYS PRINT ON NEGATIVE PFLAG 00000546 PFRIET (5-107) EX. POL, POL2. STRI. (1, D(1), EK(1),F1(1), ALF(1), 0000546 00000546 VRITE (5-107) EX. POL, POL2. STRI. (1, D(1), EK(1),F1(1), ALF(1), 0000546 00000546 VALINI: T(1), I = 1,N) 00000546 00000546 DNA(1): T(1), I = 1,N) 0000546 00000546 DNA(1): T(1), I = 1,N) 00005569 00000566 DNA(1): T(1), I = 1,N) 00005569 00000566 DNA(1): T(1), FRI(1), SDA(19), SDA(17), (1, PF(1), 0000569 00000566 PHPOL2 == E1344 //30X;1918), SDA(19), SDA(17), (1, PF(1), 0000569 00000566 PHD(1): JAS, SHER = SDA(17), (1, PF(1), 000	C UP D. EK, ENT,	FMT, El, T, ALF.	00000529	:
SDA(16) = ENOT SAVE DATA ON TAPE 12 OR 13 00000535 WRITE (KTPW) (SDA(1), I = 1,3098) SAVE DATA ON TAPE 12 OR 13 0000547 IF(PELAG =L1: 0) (60 TO 10] ALWAYS PRINT ON NEGATIVE FFLAG 00000545 IF(SL2 = Eq. 0.) (60 TO 103 ALWAYS PRINT ON NEGATIVE FFLAG 00000547 OBA(1) = 1,0) 00 TO 103 ALWAYS PRINT ON NEGATIVE FFLAG 00000547 OBA(1) = 1,0) 00 TO 103 ALWAYS PRINT ON NEGATIVE FFLAG 00000547 OBA(1) = 1,0) 00 TO 103 ALWAYS PRINT ON NEGATIVE FFLAG 00000547 OBA(1) = 1(1), 1 = 1,0) ORDO 00000547 00000547 DNA(1) = 1(1), 1 = 1,0) ORDO 57 00000550 PREMAT (7/7)=15x, 4HEX = 1PE13,44 BX, 5HPOI = E13,44 00000550 DNA(1) = 1(1), 1 = 1,0) ORDO 00000550 00000550 PREMAT (7/7)=15x, 4HEX = 1PE13,44 BX, 60000550 00000556 SHDO(1)=12X+HEX NO. FOR SECOND STRESS PRINT BX, 60000556 00000556 SHDO(1)=12X+HEX NO. FOR SECOND STRESS PRINT BX, 60000556 00000556 SHDO(1)=12X+HEX NO. FOR SECOND STRESS PRINT BX, 60000556 00000556 SHDO(1)=12X+HEX NO. FOR SECOND STRESS PRINT BX, 600	CALL DATLYR(NS)		00000530	
SDA(16) = ENOT SDA(16) = ENOT 00000555 WRITE (KTPW) (SDA(1), I = 1,3098) SAVE DATA ON TAPE IZ OR I3 0000542 00000542 F(PFLdG ~L* 0.) 60 T0 103 ALWAYS PRINT ON NEGATIVE PFLAG 00000545 IF(3L2 *EQ. 0.) 90 T0 103 ALWAYS PRINT ON NEGATIVE PFLAG 00000546 MRITE (5:102) EX: POI 00100547 00000546 OR FOR FIRST FOURTER COMPONENT 00000546 00000546 MRITE (5:102) EX: POI 00100547 00000546 OR FOR FIRST FOURTER COMPONENT 00000546 00000546 MRITE (5:102) EX: POI POIL F(1), F(1), ALF(1), 0000540 DNA(11): T(1): I = 1,N) 000005561 000005561 DNA(11): T(1): I = 1,N) 000005561 000005662 DNA(11): T(1): I = 1,N) 00000560 000005662 DNA(11): T(1): ALF(1), PONCID ANTHI, RX, 0000560 000005663 APPOL2 17(1): J2X:40HE(1): 12X:40HE(1): 11X, 6HDNA(1)): 12X, 00000563 000005663 APPOL2 17(1): J2X:40HE(1): 12X:40HE(1): 11X, 6HDNA(1)): 12X, 00000563 0000005663 APPOL2 17(1): JX:40HE(1): 11X, 6HDNA(1)): 12X, 00000563 0000005663 APPOL2 17(1): JX:40HE(1): 11X, 6HDNA(1)): 12X, 00000563 00000	!	• 1	00000534	a a fa manager samme and the last of a statement when the
WRITE (KTPW) (SDA(I), I = 1,3098) SAVE DATA ON TAPE IZ OR 13 0003545 TF(PFLAG. LT. 0.) 60 TO 101 000005445 TF(SLZ = EG. 0.) 90 TO 103 000005445 TF(SLZ = EG. 0.) 90 TO 103 ALWAYS PRINT ON NEGATIVE PFLAG 000005445 NRITE (5.102) EX. POI, POI2. STRI, (I, D(I), EK(I), FI(I), ALF(I), A0000544 000005445 NRITE (5.102) EX. POI, POI2. STRI, (I, D(I), EK(I), FI(I), ALF(I), A0000540 000005445 NRITE (5.102) EX. POI, POI2. STRI, (I, D(I), EK(I), FI(I), ALF(I), A0000550 000005445 TORMAT (7/7:15X, 4HEX =: 1PE13.4. 8X, 5HPOI =: E13.4. 8X, 00000560 000005561 TORMAT (7/7:15X, 4HEX =: 1PE13.4. 8X, 5HPOI =: E13.4. 8X, 00000560 00000561 TORMAT (7/7:15X, 4HEX =: 1PE13.4. 8X, 5HPOI =: E13.4. 8X, 00000561 00000561 TORMAT (7/7:15X, 4HEX =: 1PE13.4. 8X, 5HPOI =: E13.4. 8X, 00000561 00000562 AHT(I) : (I, I, I = 1,N) 1 ALF(I), 11X, 6HDNA(I), 12X, 9HDOI =: E13.4. 8X, 00000561 AHT(I) : 1, (I, I, I = 1,N) 2 ADOI(1), 12X, 9HDOI =: E13.4. 8X, 00000561 AHT(I) : 1, (I, I, I = 1,N) 2 ADOI00561 2 ADOI00561 AHT(I) : 1, (I, I, I = 1,N) 2 ADOI00561 00000564 AHT(I) : 1, (I, I, I = 1,N) 2 ADOI00561 00000564 AHT(I) : 1, (I, I, I = 1,N) 2 ADOI00561 00000564 <	SDA(16) =		00000535	
WRITE (KTPW) (SDA(1), I = 1,3098) 0000541 00000541 IF(SL2.0.0.) GO IO 103 ALWAYS PRINT ON NEGATIVE PFLAG 00000545 MRITE (6,102) EX. POI, POI2, STRI, (1, D(1), EK(1),F1(1), ALF(1),0000548 00000546 WRITE (6,102) EX. POI, POI2, STRI, (1, D(1), EK(1),F1(1), ALF(1),0000548 00000548 MRATI, (1/1), I = 1,001 00000548 00000548 DNA(1), I(1), I = 1,001 00000540 000005560 DNA(1), I(1), I = 1,001 00000560 00000560 PORMAT (1/1), IX, 4HEX = 1PE13.44 8x, 5HPOI => E13.44, 8x, 00000560 DNA(1), I(1), I = 1,000 00000560 00000560 AHD(1): 113.13354HEK(1), 12X+6HDA AL(1), 11X, 6HDA AL(1), 12X, 00000560 00000566 AHT(1): // (14, IP6E17,7)) 00000560 00000560 BAHT(1): // (14, IP6E17,7)) 00000560	SAVED	ON TAPE 12 OR	00000539	
TF(PFLAG *LT* 0*) GO TO 101 00000542 00000542 IF(SL2 *E0* 0*) GO TO 103 ALWAYS PRINT ON NEGATIVE PFLAG 00000547 ALWAYS PRINT ON NEGATIVE PFLAG 00000547 00000544 WRITE (6*107) EX: POI: POI2* STRI; (I; D(I), EK(I),F](I), ALF(I), 0000554 00000554 WRITE (6*107) EX: POI: POI2* STRI; (I; D(I), EK(I),F](I), ALF(I), 0000554 00000554 WRITE (6*107) EX: POIS 000005560 000005560 PMONIN: T(1); T = 1,N) 000005560 000005560 AHD(1):113X:5HEK(I):12X:4HE(I); 12X:6HALF(I); 11X:6HDNA(I); 12X;0000560 000005562 AHD(1):13X:5HEK(I):12X:4HE(I); 12X:6HALF(I); 11X:6HDNA(I); 12X;0000565 000005564 AHD(1):113X:5HEK(I):12X:4HE(I); 12X:6HALF(I); 11X:6HDNA(I); 12X;0000565 000005564 AHD(1):113X:5HEK(I):12X:4HE(I); 12X:6HALF(I); 11X:6HDNA(I); 12X;0000565 000005564 AHD(1):113X:5HEK(I):12X:4HE(I); 12X;6HALF(I); 11X:6HDNA(I); 12X;0000565 000005564 AHD(1):113X:5HEK(I):12X:4HALF(I); 11X:6HDNA(I); 12X;0000565 000005564 AHD(1):113X:5HEK(I):12X:4HALF(I); 11X:6HDNA(I); 12X;0000565 000005564 AHD(1):113X:5HEK;10X:5HALF(I); 11X:6HDNA(I); 12X;0000565 000005564 AHD(1):12X:7HIT;2X:6HALF(I); 11X:6HDNA(I); 12X;0000565 000005564 PIH(I):PN(I): FN(I):10X:7HALF(I);0000561 000000	(KTPW) (SDA(I), I =		00000240	
<pre>IF(SL2 *EQ* 0*) GO TO 103 ALWAYS PRINT ON NEGATIVE PFLAG 00000547 00000547 00000547 00000547 00000547 00000548 000005548 00000550 FEMAIL 1717: 1 = 1,N) 00000550 00000550 1 6HPOI2 =* E13.4 //30X,35HLAYER NO. FOR SECOND SIRES PRINT = 00000560 1 6HPOI2 =* E13.4 //30X,35HLAYER NO. FOR SECOND SIRESS PRINT = 00000560 2 E13.4 // 2 /pre>	0.1 60 10	:	00000541	a second second is .
ALWAYS PRINT ON NEGATIVE PFLAG 00000547 0R FOR FIRST FOURIER COMPONENT 00000548 00000544 000005448 00000544 000005448 00000544 000005448 00000544 000005448 00000540 000005540 00000544 000005448 00000550 000005541 00000551 000005561 00000551 000005561 00000551 000005561 000005561 000005561 000005561 000005561 000005561 000005561 0011012 E13.44 NX 000005561 000005561 001111111 12X, 6HALF(11) 11X, 6HDMA(1) 000005561 000005561 000005561 000005561 000005561 000005561 000005561 000005561 000005561 000005561 000005561 000005561 000005561 000005561 000005561 000005561 000005561 000005561 00000562 000000562 0000056	0.) GO TO 103	;	00000542	
ALWAYS PRINT ON NEGATIVE PFLAG 00000547 OR FOR FIRST FOURIER COMPONENT 00000549 WRITE (6.102) EX. POI. POI2. STRI. (I. D(I). EK(I).F1(I). ALF(I).0000549 DNA(I). T(I). I = 1.N) 00000549 00000549 FORMAT (///1/515X.4HEX). 00000549 FORMAT (///1/515X.4HEX). 00000550 FORMAT (///1/515X.4HEX). 00000550 ADDOLIZ =. E13.4. //30X.35HLAYER.ND. FOR SECOND STRESS PRINT 000005561 2. E13.4. //30X.35HLAYER.ND. FOR SECOND STRESS PRINT 000005561 2. HULLI: // (I. 14. IP6E17.7) 000005562 4HT(I) // (I. 4. IP6E17.7) 000005564 4HT(I) // (I. 4. IP6E17.7) 000005564 000005564 000005564 4HT(I) // (I. 4. IP6E17.7) 000005564 7. HILI // (I. 4. IP6E17.7) 000005564 8. HDI10.10441 000005564			00000546	
OR FOR FIRST FOURIER COMPONENT 00000549 wRITE (6.102) EX. POL: POL2. STRL: (1, D(1), EK(1),FI(1), ALF(1),00000550 DNA(1). T(1). I = 1.N) CE13.4 // AHD(1).13X.5HEK(1).12X.4HE(1). 12X.6HALF(1). 11X.6HDNA(1).12X.0000560 AHD(1).13X.5HEK(1).12X.4HE(1).12X.6HALF(1).11X.6HDNA(1).12X.0000560 AHT(1).7/(14.T6F(1).12X.4HE(1).12X.6HALF(1).11X.6HDNA(1).12X.00000560 AHT(1).7/(14.T6F(1).12X.4HE(1).12X.6HALF(1).11X.6HDNA(1).12X.00000560 AHT(1).7/(14.T6F(1).12X.4HE(1).12X.6HALF(1).11X.6HDNA(1).12X.00000560 MRITE (6.104) NS. ENF.SDA(19).SDA(17). (1.PFF(1).00000560 MRITE (6.104) NS. ENF.SDA(19).SDA(17). (1.PFF(1).00000560 OR0000560 MRITE (6.104) NS. ENT.000019.SDA(17).6TA AHT(1).7/(14.411).2X.94HC0AD5 REGION:14,10X.7154.100X.5HE = 1.104.770 DTH(1).80N(1).10N.71100N.7154.100X.5HE = 1.144.74 DTH(1).80N0110N.7700000582 DRMEGNATIONITY DAMEGNATIONITY DAMEGNATIONITY <td></td> <td></td> <td>00000547</td> <td></td>			00000547	
WRITE (6.102) EX. POI, POI2. STRI. (I. D(I). EK(I).F](I). ALF(I). 00000550 DNA(I). T(I). I I = 1.N) FORMAI (///).15x. 4HEX IPE]3.4. Bx. 5HPOI 00000551 FORMAI (//).15x. 4HEX IPE]3.4. Bx. 5HPOI 00000551 1 6HPOI2 (//).15x. 4HEX IPE]3.4. Bx. 5HPOI 00000560 2 6HPOI2 (//).15x. 4HEX IPE]3.4. Bx. 5HPOI 00000560 2 6HPOI2 (//).15x. 4HEX IPE]3.4. Bx. 70000560 00000560 2 4HT(I) // 12x. 6HALF(I). 11x. 6HDNA(I). 12x. 0000566 00000566 3 4HT(I) // 11x. 6HDNA(I). 12x. 0000566 00000566 4 7// 114. 8X. 0000566 00000566 4 11.1 12X. 6HALF(I). 11x. 6HDNA(I). 12X. 0000566 4 010.10.562 00000566 00000566 4 011). 12X. 0000566 00000566 4 011). 12X. 6HALF(I). 12X. 00000566 4 011). 12X. 6HALF(I). 12X. 00000566 4 011	1		00000548	
<pre>WRITE (6.102) EX: POI: POI2. STRI. (1. D(1). EK(1).F1(1). ALF(1).0000550 DMA(1). T(1). I = 1.N) FORMAT (///:15X.4HE(X =.]PE]3.4. 8X.5HPOI =. E13.4. 8X. 00000560 1 6HPOI2 =. E13.4 //30X.35HLAYER NO. FOR SECOND STRESS PRINT = . 00000560 2 8D13.4 // (14.]P6E]7.7)) 2 4HT(1] // (14.]P6E]7.7)) 2 2HDISCONTINUITY CONDITIONS //ISX.10HP(FORCE] =. E13.4 // 43X.00000564 0 00000564 2 2HDISCONTINUITY CONDITIONS //ISX.10HP(FORCE] =. E13.4 // 41X. 00000562 2 2HDISCONTINUITY CONDITIONS //ISX.10HP(FORCE] =. E13.4 // 41X. 00000582 2 2HMECHANICAL AND THFRMAL LOADS // 3X.]HI.13X.6HP(PHI).13X.0000582 3 28HMECHANICAL AND THFRMAL LOADS // 3X.]HI.13X.6HP(PHI).13X.0000582 5 (15.174570.4)) 2 (17.175.6HENT(1).14X.6HEMT(1).7 00000582 3 00000582</pre>			00000549	
<pre>1 DNA([). T(1). I = 1.N) FORMAT (T/).15X.4HEX =: IPE13.4. 8X.5HPOI =: E13.4. 8X. 00000560 FORMAT (T/).15X.4HEX =: IPE13.4. 8X.5HPOI =: E13.4. 8X. 00000560 2 E13.4.// 2 E13.4.// 2 E13.4.// 2 E13.4.// 2 E13.4.// 2 E13.4.// 2 E11.13X.5HEK(I).12X.6HALF(I).11X.6HDNA(I).12X.0000565 3 4HT(I).7/(I4.12X.94HE(I).12X.6HALF(I).11X.6HDNA(I).12X.0000565 3 4HT(I).7/(I4.12X.94HE(I).12X.6HALF(I).11X.6HDNA(I).12X.0000565 3 4HT(I).7/(I4.11).EMT(I).12X.5HALF(I).11X.6HDNA(I).12X.0000565 3 4HT(I).7/(I4.11).EMT(I).12X.6HALF(I).11X.6HDNA(I).12X.0000565 3 4HT(I).7/(I4.11).EMT(I).12X.6HALF(I).11X.6HDNA(I).12X.0000565 3 4HT(I).7/(I4.11).EMT(I).12X.6HALF(I).11X.6HDNA(I).12X.0000565 3 4HT(I).7/(I4.11).EMT(I).11X.6HDNA(I).12X.0000565 3 4HT(I).7/(I4.11).2X.14HL0AD5 4 6111.32X.14HL0AD5 7 124HDISCONTINUITY CONDITIONS //15X.10HP(FORCE) =.113.44 8X.00000581 7 24HDISCONTINUITY CONDITIONS //15X.10HP(FORCE) =.113.44 8X.00000582 7 11HM(MOMENT) =: E13.44 8X.13HAUGLE(PSIJ) =: E13.44 8X.00000582 7 11HM(MOMENT) =: E13.44 8X.111.14X.6HEMT(I).11X.0000582 7 15.1141.13X.6HP(PHI).11X.0000582 7 15.1141.13X.6HP(I).11X.0000582 7 15.1141.13X.6HP(I).11X.0000582 7 15.1141.13X.6HP(I).11X.0000582 7 15.1141.13X.6HP(I).11X.0000582 7 15.1141.13X.6HP(I).11X.000582 7 15.1141.13X.6HP(I).11X.0000582 7 15.1141.13X.6HP(I).11X.0000582 7 15.1141.13X.6HP(I).11X.0000582 7 15.1141.13X.6HP(I).11X.0000582 7 15.1141.13X.6HP(I).11X.0000582 7 15.1141.13X.6HP(I).11X.0000582 7 15.1141.11X.0000582 7 15.1141.114 7 15.1141.114 7 15.114 7 15.114 7 15.114 7 15.114 7 15.114 7 15 15.114 7 15 15 15 15 7 15 15 15 7 15 15 15 7 15 15 15 7 15 15 15 7 15 15 15 7</pre>	WRITE (6.102) EX. POI, POI2, STRI, (1,	EK(I),F1(I),	•^^0000550	
FORMAT (///*15x, 4HEX =:]PE13.4. 8x, 5HPOI =: E13.4. 8x, 00000560 1 6HPOI2 =: E13.4. //30X,335HLAYER NO. FOR SECOND STRESS PRINT = , 00000561 2 E13.4. // (//30X,35HLAYER NO. FOR SECOND STRESS PRINT = , 00000562 34HD(1).13X.5HEK(1).12X.4HE(1).12X.6HALF(1).11X.6HDNA(1).12X.00000564 000000564 34HTE (6.104) NS. ENF. SDA(19). SDA(19). SDA(17). (1, PFF(1). 00000564 000000564 000000564 000000564 000000567 000000564 000000569 01 PTH(1).PN(1).EMT(1).EMT(1).12X.6HALF(1).11X.6HDNA(1).12X.00000564 000000564 01 PTH(1).PN(1).EMT(1).EMT(1).12X.6HENF 000000564 01 PTH(1).PN(1).EMT(1).EMT(1).12X.6HENF 000000564 01 PTH(1).PN(1).EMT(1).EMT(1).12X.6HENF 000000564 01 PTH(1).PN(1).EMT(1).EMT(1).12X.6HENF 000000562 1 PTH(1).PN(1).EMT(1).EMT(1).12X.6HENF 000000582 1 24HDISCONTINUITY CONDITIONS //15X.10HP(FORCE) E13.4.2.7.7.7.7.00000582 2 21HMEMOMENT) = E13.4.7.7.4.1X.7.7.00000582 2 28HMECANICAL AND THFRMAL LOADS // 3X.1HI.13X.6HP(PH1).1.1X.7.7.00000582 000000582 2 28HMECANICAL AND THFRAAL LOADS // 3X.1HI.13X.6HP(PH1).1.1X.7.7.000	I DNA(I) + T(I) + I = I + N		00000551	
<pre>1 6HPOI2 =. E13.4 //30X.35HLAYER NO. FOR SECOND SIRESS PRINT = . 00000561 2 E13.4 // 134.5HEK(I).12X.4HE(I). 12X. 6HALF(I). 11X. 6HDNA(I). 12X. 00000563 34HD(I).13X.5HEK(I).12X.4HE(I). 12X. 6HALF(I). 11X. 6HDNA(I). 12X. 00000564 4HT(I)./ (I4. IP6E17.7)) 00000564 00000564 00000564 00000564 00000564 1 PTH(I). PN(I). ENT(I). ENT(I). I = 1.N) 1 PTH(I). PN(I). FNT(I). ENT(I). I = 1.N) 1 24HDISCONTINUITY CONDITIONS //15X.10HP(FORCE) =. E13.44 // 43X.00000581 2 1HM(MOMENT) =. E13.4. BX. 13HANGLE(PSIO) =. E13.44 // 41X.00000582 3 2HMECHANICAL AND THERMAL LOADS // 3X. 1HI.12X.6HP(PHI).12X.00000582 6 2HMECHANICAL AND THERMAL LOADS // 3X. 1HI.12X.6HP(PHI).12X.00000582 6 (15.1P5F20.4 1)</pre>	FORMAT (///.15X. 4HEX =. 1PE13.4. 8X.	=, É13.	00000260	
<pre>2 E13.4 // 3X.FHEK(I).12X.4HE(I). 12X.6HALF(I).11X.6HDNA(I).8X.0000562 34HD(I).13X.5HEK(I).12X.4HE(I).12X.6HALF(I).11X.6HDNA(I).12X.0000564 00000564 00000564 00000564 00000564 00000564 00000569 00000569 00000569 1 PTH(I).PN(I).ENT(I).ENT(I).1 = 1.N) 1 PTH(I).PN(I).FNT(I).ENT(I).ENT(I).00000569 00000569 00000569 1 PTH(I).PN(I).ENT(I).ENT(I).E.1.N) 2 4HDISCONTINUITY CONDITIONS //15X.10HP(FORCE) =.E13.44 // 43X.00000582 3 28HMECHANICAL AND THFRMAL LOADS // 3X.1HI.12X.6HP(HI).12X.0000582 4 BHP(THETÅ).14X.4HP(N).15X.6HENT(I).14X.6HEMT(I) // 00000582 5 (15.195720.4.1) 2 00000585 6 (15.195720.4.1) </pre>	6HPOI2 =. E13.4 //30X,35HLAYER NO. FOR) STRESS PRINT =	00000561	
34HD(1).13X.5HEK(1).12X.4HE(1). 12X. 6HALF(1). 11X. 6HDNA(1). 12X. 00000564 4 4HT(1; // (14. 1P6E17.7)) WRITE (6.104) NS. ENF. SDA(19). SDA(19). SDA(17). (1, PFF(1). 00000569 00000569 00000570 1 PTH(1). PN(1). FNT(1). EMT(1). 1 = 1.N) FORMAT (1H1.32X.14HLOADS REGION.14.10X. 5HENF =.1PF13.4 // 43X.00000570 1 24HDISCONTINUITY CONDITIONS //15X.10HP(FORCE) =. E13.4 9X. 00000581 2 11HM(MOMENT) =. E13.4. 8X. 13HANGLE(PS10) =. E13.4. // 41X. 00000582 3 28HMECHANICAL AND THFRMAL LOADS // 3X. 1HI.12X.6HP(PH1).12X. 00000582 6 8HP(THETÅ).14X. 4HP(N).15X.6HENT(1).14X.6HEMT(1) // 00000582 6 00000585 6 00000585 7 00000585	E13.4 //	IHI+XF /		
<pre>4 4HT(I; // (I4, IP6E17.7)) 4 4HT(I; // (I4, IP6E17.7)) 5 4HT(I; // (I4, IP6E17.7)) 5 60000569 6 00000569 6 00000569 7 7 00000570 7 7 0000057 1 24HDISCONTINUITY CONDITIONS //I5X.10HP(FORCE) =, E13.4 // 43X.00000581 7 24HDISCONTINUITY CONDITIONS //I5X.10HP(FORCE) =, E13.4 // 43X.00000582 7 1HM(MOMENT) =, E13.4 8X, 13HANGLE(PSI0) =, E13.4 // 41X, 00000582 7 28HMECHANICAL AND THFRMAL LOADS // 3X, 1HI:12X, 6HP(PHI).12X, 00000582 7 28HMECHANICAL AND THFRMAL LOADS // 3X, 1HI:12X, 6HP(PHI).12X, 00000582 7 6 8HP(THETÅ).14X, 4HP(N).15X, 6HENT(I).14X, 6HEMT(I) // 00000582 7 15.1P5F20.4 1) 7 00000585 7 15 15 15 15 15 15 7 15 15 15 15 7 15 15 15 15 7 15 15 15 15 7 15 15 15 15 7 15 15 15 7 15 15 15 7 15 15 15 7 15 15 15 7 15 7</pre>	[], 12X,	11X, 6HDNA(I), 1	00000563	
WRITE (6*104) NS. ENF. SDA(19). SDA(19). SDA(17). (I. PFF(I). 00000569 I PTH(I). PN(I). FNT(I). EMT(I). I = 1.N) 00000570 00000570 FORMAT (1H1.32X.14HLOADS REGION.14.10X. 5HENF =.1PF13.4 // 43X.00000571 00000571 I 24HDISCONTINUITY CONDITIONS //15X.10HP(FORCE) =. E13.4 // 43X.00000581 00000581 2 11HM(MOMENT) =. E13.4. 8X. 13HANGLE(PSI0) =. E13.4. // 41X. 00000582 3 28HMECHANICAL AND THFRMAL LOADS // 3X. 1HI.13X.6HP(PHI).12X. 00000582 6 8HP(THETÅ).14X.4HP(N).15X.6HENT(I).14X.6HEMT(I) // 00000582 00000582	1		Ò 0000564	
WRITE (6.104) NS. ENF. SDA(19). SDA(17). (i, PFF(I). 0000570 1 PTH(I). PN(I). ENT(I). EMT(I). I = 1.N) FORMAT (1H1.32X.14HLOADS REGION.14.10X. 5HENF =.1PF13.4 // 43X.00000581 1 24HDISCONTINUITY CONDITIONS //15X.10HP(FORCE) =. E13.4. 8X. 00000581 2 TIHM(MOMENT) =. E13.4. 8X. 13HANGLE(PSIO) =. E13.4. / 41X. 00000582 3 28HMECHANICAL AND THERMAL LOADS // 3X. 1HI.13X. 6HP(PHI).12X. 00000582 4 8HP(THETÅ).14X. 4HP(N).15X. 6HENT(I).14X. 6HEMT(I) // 00000585 5 (15.1P5F20.4.) 5 (15.1P5F20.4.)			00000569	
<pre>1 PTH(I), PN(I), ENT(I), EMT(I), I = 1,N) FORMAT (1H1.32X,14HLOADS REGION.14,10X, 5HENF =,1PF13.4 // 43X 1 24HDISCONTINUITY CONDITIONS //15X,10HP(FORCE) =, E13.4, 8X, 2 11HM(MOMENT) =, E13.4, 8X, 13HANGLE(PSIJ) =, E13.4, 41X, 3 28HMECHANICAL AND THFRMAL LOADS // 3X, 1HI.13X, 6HP(PHI),12X, 4 8HP(THETÅ),14X, 4HP(N),15X, 6HENT(I),14X, 6HEMT(I) // 5 (15.1P5F20.4))</pre>	(6.104) NS. ENF. SDA(18), SDA(19).	(I, PFF(I),	00000270	
FORMAT (IH1.32X,14HLOADS REGION,14,10X, 5HENF =,1PF13.4 // 43% 1 24HDISCONTINUITY CONDITIONS //15X,10HP(FORCE) =, E13.4, 8X, 2 11HM(MOMENT) =, E13.4, 8X, 13HANGLE(PSIJ) =, E13.4, 41X, 3 28HMECHANICAL AND THFRMAL LOADS // 3X, 1HI.13X, 6HP(PHI),12X, 4 8HP(THETÅ),14X, 4HP(N),15X, 6HENT(I),14X, 6HEMT(I) // 5 (15.1P5F20.4))	PTH(I), $PN(I)$, $ENT(I)$, $EMT(I)$, $I = 1, N$		00000571	
24HDISCONTINUITY CONDITIONS //I5X+10HP(FORCE) =+ E13.44 BX+ 0000058 11HM(MOMENT) =+ E13.44 BX+ 13HANGLE(PSIJ) =+ E13.47 // 41X+ 0000058 28HMECHANICAL AND THFRMAL LOADS // 3X+ 1H1+13X+ 6HP(PH1)+12X+ 0000058 3HMECHANICAL AND THFRMAL LOADS // 3X+ 1H1+13X+ 6HP(PH1)+12X+ 0000058 3HMECHANICAL AND THFRMAL LOADS // 3X+ 1H1+13X+ 6HP(1)+12X+ 0000058 3HMECHANICAL AND THFRMAL LOADS // 3X+ 1H1+13X+ 6HP(1)+12X+ 0000058 (15.1P5F20.4 1) 0000058	FORMAT (1H1.32X,14HL0ADS R	11 43%	• 00000580	
<pre>IIHM(MOMENT) =; E13.4, BX, 13HANGLE(PSIO) =, E13.4 // 41X, 0000058 28HMECHANICAL AND THFRMAL LOADS // 3X, 1HI/13X, 6HP(PHI),12X, 0000058 28HMECHANICAL AND THFRMAL LOADS // 3X, 1HI/13X, 6HP(PHI),12X, 0000058 3HP(THETA),14X, 4HP(N),15X, 6HENT(I),14X, 6HEMT(I) // 000058 (15.1P5F20.4))</pre>	24HDISCONTINUITY CONDITIONS	1	00000581	
28HMECHANICAL AND THFRMAL LOADS // 3X, 1HI,13X, 6HP(PHI),12X, 0000058 <u>8HP[ThETÅ],14X, 4HP(N),1</u> 5X, 6HENT(I),14X, 6HEMT(I) // 000058 (15_1P5F20_4)) 0000058	11HM(MOMENT) =, E13.4, 8X, 13HANGLE	IX.	00000582	
<u> "8HP(THETÁ)</u> 14X, 4HP(N),Ĩ5X, 6HENT(I),14X, 6HEMT(I) // 000058 (15 .1P5E20.4 1) 000058	28HMECHANICAL AND THFRMAL LOADS //	•Xei•(IHd)4H9 •XëI•	00000582	
(15.1P5E20.4 1) 2000058	"8HP(THETA), 14X, 4HP(N), 15X, 6HENT(1	SHEMT(I) //	00000584	
	5 (I5,IP5E20.4))		00000585	

Regional Data Read Subroutine (Cont)

00505555 01765558 01765558 00000517 00000512 00000769 00000703 00000703 00000703 00000703	00000740 00000740 00000744 00000744 00000746 00000750 00000750 00000753 00000753	00000755 00000758 00000759 00000760 00000760 00000762 00000762 00000762 00000763 00000763 00000763 00000763	
1.3098) OTHER PASSES	STR	MATERIAL PROPERTIES - REGION. 14	al Data Read Subroutine (Cont)
C C C T T 470 C 120 IF(ENOT *EQ. 0.) 60 TO 100 G T 70 C 200 REAU (KTPR) (SDA(I). I = 1.3 Z00 REAU (KTPR) (SDA(I). I = 1.3 ENOT = SDA(16) EX = 0. IF(PTHI) 18.210.60 IF(PTHI) 18.210.60	60 1 8781 8212 823 = 800 = 12(1) 12(1) 12(1)	(6.315) NS TT 1H1. 27X. 40H D 100 F .NE. ENFO) GC NUE N -1.	Regional

- 199 -

•		8 ** LINK 2	02000000	
SURROUT INF	GEOM(IRGN)		00000030	
NOMENC			000000000000000000000000000000000000000	
- Iwg	E OMET 9		00000070	
			0000080	
			06000000	
A L	O - GENE		00000100	
	•0 - ELLI		00000102	
	t		01100000	
	• - PARA	**	00-00115	
			00000120	
		1	06700000	
PFLAG	VICATOR, NON-ZERO PRIN	DATA	00000140	
	DI 110N		00000150	
	DITTO ** ROTTOM		00000160	
	2. = ROLLER, 3 CLAMP	(FIXED) •	00000170	
	SUPPORTED (HINGED) 5. =	DMPLETE,	00000180	
	= SPECIAL . READ IN MATRICES 9. =	DSED	00000190	
	WHEN LOAD FNTERFD IN EMS	OR EMNS	00000200	
PSI	ANGLE AT THE END OF THE	GION (DEGREES	00000210	
ECX	OF REFERENCE SUR. ACE AT B	TOM DISCONT.	00000220	
SPRL	PRING		00000230	
	SPRING VALUE - PHI DIRECTION		00000240	
VK	- THET		00000250	
	* * * - N DIRECTION		00000260	
			00000270	
	**	**	00000280	
	GM[= 1•0		00000290	
	= RADIUS		00000300	
	AX		00000310	
	= ANGLF - GFNERATOR AND AXIS OF	REVOLUT ION	00000320	
			00000330	
	GMI = 2.0		00000340	
	# RADIUS OF CURVATURE	•	00000350	
	FSET DISTANCE TO CEN	CURVATURE	00000360	
	INITIAL OPENING ANGLE	TICAL AXIS	00000370	
	HIN = FINAL OPENING ANGLE FF	ROM VERTICAL AXIS	10000380	
	6)) 	**	00000300	
		_	111400000	

1

Geometry Computation Subroutine

					1	
DISCRETE RADII DISCRETE XI'S (OR ARCLENGTHS) RADIUS OF CURVATURE IN THF MFKIDIONAL DIRECTION RAD. OF CURV. IN THF CIPCUMFFRENTIAL DIRFCTION	RFF = 0FFSFT DISTANCF TO AXIS OF REVOLUTION SPND = INITIAL OPENING ANGLE FROM VERTICAL AXIS 00000434 SPNN = FINAL OPENING ANGLE FROM VERTICAL AXIS 00000434 A = SEMI-AXIS PARALLEL TO THE AXIS OF REVOLUTION 00000436 A = SEMI-AXIS PERPENDICULAR TO THE AXIS OF REV- 00000437	MI = 5.0 (SAME AS GMI = 4.0) ** MI = 6.0 (SAMF AS GMI = 4.0, BUT NO B)	++ 1 6 6 • 1 1 6 0 •	<pre>[TADP(150), BFTAP(150), DLR(754), x(4), EMa(4,4), FM3N(4,4), EM3x(4), 0000050 0), FMN1(4), FMN3(4), EM3x(4), 0000050 50), RCRV(150), RCRZ(15U), RCURV(150), 0000050 1P1(150), RJ(755), RR(150), RRJ(12), 0000050 (16), SURF(150), SURN(750), WF(150), XJ(755),0000050 0000050 (150), WTH(150), XIPT(150), XJ(755),0000050 (150)</pre>	0000064 3), PFLAG,0000065 7), GECX, POCC066 11), GWK), POCC066 11), GWK), POCC0267 ; RA1, RC),0020069 18), PHIN),0000069	6(GDA(320).RCURV).(GDA(470).RCURZ).(GDA(520).EM1X)

- 201 -

U

U

ALENCF(5)A: 1). EX).(5DA(2).6FOMI).(5DA(3). 5RL). (5DA(1). EX).(5DA(3). 5). (4). 4(4). (5DA(1). BC(T).(5DA(1).(5DA(1).) FE(C)) (5DA(1). BC(T).(5DA(1).) FE(C)) (5DA(2). 1DC(). 5DA(11). 5CBA(12). PFL61) (5DA(20). 1DC(). 5DA(176). FK).(5DA(12). PFL61) (5DA(20). 1DC(). 5DA(176). FK).(5DA(12). PFL61) (5DA(20). 1DC(). 5DA(176). FK).(5DA(126). T). (5DA(242). EM).(5DA(176). FK).(5DA(2426). T). (5DA(2126). RM).(5DA(2426). EM).(5DA(2426). K). (5DA(2126). RM).(5DA(2426). FK).(5DA(2426). K). (5DA(2126). RM).(5DA(2426). K). (7DA(2126). RM).(5DA(2426). K). (7DA(2126). RM).(5DA(2426). K). (7DA(2126). RM).(5DA(2426). K). (7DA(2126). RM).(5DA(2426). RM).) (7DA(2126). RM).(5DA(2426). RM).(7DA(2426). RM).) (7DA(2126). RM).(5DA(2424). FM). (7DA(2126). RM).(5DA(2426). RM).) (7DA(2420). RM).(7DA(70 5DA REGION R 000000000000000000000000000000000000	EQUIVALENCE(SDA: (SDA) (SDA)	•					
<pre>1 [55Ai 4], UK) (55Ai 5], VK) (55Ai 6], 4K), 5 [5Dai 1], EMK) (5Dai 8], 5511 (5Dai 2]), ECK) 5 [5Dai 1], 5C11 (55Dai 1]), 5C19 (5Dai 12), PELO 5 [5Dai 2], 5C11 (55Dai 14), ENS) (5Dai 12), PELO 5 [5Dai 76], EMT) (5Dai 76), FK, (5Dai 76), T1) 5 [5Dai 76], EMT) (5Dai 176), FK, (5Dai 776), T1) 5 [5Dai 76], EMT) (5Dai 176), FK, (5Dai 776), T1) 5 [5Dai 76], EMT) (5Dai 176), FK, (5Dai 776), T1) 5 [5Dai 76], ALD) (5Dai 1266), DA1 (50Ai 2426), EMT) 5 [5Dai 76], RMT) (5Dai 1276), EFF (5Dai 2467), EMT) 5 [5Dai 276], ALD) (5Dai 1266), FK) (5Dai 2462), EMT) 5 [5Dai 276], RMT) (5Dai 246), FF, (5Dai 2462), EMT) 5 [5Dai 276], RMT) (5Dai 246), FF, (5Dai 2462), EMT) 5 [5Dai 276], RMT) (5Dai 246), FF, (5Dai 2462), EMT) 5 [5Dai 276], RMT) (5Dai 246), FF, (5Dai 2462), EMT) 5 [5Dai 276], RMT) (5Dai 246), FF, (5Dai 2462), EMT) 5 [5Dai 276], RMT) (5Dai 246), FF, (5Dai 2462), EMT) 5 [5Dai 276], RMT) (5Dai 246), FF, (5Dai 2462), EMT) 5 [5Dai 276], RMT) (5Dai 246), FF, (5Dai 2462), EMT) 5 [5Dai 276], FF, KLM 7 [5Dai 276], SDai 249, EMT) (5Dai 2462), EMT) 5 [5Dai 276], FF, KLM 7 [5Dai 276], FF, KLM 7 [5Dai 276], FF, KLM 7 [5Dai 276], FF, KLM 7 [5Dai 776], FF, FF, FF, FF, FF, FF, FF, FF, FF, F</pre>	I SPA I I SDA I	•	2)+6FOM	٠	31.	SPRL) .	018000000
201 7) EMKN:15DA(8) 9) ECXN: 55A(10) 57R1) 150A(12) 57R1) 11) 55DA(12) 57R1) 1001 101 11) 57BA(12) 57R1) 101 101 101 101 101 101 11) 110 110 110 110 110 110 110 110 110 101 101 110 101 1	(SDA)	-		K) . (SDA (6).	JK).	00000820
5Dat 100 5Dat 110 5Dat 120 PELD 5Dat 750 750 130 5771 550 120 PELD 5Dat 750 750 110 5504 750 750 PELD 5Dat 750 750 750 750 775 PTH 550 750 750 750 750 775 PTH 550 750 750 750 775 PTH 550 550 761 550 775 P1 550 550 751 550 750 750 750 710 550 550 70 550 70 550 710 750 710 550 550 70 550 70 550 710 750 710 750 710 550 550 70 550 70 550 70 750 710 750 710 550 550 70 550 70 750 70 7				1) • (5DA (6	ECX).	00000830
500 100 500 100 500 200 100 200 1			•	B) I SUA	12).		00000840
1 (504(376), EMT).(504(176), FK).(504(326), PTH). 2 (504(476), EMT).(504(1976), E1).(504(1276), PTH). 3 (504(476), EMT).(504(1976), E1).(504(1276), PTH). 4 (504(476), RH).(504(1976), E1).(504(1276), PTH). 5 (504(476), RH).(504(1976), E1).(504(1976), RH). 5 (504(176), RH).(504(1926), GAMA).(504(1976), R). 6 (504(1676), RH).(504(1926), GAMA).(504(1976), R). 7 (504(1726), WTH).(504(2944), EMN).(504(1976), R). 8 (504(1726), WTH).(504(2944), EMN).(504(1976), R). 8 (504(1726), WTH).(504(2944), EMN).(504(1976), R). 8 (504(2126), WTH).(504(2944), EMN).(504(1976), R). 8 (504(2126), WTH).(504(2944), EMN).(504(1976), R). 8 (504(2126), WTH).(504(2944), EMN).(504(1976), R). 9 (504(2126), WTH).(504(2944), EMN).(504(1976), R). 1 KE, S03, S04, S06, ENF, IFR, KLM COMMON Da(35).NTPW, NTPR, KTPW, KTPR, SL2, ELAM2, S1, S2. 0 1 1 LCOMMON 504(1) - 0 1 0 1 0 1 0 1 0 1	1202		•		• • • •	• •	05800000
2 (5)2(1,2)(1,5)(1,5)(1,2)(1,2)(1,2)(1,2)(1,2)(1,2)(1,2)(1,2					• 1 6 7 6	~	
3 (504(1276), FI).(504(1276), FI).(504(1276), FI). 4 (50a(1276), ALF).(504(1276), FI).(504(1276), FI). 5 (50a(1276), RHOX).(50a(1276), FI).(504(1276), FI). 6 (50a(1276), RHOX).(50a(1276), FI).(504(1276), FI). 7 (50a(1276), RHOX).(50a(1276), FI). 7 (50a(1276), RHOX).(50a(1276), FI). 8 (50a(1276), RHOX).(50a(1276), FI). 1 LKE. COMMON Da(35).NTPW.NTPR.KTPW.KTPW.KTPR.SL2.FLAM2.S1.52. 1 LKE. COMMON Da(35).NTPW.NTPR.KTPW.KTPR.SL2.FLAM2.S1.52. 0 1 1 LKE. 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 <			ם • •		1076		
<pre>4 (5DA(1376), a LF), (5DA(1526), DA1), (5DA(2426), EM1) 5 (5DA(242), EM3), (5DA(2458), EM5), (5DA(245), EM1)) 6 (5DA(2442), EM3), (5DA(2276), WFE), (5DA(2492), EM1N) 7 (5DA(2421), EM3N), (5DA(2276), WFE), (5DA(2492), EM1N) 8 (5DA(2421), EM3N), (5DA(2276), WFE), (5DA(2492), EM1N) 7 (5DA(2421), EM3N), (5DA(22494), EM5N) 7 (5DA(2421), EM3N), (5DA(22494), EM5N) 7 (5DA(2423), SDA(2998)) 7 (5DA(2428), EM7N), (5DA(22494), EM5N) 7 (5DA(2428), EM3N), (5DA(22494), EM5N) 7 (5DA(2428), EM1), (5DA(2276), EM2), (5DA(2492), EM1N) 7 (5DA(200) Da(35), NTPW, NTPR, KTPW, KTPR, SL2, ELAM2, S1, S2, 7 (5DA(201) 1 = 1,800 7 (5DA(201) 1 = 0, 7 (</pre>		- 5	L.		1011		
<pre>5 (5DA(2442); FU) (5DA(2458); EM5) (5DA(2458); FU) 7 (5DA(2478); EM3) (5DA(1976); R) 7 (5DA(2478); EM3) (5DA(1976); R) 8 (5DA(2478); EM3) (5DA(2458); EM5)) 8 (5DA(2478); EM3) (5DA(2494); EM5)) 7 (5DA(2478); EM3) (5DA(2478); FR, KLM 7 (5DA(2478); EM3)) 7 (5DA(2478); EM3) (5DA(2494); EM5)) 7 (5DA(2478); EM3) (5DA(2494); EM5)) 7 (5DA(2478); EM3) (5DA(2494); EM5)) 7 (5DA(2478); EM3) (5DA(2494); EM5)) 7 (5DA(2478); EM3) (5DA(2494); EM3) (5DA(2452); EM1)) 7 (5DA(208)) 7 (5DA(2478); EM3) (5DA(2494); EM3) (5DA(2452); EM1)) 7 (5DA(2412) 7 (10 (13)) 7 (10</pre>			•		1072		
6 (5Da(1676), RHOX), (5Da(1826), GAM), (5Da(1976), R) 7 (SDa(2126), WTH), (SDA(2276), WFE), (SDA(2462), EMJN) 8 (SDa(2478), EM3N), (SDA(2494), EM5N) 8 (SDa(2478), EM3N), (SDA(2494), EM5N) COMMON Da(35), NTPW, NTPR, KTPW, KTPR, SL2, ELAM2, S1, S2, 1 kKe, S03, S04, S06, ENF, IFR, KLM COMMON Da(35), NTPW, NTPR, KTPW, KTPR, SL2, ELAM2, S1, S2, COMMON SDa(308) DO 1 1 Alt DO 1 DO 1 1 Coll DECRD(GDA) MOVE DATA TO SDA REGION Na = N 1 Call DECRD(GDA) MOVE DATA TO SDA REGION Na = N 1 Call DFECR (GDA) MOVE DATA TO SDA REGION Na = N 1 Call OPEX0 (13) MOVE DATA TO SDA REGION FELG PFLG FSR GEOMI FSR GEOMI FSR GEOMI FSR GEOMI FSR GALL OPEX0 (13) Na = EN GEOMI FSR GEOMI FSR GEOMI FSR	(SDA(2)	FM31 . (SDA(24		•	4981	X C I J	0100000
7 (SDA(2126), wTH),(SDA(2276), wFE),(SDA(2462), EMIN) 8 (SDA(2478), EWAN),(SDA(2494), EM5N) COMMON DA(35), NTPW, NTPR, KTPW, KTPR, SL2, ELAM2, S1, S2, 1 kKE, S03, S04, S06, ENF, TFR, KLM COMMON SDA(309R) DO 1 1 = 1,800 GDA(1) = 0. DO 1 1 = 1,800 GDA(1) = 0. N = EN N = EN N = EN N = EN N = EN ENS = EN GEOMI = GMI PFLG = PFLAG PFLG = PFLAG PFLG = PFLAG PFLG = PFLAG PFLG = FLAG PFLG = FFLG = FLAG PFLG = FFLG =	. –	RHOX) • (SDA(16	ى •	•	9761.		00000050
8 (SDa(2478), EM3N),(SDa(2494), EM5N) COMMON Da(35), NTPW, NTPR, KTPW, KTPR, SL2, ELAM2, S1, S2, 1 kKE, S03, S04, S06, ENF, IFR, KLM COMMON SDa(3098) Common SDa(3098) DO 1 I = 1,800 GDA(I) = 0. Call DECRD(GDA) No = N - 1 Call OPEXO (13) N = N - 1 CALL OPEXO (13) No = N - 1 CALL OPEXO (13) No = N - 1 CALL OPEXO (13) No = N - 1 CALL OPEXO (13) Nove DATA TO SDA REGION VN = N - 1 CALL OPEXO (13) Nove DATA TO SDA REGION VK = GFST SPRL = GSPRL VK = GWK VK = GWK MM = GEMK MM = GEMK MCIP BCIP BCIP BCIP		wTH) . (SDA(22		•	462).	EMIN).	00000030
COMMON DA(35). NTPW. NTPR. KTPW. KTPR. SL2. ELAM2. 51. 52. 1 kKe. 503. 504. 505. ENF. IFR. KLM COMMON SDA(3098) DO 1 1 = 1.800 GDA(1) = 0. Call DECRD(GDA) N = N - 1 Call DECRD(GDA) N = N - 1 Call OPEX0 (13) N = N - 1	Ĵ	EMAN) . (SDA (24	ι	~		i i	00000940
<pre>1 kKe. SG3. SG4. SG6. ENF. IFR. KLM</pre>	DA(35).			ELAM2		2.	0000000000
COMMON SDAT3098) DO I I = 1.800 GDA(I) = 0. Call DECRD(GDA) N = EN NN = N - 1 Call OPEXQ (13) NN = N - 1 CAL OPEXQ (14) NN = N - 1 CAL OPEXQ (15) NN = N	SQ3+ SO4+ S	FR.					02600000
DO I I = 1.800 GDA(I) = 0. Call DECRD(GDA) N = EN NN = N - 1 CALL OPEXQ (13) NN = N - 1 CALL OPEXQ (14) NN = N - 1 CALL OPEXQ (14							08600000
GDA(I) = 0. Call DECRD(GDA) N = EN NN = N - 1 Call OPEXQ (13) Call OPEXQ (13) MOVE DATA TO SDA REGION ENS = EN GEOMI = GMI PFLG = PFLAG PFLG = PFLAG PFLG = PFLAG PFLG = PFLAG PFLG = PFLAG PFLG = FFLAG PFLG = FFL	1 1 =						00010000
Call DECRD(GDA) N = EN NN = N - 1 Call OPEXO (13) NN = N - 1 Call OPEXO (13) ENS = EN GEOMI = GMI PFLG = PFLAG PFLG = PFLAG PFL = GSPRL UK = GVK WK = GVK WK = GVK WK = GFK PFL = PFLAG PFL = PFLAG	H						01010000
CALL DECRD(GDA) N = EN NN = N - 1 CALL OPEXQ (13) ENS = EN GEOMI = GMI PFLG = PFLAG PFL = GSPRL PFLG = PFLAG PFL = GSPRL VK = GVK VK = GVK VK = GVK VK = GVK WK = GWK EMK = GFRM BCIT = BCITP BCIT = BCITP BCIT = BCITP							00001050
N - 1 N - 1 N - 1 N - 1 N - 1 NOVE DATA TO SDA REGION = GMI = GMI = GFL GVK GWK GWK = RCITP = RCITP							00001030
DPEXO (13) = EN = GMI = GMI = FLAG APSI = GSPRL GCX GVK GWK = RCIP = RCIP	2 						00001020
= EN = GMI = FLAG = GF1 = GF1 = GF2T = GSPRL = GSPRL GVK GWK = BCTTP = RCTRP	OPEXQ						00001060
= EN = GMI = GMI = GFL GECX = GECX = GSPRL GUK GWK GWK = BCITP = RCIBM			MOVE	DATA TO		GION	02010000
= GMI = PFLAG GECX = GECX = GSPRL GUK GVK GWK = BCITP = RCIBM	ш Ш		1				08010000
= PFLAG = GPS1 = GECX = GSPRL = GSPRL = GVK = GWK = BCITP = RCITP	8						06010000
= GPST = GECX = GSPRL = GVK = GVK = GWK = BCTTP = RCTTP = RCTTP	H						10
= GECX = GSPRL = GSPRL = GVK = GVK = GWK = BCITP = RCITP	11						<u> </u>
= GSTAL GVK = GVK = GVK = GMK = BCITP = ACIRM	ט וו						00001120
GUK GVK GVK BGMK BCITP BCITP BCITP BCITP	, ;						
E GWK GEMK BCITP CITP CITP	= GVK				1	1	
= GEMK = BCITP = RCIBM	ı n						00001160
= BCITP = BCIBM	н 19 19						00001170
= RCIRM	ł						00001180
11	= RCIRM CIT ANE. 6.) GO) 17	ł			:	000011000 000012000

Geometry Computation Subroutine (Cont)

*

Geometry Computation Subroutine (Cont)

```
00001260
                                                                                 00001403
00001210
                                 00001250
                                                                      00001280
                                                                                                                                00001330
                                                                                                                                                                                                                                                                                 00001410
                                                                                                                                                                                                                                                                                              00001420
                                                                                                                                                                                                                                                                                                                     00001440
                                                                                                                                                                                                                                                                                                                                                          00001470
                                                                                                                                                                                                                                                                                                                                                                                             0001200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  = .1PE13.4//7X.23HFINIT00001570
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2E DIFFERENCE INCR..5X.7HDEL = .EI3.4//7X.19HBOUNDARY CONDITIONS. 00001580
3 9X.7HBCIT = .EI3.4/ 35X.7HBCIB = .EI3.4//7X.24HDISCONTINUITY CONDOPORTS90
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       = •E13•4/35X•7HECX = •E13•4// 7X•16HSPRING CONDINCPULSION
                                                                                                                     00001320
                                                                                                                                              00001340
                                                                                                                                                          00001350
                                                                                                                                                                    00001360
                                                                                                                                                                                  00001370
                                                                                                                                                                                              00001380
                                                                                                                                                                                                        00001390
                                                                                                                                                                                                                      00001400
                                                                                                                                                                                                                                 00001401
                                                                                                                                                                                                                                            00001402
                                                                                                                                                                                                                                                                                                          00001430
                                                                                                                                                                                                                                                                                                                                   00001450
                                                                                                                                                                                                                                                                                                                                               00001460
                                                                                                                                                                                                                                                                                                                                                                       0001480
                                                                                                                                                                                                                                                                                                                                                                                   06410000
                                                                                                                                                                                                                                                                                                                                                                                                           00001510
                                                                                                                                                                                                                                                                                                                                                                                                                                    00001530
                                                                                                                                                                                                                                                                                                                                                                                                                                               00201540
                                                                                                                                                                                                                                                                                                                                                                                                                                                            00001550
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        (CONE-CYLIOCODI560
                       00001240
                                                                                                          0101000
                                                                                                                                                                                                                                                                                                                                                                                                                        00001520
                                                                                                                                                                                                                                                                                                                                                                                                                                              WRITE (6. 32) IRGN. EN. DEL. BCIT. BCIB. PSI. ECX. SPRL. UK. VK.
1 WK. EMK. PFLAG. GEOMI. RAL. AXL. ANX
                                                                                                                                                                        **
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      32 FORMAT (1H1, 33X,24HGEOMETRY DATA FOR REGION +14,18H
1NDER) /// 7X,15HND, OF STATIONS,13X,7HN = ,1PE13,4/
                                                                                                                                                                                                                    COSFI = COSD(ANX)
IF(ABS(ANX) •NE+ 90+0) GO TO 21
                                                                                                                                                                                                                                                                                                                                                                                   DEL * COSFI
                                                                                                          1.E+10
                                                                                                                     = 1.E+10
                                                                                                                                             IF (ABS(GMI) - 2.0) 20: 35. 50
                                                                                                                                                                     CONE - CYLINDER
                                                                                                                                                                                                                                                                                                                                                                      _ = R(I+1) + DEL * SINF)
                                                                                                                                                                                                                                                          SIGN (SNFI , SINFI)
                                             6.) GO TO 19
                                                                                                                                                                                                                                                                                                                                                                                   XSI(I) = XSI(I-1) + DEL *
WTH(I) = AO * COSFI /R(I)
                                                                                                            H
                                                                                                                                                                                                                                                                                             = 20 * COSFI/RAI
                                                                                                        IF(BCIT •EQ. 0.) BCIT
IF(BCIB •EQ. 0.) BCIT
                                                                      EMNICI )
                                                                                                                                                                                            AXL/(EN - 1.0)
                                                                                  EMN3CE
         EM1X(I)
EM3X(I)
                                                           1.4
                                EM5X(1)
                                                                                               NN5 CI
                                                                                                                                                                                                         = SIND(ANX)
 201
                                                                                                                                                                                                                                                                                                                                                                                                                      RHOX(1) = R(1)/A0
                                                                                                                                                                                                                                                                                                                     RHCX(1) = RA1/AO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       41TIONS 4X +7HPSI
                                                                                                                                                                                                                                                                       0.0
                                                                                                                                                                                                                                                                                                                                                             = 2 N
                                                                                                                                                                                                                                            1•0
                                             •NE•
                                                                                                                                                                                                                                                                                 c • 0
                                                                                                                                                                                                                                                                                                       0.0
                                                                                                                                                                                                                                                                                                                                                                                                          WFE(1) = 0.0
                                                                                                                                                                                                                                                                                                                                   R(1) = RA1
                                                                                                                                                                                                                                                            H
                                                                      EMIN(I+I)
                                            1F(BC18
D0 18
                                                                                  EMAN(I . I
                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                        Ħ
                    EM3(I+I)
                                                                                            EM5N(I)
IF(BCIT
                                                                                                                                                                                                                                                 H
                                                                                                                                                                                                                                                                                                                                                           DO 30 I
          EMICIAL
                                                                                                                                                                                                                                                                                              WTH(1)
                                  EMS(I)
                                                                                                                                                                                                                                                                                 XSI(1)
                                                                                                                                                                                               DEL =
SINFI
                                                                                                                                                                                                                                                         SINFI
                                                                                                                                                                                                                                                                     COSFI
                                                                                                                                                                                                                                                                                                                                                                      RIL
                                                                                                                                                                                                                                            SNFI
                                                                                                                                                                                            DEL
8
                                                                                                                                                                                              20
                               12
                                                                                             1916
                                                                                                                                                                                                                                                                                                                                                                                                                        80
                                                                                                                                                                                                                                                                                 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                       1
                                                                                                                                                                                                                                                                                                                                               υ
                                                                                                                                                                                                                                                                                                                                                                                                                                    υ
                                                                                                                                 υ
                                                                                                                                                      Ì
```

7HWK = 6E13.44 4X 7HMK = 6E13.44 //	•4X• 7HVK = •E13•4 7X•10H0THER DATA /	1
7X• 7HPFLAG= •E13•4• 4X• 7HGEOMI= •E13•4•		00001630
8 ////////////////////////////////////	<pre></pre>	00001640
GO TO 295		00001660
		00001670
SPHERE - TOROID	*	00001680
ANGCO = DHIN = DHIN		06910000
ANGSP/(E		01210000
= 1.0		10000
SIGN		00001730
6		00001740
н С		00001120
#		00001760
BCUSP = COSD(PHIO) B411 - PC = B5740 - 2055		00001770
		09/10000
D0 40 T = 1 .NN	•	
P = SIND(A		00001820
= COSD(APHI)		00001830
= R(I) + RC + (ASINP - BSIN	t	00001840
1) = XSI(1)		04810000
= A0/ RC + AMU		00001860
F • EQ • 0 • 0) 60 10 38		00001870
WIH(I) = AO + BSINP / R(I) + AMU Go to 30		00001880
		00610000
2 = []		00001610000
= APHI		00001920
U i		00001630
BCOSP = ACOSP		00001940
Ē		000010200
UEL = ABSIVEL) Wefini = An /ry + Ami		09610000
F .EQ. 0.0)	and the same of a state of the state of the same of the same of the state of the same of t	00001980
H(N) = A0 + BSINP / R(06610000
4		00000000
H I		00005010
JX(N) = K(N)/AU		00002020
UEL = UEL + KC + 0.01745379		000002030

. .

00002280 00002290 2E DIFFERENCE INCR..5X,7HDEL = .EI3.4//7X,19HB0UNDARY CONDITIONS, 00002090 3 9X,7HBCIT = EI3.4/ 35X,7HBCIB = .EI3.4//7X,19HB0UNDARY CONDITIONS, 00002000 4ITIONS.4X,7HPSI = .EI3.4/35X,7HBCIB = .EI3.4//7X,16HSPRING CONDITION02100 5TION.12X,7HPSI = .EI3.4/35X,7HECX = .EI3.4//7X,16HSPRING CONDITION02120 6 4X, 7HWK = .EI3.44 / 7X,7HUK = .EI3.44 // 7X,16HSPRING CONDITIO 7 7X, 7HPFLAG= .EI3.44 / 7X, 7HMK = .EI3.44 // 7X,16HSPRING CONDITIO 8 / 7X, 7HPFLAG= .EI3.44 / 7X, 7HROFF =. EI3.44, 7X, 7HPHIU =. 00002130 9 EI3.44 7X, 7HPHIN =. EI3.44) = \$E13.40002250 00002260 00002190 00002200 00002220 +00002240 00002270 000023000 00002330 00002360 00002380 00002410 00002420 00002060 (SPHERE-10000u2070 = *IPE13.4//7X*23HFINIT0002080 00002170 00002180 00002210 00002230 00002310 00002320 00002340 00002350 00002370 00002390 00002400 00002430 00002440 0002450 00002460 0000204 0000204 Geometry Computation Subroutine (Cont) WRITE (6. 49) IRGN. FN. DEL. BCIT. HCTR. PSI. ECX. SPRL. UX. VK. 1 WK. - MK. PFLAG. GEOMI. AC. ROFF. JAID. PHIN H ELLIPSE //7X,7HRFF 51 WRITE (6.52) RFF, SPNO, SPNN, A, B 52 FORMAT(1H-.39X,32HCONIC REPRESENTATION - ELLIPSE //7X 1E13.4. 4X.7HSPNC = .E13.4. 4X. 7HSPNN = .E13.4. 4X.7HA 2 / 7X.7HB = .E13.44) 49 FURMAT (1H1+ 33X+24HGEOMETRY CATA FUR REGION +14+13H AAZ = A * A BB2 = B * B BETA = A * B/SORT(BB2 + (AA2-BB2) * A2SIN) IROID! /// 7X+15HNU. OF STATIONS+13X+7HN 50 IF (ABS(GMI) - 4.0) 200.51.150 XJ(JR) = BETA * COSD(ZETA(JR)) RJ(JR) * BETA * ASINP + RFF ELLIPSE ZETA(JR) = SPNO + BJB * DEL DLR = RJ(JR+1) - RJ(JR)DDL = XJ(JR+1) - XJ(JR) ASINP = SIND(ZETA(JR)) A2SIN = ASINP * ASINP AMU = SIGN(AM,DEL) BMU = AMU DO 54 JR = 1+750 BJR = JR - 1 DO 60 JR = 1.749 SURN(1) = 0.0 GO TO 295 CONTINUE 5 4 5 4 υ υυ 1 L

- 205 -

SORT(DLR* DLR + DDL * DDL)		00002470	
(JR) + DLS	,	00	
SURN(750)/(EN - 1.0)		00002490	
n 1 and		<u> </u>	
RF(I) + DEL			
SURF. R. SURN. RJ. 750. 1.0)	1	00002530	
SURF. XSI. SURN. XJ. 750		5	
SURF . ZTA . SURN .		00002550	
		00002560	
<u>SIND</u> (ZTA(I))	ł	00002570	
~ 3		00002580	
ASINP * ASINP	;	00002590	
4. K		00002610	
ABS(GMI) 6T. 5.0) 60 T0 75		262	
ا ص		00002630	
AA2 - 882		00002640	
<u> 882</u>		00002650.	
GMI) • EQ• 5•0) GO TO 70		00002660	
* B/SQRT(BB2 + AMB2 * A2SIN)		00002670	
(-A*B*AMB2*ASINP*ACOSP)/ SORT((BB2+AMB2*A2SI		00002680	
	zsin +	000027000	
		00002710	
= BB2 - APB2 * A2SIN	;	00002720	
0 [°]		n !	
(GN (HM + R2MSMS)		00002740	
⊃		00002750	
ABS(BZMSMS)		0000Z160	
A* B / SQRT(BZMSMS)		2	
# (A*B* APB2 * ASINP * ACOSP) / SGKI(BZMSMS**3) - A*B* ADB2 *// A3CAC -A3CAN * B3MCMC + 3.0 * A	40 a d	00002780	
05) / SQRT(B2MSMS **5)	: J)	00002800	
		00002810	
LI. 0.0) GO TO 80		00002820	
* ACOSP1 /A2SIN		00002830	
A2COS + 1.0) * 2. * A/(A2SIN * ASINP)		00002840	
= 2•*A* ACOSP * (A2COS + 5•) / (A2SIN * A2SIN)		00002850	
		co c	
=200 ×A #ASINP/A2CUS = 2=0# &*(&?4IN + 1=0)//A2COS* ACOSP	~	00002880	
= 2•0 * A * ASINP * (A2SIN + 5	5)	80	
Computation	va (Con	+1	
Geometry Computation Subr	va (Con		

Geometry Computation Subroutine (Cont)

000002900 00002950 00003010 00003040 06060000 1 ///7X+15HNO. OF STATIONS+13X+7HN = +1PE13.4//7X+23HFINIT00003130 2E DIFFERENCE INCR+,5X+7HDEL = +E13.4//7X+19HBOUNDARY CONDITIONS+ 00003140 3 9X+7HBCIT = +E13+4/ 35X+7HBCIE = +E13+4//7X+24HDISCONTINUITY COND00003150 4ITIONS+4X+7HPSI = +E13+4/35X+7HECX = +E13+4// 7X+16HSPRING COND100003160 5TION+12X+7HSPRL = +E13+4 / 7X+7HUK = +E13+4+4X, 7HVK = +E13+4+0000317C 00003190 00002930 000002960 00005370 00002980 00002990 00003000 00003020 00003030 00003050 00003060 00003070 00003080 00003100 (CONICS) • 00003120 00003180 00003200 00003210 00003260 +00003270 = •E13.400003280 00003290 00003310 00003320 000003330 00002920 00002940 00003220 00003230 00003240 00003250 00003300 Geometry Computation Subroutine (Cont) () * 6 4X* 7HWK = *E13•4* 4X* 7HMK = *E13•4 // 7X*12HOTHER DATA / 7 7X* 7HPFLAG= *E13•4* 4X* 7HGEOMI= *E13•4) WRITE (6.120) IRGN. EN. DEL, BCIT, BCIB, PSI, ECX, SPRL, UK, VK, + * ASINP) /(SURT(BTA2+BTAP2) - HYPERBULA //7X,7HRFF) /SURT((BTA2 160 WRITE (6.164)RFF. SPN0. SPNN. A. B 164 FORMAT(1H-.38X.32mCONIC REPRESENTATION - HYPERbula //7) 1613.4. 4X.7HSPN0 = .E13.4. 4X. 7HSPNN = .E13.4. 4X.7HA I WK. EMK. PFLAG. GEOMI 120 FORMAI (1H1.31X. 24HGEOMETRY DATA FOR REGION .14.12H * BETADP WFE(!) = (8TA2 + 2.º*RTAP2 - 8ETA 1 8TAP2) **3) * AM() 150 IF (ARS(GMI) .6T. 5.0) GO TO 180 + BETA HYPERBOLA WTH(I) =(-BETAP *AC',P + BE 1 (BETA *ASINP + RFT , * AMU 0.0) GO TO 105 00 * BFTAP IF(R(1) .EQ. 0.0) 60 TO = •E13•4 1 IF (1 .EQ. 1) GO TO 100 RHOX(I+1) = R(I+1) / AO* 56TA WFE(1) = WFF(2) WTH 1) = WTH(2) RHOX (1) = R(1) /AO ANGSP = SPNN - SPND DEL = ANGSP / 749.0AMU = SIGN(AM,DEL) I = 1, NNDELSO = DEL + DELWFE(N) = WFE(NN) WTH(N) = WTH(NN) BTA2 = RETA BTAP7 = RETAP IF(R(1) .NE. 2 / 7X+7HB GO TO 100 GO TO 295 CONTINUE AM = 1.0DO 110 06 100 110 8 105 υ υ υ Ų

- 208 -

00003780 00003810 00003930 00003940 00003950 00003960 00003980 00004190 00003830 00003850 00003860 02650000 00004050 00004160 00004170 00004200 06150000 000038000 00003840 00003870 00003880 00003890 00003900 01620000 0004000 00004010 00004020 00004030 00004060 000004070 00004080 000004040 00004100 01140000 00004120 00004130 00004140 00004150 IF (RCURV .FQ. n.n) Gn TO 260 CALL CODIMA(N. SURF.RCRV. SARB. RCURV. M. 1.0) CALL CUDIMA(N.SURF. RCRZ, SARB. RCURZ. M. 1.0) CALL CODIMA (KP1+XJ+ RRJ+ XIPT+ RIPT+ M+ 1+0) D0 220 I = 2+K R.I(I) = (RRJ(I-I) + RRJ(I) + RRJ(I+1) 1/3•0 DLS = SQRT(DLR(JR)++2 + DDL++2) SURB = SURB + DLS XJ(J]) = XIPT(JL) + AJI * DD SARB(IL+1) = SARB(IL) + SURB DLT = XIPT(IL+1) - XJPT(IL)00 225 JR = 1+K DLR(JR) = RJ(JR+1) - RJ(JR) DEL = SARB(M) / (EN - 1.0)DO 250 I = 1.0N SURF(I+1) = SURF(I) + DEL = 1•KP1 IF (GMI) 235+205+205 DO 230 IL = 1+MM $I = 1_{9M}$ RJ(KPI) = RRJ(KPI)SARB(I) = XIPT(I)RJ(1) = RRJ(1)١٢ SARB(1) = 0.0SURF(1) = 0.0AK = K DDL = DLT/AK AJI = JI = J= K + 1 M = EM MM = M - 1 SURB = 0.0MN:2 = M - 2CONTINUE GO TO 245 240 210 CONTINUE 00 250 × = 10 DLS КРÌ 8 20 200 210 235 245 230 205 220 225 240 250 υ U U U U U

Geometry Computation Subroutine (Cont)

CODIMA (N.SURF. R. SARB, RIPT. M. 1.0) CODIMA (N. SURF. XSI. SARB, XIPT. M1.0) N = 2 T = 1 = 2 T = 1 = 3.ML T = 3.ML T = 3.ML T = 1.0 = R(N) = R(N	00004210 00004220 00004220 00004230 00004250 00004250 00004260 00004280 00004280	00004370 00004370 00004370 00004320 00004350 00004350 00004350 00004350 00004350 00004380		00004520 00004530 00004540 00004560 00004560 00004580 00004580 00004500 00004500 00004500 00004500 00004600 00004620
CODIMA (N.SURF. R. SARB. R CODIMA (N. SURF. XSI. SARB. R N - 2 N - 2 1 = 3.MLN = (-3.*R(i-2) + 12.*R(I-1 = (-3.*R(i-2) + 12.*R(I-1 = (-3.*R(i-2) + 12.*R(I-1 = (-1) = R(1) =	• 1•0) • M• -1•0		 PSI, ECX, SPRL, UK, I), I = 1,M) REGION, 14,20H REGION, 14,20H (DISC a 1PE13.4//7X.23H TX.19HBOUNDARY CONDITI 4//7X.24HDISCONTINUITI E13.4// 7X.16HSPRING E13.4.4X.7HVK 	3.4 // 7X,10HOTHER 3.4.)) mputation Subrouti
0 0 <td>CALL CODIMA (N.SURF. R. SARB. RIPT. CALL CODIMA (N. SURF. XSI. SARB. XIP MLN = N - 2 NSM = 1 DO 275 I = 3.MLN RR(I) = (-3=*R(1-2) + 12.*R(1-1) + 1 RR(I) = (-3=*R(1-2) + 12.*R(1-1) + 1 CONTINUE</td> <td>RR(NN) = R(NN) $RR(2) = R(2)$ $RR(N) = R(N)$ $RR(1) = R(1)$ $IF (NSM = G0.25) GO TO Z$ $NSM = NSM + 1$ $DO ZBO I = 1.N$ $R(1) = RR(1)$ $GO TO Z70$ $R(1) = RR(1)$</td> <td>DELSO DEL * DEL DELSO DEL * DEL DO 288 I = 1.NN RHOX(I+1) RR(I+1) / AO WRITE (6.290) IRGN. EN. DEL. BC WK. EMK. PFLAG. GEOMI. (RIPI(I) FORMAT (1H1. 31X, 24HGEOMETRY D FORMAT (1H1. 31X, 24HGEOMETRY D POINTS) / / 7X.15HNO. OF STATICNS POINTS) / / 7X.185I POINTS) / / 7X.195I</td> <td>6 4X• 7HWK = •E13•4• 4X• 7 7X• 7HPFLAG= •E13•4• 4X• 8///43X• 1HR• 18X• 2HXI // IF (RCURV •NE• 0•0) GO_TC DEL = DEL/ AO DEL = DEL/ AO DEL = DEL/ AO DEL = DEL/ AO DEL = 12• * Fv(I) * DE DENM = 12• * Fv(I) * DE DENM = 2• * () * 0EL</td>	CALL CODIMA (N.SURF. R. SARB. RIPT. CALL CODIMA (N. SURF. XSI. SARB. XIP MLN = N - 2 NSM = 1 DO 275 I = 3.MLN RR(I) = (-3=*R(1-2) + 12.*R(1-1) + 1 RR(I) = (-3=*R(1-2) + 12.*R(1-1) + 1 CONTINUE	RR(NN) = R(NN) $RR(2) = R(2)$ $RR(N) = R(N)$ $RR(1) = R(1)$ $IF (NSM = G0.25) GO TO Z$ $NSM = NSM + 1$ $DO ZBO I = 1.N$ $R(1) = RR(1)$ $GO TO Z70$ $R(1) = RR(1)$	DELSO DEL * DEL DELSO DEL * DEL DO 288 I = 1.NN RHOX(I+1) RR(I+1) / AO WRITE (6.290) IRGN. EN. DEL. BC WK. EMK. PFLAG. GEOMI. (RIPI(I) FORMAT (1H1. 31X, 24HGEOMETRY D FORMAT (1H1. 31X, 24HGEOMETRY D POINTS) / / 7X.15HNO. OF STATICNS POINTS) / / 7X.185I POINTS) / / 7X.195I	6 4X• 7HWK = •E13•4• 4X• 7 7X• 7HPFLAG= •E13•4• 4X• 8///43X• 1HR• 18X• 2HXI // IF (RCURV •NE• 0•0) GO_TC DEL = DEL/ AO DEL = DEL/ AO DEL = DEL/ AO DEL = DEL/ AO DEL = 12• * Fv(I) * DE DENM = 12• * Fv(I) * DE DENM = 2• * () * 0EL

- 210 -

ALX	00004 <u>540</u> 000004650 P000004650
TO 30	00004670 00004680
6U 10 5V3 238 FF (1 _FG_:N) 6A TO 2AO	00004690
IF (1 .EQ. 5: GO TO 2	01140000
EQ. N-1) 60 IO 299	00004720
GAMA(I) = {RHOX(I-2) - 8° *(RHOX(I-1) ~ RHOX(I+1))- RHOX(I+2 3 / ADEMM	+2)00004730
G TO 305	00004750
239 GAMA(12 = (RHDX(1+1) - RHOX(1-1)) /DENMP	00004760
60 TO 305 200 644411) +(3.*(840X/1)-840X/1-31) + 840X/[-3) - 840X([-1)) /05NMB	00004770
	00004790
	00004800
0 (510, 510, 310, 500, 500, 500), 1GM	00004820
	00004830
310 00 370 I = 14N	00004840
IF(RHOX(I) .EQ. 0.) GO TO 340	00004850
) * RHOX([])	09840000
IF (GAMRX •LE• 1•) GO TO 315	00004870
= 115	00004880
	00004890
60 70 370	00004900
#1 (1) = (CCK)(1 - CAMKX **2)) /K	01640000
320 DENUM = KHUX(!) * WI (!) * VELSQ * 12+ DENOMD= RHOX(!) * WI (!) * DF!SO	00004930
IF (1. •NE• 1) GO 10 325	00004940
$(1) = (-2 \cdot *RHOX(1))$	00004950
GO TO 370 245 TE /T -EO, NY EO TO 325	00004960
IF (I - FQ - 2) 60 TO	00004980
(I •E. N-I) GO]	00004990
(1) = (RHOX/ 1-21 - 16*	00002000
I RHOX{I↓I} + RHUX(I+2))/ DENOM GA TA 22A	00005020
5	00002030
60 T0 376	00/05040
335 WF [] = [-2.**RHOX(])+5.**RHOX([-])-4.**RHOX([-21+RHOX([-3))/DFNOMP Go IO 370	00005060 00005060
2	

:

Geometry Computation Subroutine (Cont)

JID = 3 JIL = 3 JIL = 1) + 2.0 * WT(I2+2) + 5.0 * W WFW. STAP. WFP. 41.0) JIL = 3 JID = 3 JID = 3 S.*WT(KK+2) + 2.0 * WT(KK+3) -		000052300005230000523000005230000052300000523000005230000052300000052300000000	1
JTD = 3 JTC = 3 WFW+ STAP+ WFP JTD = 3 JTD =	÷	-1•0)	
	+ 	STAP, WFP, 4	0 400 = 3 +WT(KK+2) +
	60 TO 370 6F. 4.0) 6F. 4.0) 1JTD 1 1 2 8 7(12) - 0.0	110-2) 110-1) 110) 110. Staw. 110. Staw.	0.0) G0 1) 00) G0 10 10 1 11 + 0.0 10 380 2) 20 380

Geometry Computation Subroutine (Gont)

00005690 00005620 00005900 00005570 00005660 00002750 00005780 00005810 00005840 00005530 00005640 00005650 00005670 00005680 00005720 00005740 00005790 000052000 00005510 00105520 00005540 00005550 00005560 00005580 00005590 00005600 00005610 00005710 00005730 00005760 00005770 00005800 00005820 00005830 00005850 00005860 00005870 00005880 00005890 00005920 WIH(1).<u>s.</u>{69•*<u>wIil).</u>+.4_{*}#WI(2)._6•*WI(3) +4_{*}*WI(4) ~ WT(5) }/70•0 WFE(1) = WTH(1) WIH(21 = (2.*HI(1) + 27.*HI(2) + 12.*HI(3) - 8.*HI(4) +2.*HI(5))/ = [2_#WE[1] + _27_#WF[2] + 12_# WF(3) -8_*WF(4) +2_*WF(5))/ <u>KT(1+4)</u>)/231<u>40</u> WFE(I) = (-21**WF(I-4) + 14•*WF(I-3) + 39•*WF(I-2) + 54•*WF(I-1) **6.*** LE_(RHOX(1) •NE•..Da.).MEE(1) = (69a+WF(1). + 4•+WF(2) - 6•+WF(2). + 4•+WF(4) - WF(5) }/70•0 WTH(I) = (-21.*W%([-4) + 14.*WT([-3] + 39.*WT([-2] + 54.*WT([-1]) ł ł *****•9 405 D0 430 I = 3.4MLN IF (I .NE. 3) G0 T0 420 41D WTH(I) = (-3.4WT(I-2) + 12.4*WT(I-1) + 17.4*WT(I) + 12.4*WT(I+1) + 59**WT(I) + 54**WT(I+1) + 39**WT(I+2) + 14**WT(I+3) - 21** 1 + 59°*WF(I) + 54°*WF(I+1) + 39°*WF(I+2) + 14°*WF(I+3) - 21°* 2 #F(I+4))/231°0 WFE(I) = (-3**WF(I-2) + 12**WF(I-1) + 17**WF(I) + 12**WF(I+1) 425 WTH(I) = (-2*W:(I-3) + 3**WT(I-2) + 6**WT(I-1) + 7**WT(I) + ŧ 1 WI(L+1) + 3eXWI(L+2) - 2e*WI(L+3))/21e0 WFE(I) = (-2e*WF(I-3) + 3e*WF(I-2) + 6e*WF(I-1) +7e*WF(I) 1 WF(L+2) + 3e*WF(I+2) - 2e*WF(I+3))/21e0 : CALL CODIMA (LJD. STAW, WFW, STAP, WFP, 4, -1.0) WTH(NN) = (WT(MLN) + WI(NN) + WI(N). 1/3.0 •FQ. MLN) GO TO 410 IF (I .EQ. N-3) GO TO 425 GO TU 425 3.#%F(I+2) /35.0 DO 390 II = $2_{1}JTD$ WF(II) = WFW(II-1) 1 3.*WT(I+2))/35.0 ~ N + STAP(4) = JTU + (I •EQ• 4) 212 - 01U = 0U H ţ1 GO TO 430 GO TO 430 CONTINUE STAP(2) STAP(3) STAP(1) WEE(2) = WSN 35.0 IF (] 35.0 L -400 390 420 430 . , į υ . υ i

Geometry Computation Subroutine (Cont

00006320 00006330 00005930 00000030 00005970 00002990 000000000 00006010 00006020 00000040 00006050 000000000 00006070 00006080 06090000 00006120 00006130 00006170 00006200 00006220 00000240 00006260 00006270 00006280 00006290 00006310 00005950 09650000 00005980 00006100 000006140 00006150 00006160 00006180 00000190 00006210 00006250 00006300 00006230 IF (RHOX(N) •NE• 0•) WFE(N) = (-WF(N-4) + 4.*WF(N-3) - 6.*WF(MLN) 1 + 4.*WF(NN) + 69.*WF(N])/73.0 IF (N'M •EQ• 25) GO TO 510 * WFE(NN) = (WF(MLN) + WF(NN) + WF(N))/3°O WIH(N) = (-WI(N-4) + 4°+WI(N-3) - 6°+WI(MLN) + 4°+WI(NN) + 6°° HO(I) //(I5. IP6E17.7)) SAVE FOURIER LOADS FOR BNDS. 510 WRITE (6,515) (1, R(1), XSI(1), WFE(1), WTH (1), GAMA(1), 1 RHOX(I). I = 1.N)
515 FORMAT (1H-.4X.1H1.9X.4HR(I).12X.5HX(I) .11X.6HWFF(I).10X. 1 8HWTH(1) .10X,7HGAMA(1),10X,7HRHO(1) 445 IF (PRO .6T. 1.0) GO TO 450 GAMA(I) = SQRT(1.-PRO)/RHOX(I) GO TO 460 WFE(I) = A0/RCRV(I) IF (PHOX(I) +FQ+ 0+0) GA TO PRO = (PHOX(I) + WTH(I)) ++2 IF(SUM •EQ• 0•) GO TA 1000 DO 52A i = 1•80 EM5X(I) EMN5(I) WTH(I) = AO/RCRZ(I)GAMA(I) = 1.E+108 8 WFE(N) = WIH(N)NSM = NSM + 1 DO 435 I = 1+N $N \bullet I = I 0.046 00$ WF(1) = WFE(1)WT(I) = WTH(I)1 WT(N) 1/70.0 GAMA(I) = 0.0SDA(I + 775) 520 SDA(I + 925) GO TO 405 GO TO 460 CON 7 INUE CONTINUE 500 CONTINUE RETURN END g 1000 440 450 460 435 445 í U U υ U

Geometry Computation Subroutine (Cont)

518FTC DLDS C SUBROUTINE TO SET UP PN: PFE, PTH: TMP 6J-146 ** LINK 3 0000010 C SUBROUTINE DATLDS (NS) 12 C NOMENCLATURE C NOMENCLATURE	PRESSURY INDICATOR 1=CONSTANTS. 2=FOURIER CMP. KNOWN 000000 +3=FOURIER SUMMING. SYMMETRICAL. -3=FOURIER. UNSYM. 000000 +=SPECIAL FUNCTION (NOT AVAILABLE AT PRESENT) 0000000 +=SPECIAL FUNCTION (NOT AVAILABLE AT PRESENT) 0000000 +=SPECIAL FUNCTION (NOT AVAILABLE AT PRESENT) 0000000 +=SPECIAL FUNCTION (NOT AVAILABLE AT PRESENT) 000000 +=SPECIAL FUNCTION (NOT AVAILABLE AT PRESENT) 000000 +=+ • OUTER FACE (AS PILLD) 000000 TABLES FOR ALL LOADS AND ALL ENF VALUES 000000 TABLES FOR ALL LDS. AND ENF'S. DIMENSIONED 200 EACH. 000000 TABLES FOR ALL LDS. AND ENF'S. DIMENSIONED 200 EACH. 000000 CONSTANT VALUE FOR IST FNF INDICATOR = 1 000000	TAB([+]) 2ND ENF. ETC. TAB([) NO. OF ENF.S TAB([+]) ENF VALUE TAB([+2) NO. OF STATIONS TAB([+2) NO. OF STATIONS TAB([+3) STATION NO. = 1. TAB([+4) LOAD AT STATION ONE TAB([+4) LOAD AT STATION ONE TAB([+5)F STATION AND LDS.(INTERLACED) LAST STA. NO. = EN TAB(2*TAB([+2)+4) LIKE TAB([+1) FOR 2ND ENF. REPEAT PATTERN	C ENTH NO. OF THETAS TO SUM TAB(I) TABLES USED FOR DBL. INTRP. PFE. PTH. PN. TBT. TTP 0000051 C TAB(I) TABLES USED FOR DBL. INTRP. PFE. PTH. PN. TBT. TTP 0000052 C TAB(I) NO. OF THETA RAYS INCLUDED IN TABLE 0000053 C TAB(I+1) FIRST THETA VALUE (MUST BE ITS LOWEST) 00000054 C TAB(I+2) NO. OF STATIONS TO DESCRIBE FIRST THETA RAY 00000055 C TAB(I+2) NO. OF STATIONS TO DESCRIBE FIRST THETA RAY 00000055 C TAB(I+3) F STATION AND LDS. VALUES ALONG THETA RAY 00000055 C TAB(I+3)F STATION AND LDS. VALUES ALONG THETA. REPEAT PATTERN 00000055 C TAB(1+3)F STATION AND LDS. VALUES ALONG THETA. REPEAT PATTERN 00000055 C TAB(1+2)+4) LIKE TAB(I+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(1+2)+4) LIKE TAB(I+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(1+2)+4) LIKE TAB(I+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(1+2)+4) LIKE TAB(I+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(1+2)+4) LIKE TAB(I+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(1+2)+4) LIKE TAB(I+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(1+2)+4) LIKE TAB(1+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(1+2)+4) LIKE TAB(1+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(1+2)+4) LIKE TAB(1+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(1+2)+4) LIKE TAB(1+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(1+2)+4) LIKE TAB(1+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(1+2)+4) LIKE TAB(1+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(1+2)+4) LIKE TAB(1+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(1+2)+4) LIKE TAB(1+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(1+2)+4) LIKE TAB(1+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(1+2)+4) LIKE TAB(1+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(1+2)+4) LIKE TAB(1+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(1+2)+4) LIKE TAB(1+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(1+2)+4) LIKE TAB(1+1) FOR 2ND THETA. REPEAT PATTERN 00000055 C TAB(2*TAB(2*TAB(1+2)+4) LIKE TAB(2*TAB(2*TAB(2*TAB(2*	** DINTRP WILL SELECT THE LOWER OR UPPER BOUND WHEN A VALUE IS OFF 000000 An End of a theta Ray. Nosta no. of stations where Loads are given (20 Maximum) 000000	
--	---	--	---	--	--

Subroutine to Set Up PN, PFE, PTH, TMP

00000074 0000 71 72 00000073 00000171 DIMENSION TAB(1000), PNTB(200), PFETB(200), PTHTB(200), PN(150), 00000100 PFE(150), PTH(150), TLOC(5), STA(20), VAL(20), X(150), TBOTX(2),00000101 THETX(91), TEMP(20,91), PD(20), EMD(20), DLD(1205), ENFOR(4), 00000102 EMS(80), EMNS(80), EMSX(4), EMSN(4), TBOT(200), TTOP(200) DIMENSION ENT(150), FMT(150), T(150) 39 1(DLD(4). ENTH).(DLD(5). TAB).
2(DLD(205).PTHTB).(DLD(405).PNTB).(DLD(605). FEOT).(DLD(805).TTOP).00000142
3(DLD(205).PTHTB).(DLD(1006).PD).(DLD(1026).EMD).(DLD(1046).EMS).00000143
4(DLD(1126).EMNS).(7LOC(1).PFEX).(TLOC(2).PTHX).(TLOC(3).PNX).00000144
5(TLOC(4).TBOTX).(TLOC(5).TTOPX). 169 661 210 226 80 (DLD(1), PILD), (DLD(2), TIBT), (DLD(3), TITP), 0000140 53)+(DA(9)+ ENFO)+(DA(21)+ ENFOR) 00000160).(SDA(12). PFLAG).(SDA(20). TLOC).00000170 00000179 209 211 228 00000076 10 OMMON DA(39). SL2. ELAM2(3). KKF. SQ3. SQ4. SQ6. ENF. IFR. KLM.0000200 SDA(3098). PM(126). ENOT. STN(20). TBT(20). TTP(20) 00000000 5 00000219 00000225 0000° TMP (Cont INNER SURFACE (11) PILD. [PRS. ITBT. ITTP. ENTH . (DLD(I). I=5.805.200) FOR NO TEMP TEST FOR FIRST FOURIER COMP. EQUIVALENCE (SDA(14). EN).(SDA(12). PFLAG).(SDA(20). TL(1(SDA(526). PFE).(SDA(776). PTH).(SDA(926). PN). 2(SDA(2458).EM5X).(SDA(2494).EM5N) EQUIVALENCE (SDA(326).ENT). (SDA(476).EMT).(SDA(1226). T) SDA(17). SDA(18). SDA(19) ARE USED FOR LOAD AT A DISCONTINUITY (ON I WWNS OUTER PTH, LOADS VALUES NO. OF TEMP. STA. (20 MAXIMUM) SET TO 0. STATIONS FOR TET AND TTP (ALSO FOR ALL FOURIER COMPONENT FOR TEMPERATURE LOAD. РЪЕ, THETX(91) THETA VALUES TO INCLUDE IN SUMMING FEMP (20+91) SUMMING DATA REGION Subroutine to Set Up PN, STATIONS WHERE LOADS ARE GIVEN (DA(2) + A0 GO TO 1 I = 1+1205 = 0. ••• IF(SL2 .NE. EQUIVALENCE EQUIVALENCE TO .300 EN NS THETX(91) DLD(1) STA(I) VAL (I) ENOT STN(1) TBT(1) TP(I) NOMMOD H READ H 00 zs -0.0 -- N 00000000000 U U υυ υ υ υ \mathbf{U}

231 232 234 234 234 234 234 234 234 234 234	00000259 00000259 00000259 00000259 00000259 2563 269 269 269 271 271 272 272	
RST PASS 805.200)	PATH E LOADS IRY MATRICES	KNOWN 000 /LD+INC=1 000 TMP (Cont
SAVE INDICATORS ON FIRST PASS • ENTH• (DLD(I)•]=5•805•200)	CHOOSE PRESSURE PATH CONSTANT PRESSURE LOADS TABLES AND BOUNDARY MATRICES	FOURIER COMPONENTS KI BY PNTE DIMENSION BY PN DIMENSION NOSTA FOR NEXT ENF /I NOSTA FOR NEXT ENF /I TEST IF FIRST TIME
	SAVE 01) 01)	CRIPT. INCREMENTED BY PNTI ATION. INCREMENTED BY PN D ATION. INCREMENTED BY PN D SCRIPT TO PICK UP NOSTA FO STATIONS GO TO 50 GO TO 50 Subroutine to Set ID PN.
• IPRS• :TBT•	00. 900). 60 T0 6 (I). I = (IL) B(IL) B(IL) N	ê Û S
<pre># 1. # 1. # 1. DECRD(DLD) DECRD(DLD) = TIBT # 18T # 18T</pre>	L C H H B () C U C C H H B () C U C C C C H H H H C () C U C C C C C H H H H C () C U C C C C C H H H H C () C U C C C C C C C C C C C C C C C C C C	95 148 504 17LOC N0. 1626 1626 1626 •NE. ENF
PILD TIT TIT TIT TIT TIT TIT TIT TIT TIT S S S TIT S S S TIT S S S S		C 60 T0 C 178 C 178 C 150A C 150A C 20 178 C 20

Subroutine to Set Up PN, PFE, PTH, TMP (Cont)

.

Subroutine to Set Up PN, PFE, PTH, TMP (Cont)

TEST FOR ZERO TEMP TEST FOR ZERO TEMP SEPARATE STATION SEPARATE STATION MERE BOTH TEMPERAT	
0.0.00 60.00 1 = 1.45 0.0 IEMPERATURE. FULME. FULMENTS. NAMEL 0.0 IEMPE 050 10 128 1.188(1).1 = 1.1201) IEST FOR ZERO TEMPERATURE. 0.051A + 1 0 1.188(1).1 = 1.1201) IEST FOR ZERO TEMPERATURE. 0.188(1).1 = 1.1201) IEST FOR ZERO TEMPERATURE. 0.181(1).1 = 1.1201) IEST FOR ZERO TEMPERATURE. 1.181(1).1 = 1.1201) IEST FOR ZERO TEMPERATURE. 0.117(1).1 = 1.1201) IEST FOR ZERO TEMPERATURE. 1.181(2).1 = 1.1201) IEST FOR ZERO TEMPERATURE. 1.181(2).1 = 1.1201) IEST FOR ZERO TEMPERATE	
1 = 1.45 0 TEMPERATURE FULATEN OU PULATENENTS NAME 1 - 1.0 1 - 1.15 1	0000061366 0000000000
0. 1. 3) GO TO 126 EMFOJ GO TO 126 EMFOJ GO TO 128 (TAB(1), I = 1,1201) 7 ENFOJ GO TO 129 TAB(118 + 2) TB(118 + 2) TB(118 + 2) ENFOJ GO 129 TAB(119 + 2) TEST FOR ZERO TENPERATURE EO. 0) GO 129 TAB(1), I = 1,1201) TAB(1), I =	
0 1. 3) GO TO 126 1. 3) GO TO 126 1. 3) GO TO 126 1. 3) GO TO 128 1. 10 50 TO 128 1. ENFU) GO TO 129 1. ENFU) GO TO 129 1. ENFU) GO TO 129 1. ENFU) GO TO 129 1. ENFU GO TO 120 1. ENFU GO TO 1	44000582 44000582 440005845 44000588 44000588 4000050588 4000050588 400005013 000005128 00000513 0000050 0000050 0000050 0000050 0000050 0000050 0000050 0000050 0000050 0000050 0000050 00000050 0000050 0000050 0000050 0000050 0000050 0000050 0000050 0000050 0000050 0000050 0000050 0000050 0000050 00000050 00000050 00000050 00000050 00000000
0 1. 31) GO TO 126 . ENFO: GO TO 126 . ENFO: GO TO 128 . ENFO: GO TO 129 . TABKI: - 1	74300584 74000584 740000585 74000050585 740000513 740005013 7400050050 740005005000000000000000000000000000000
0 1. 3) GO TO 126 • ENFOJ GO TO 126 • ENFOJ GO TO 126 • ENFUJ GO TO 129 188(1T3 + 2) TEST FUR ZERO TENPERATURE • ENFUJ GO TO 129 188(1T3 + 2) TEST FUR ZERO TENPERATURE • NOSTA + 1 • NOSTA + 2 • TABLES • STATIONS • TABLES • STATIONS • (SeSTN+FTI(1),STA+VALVES • C. TENPE AND TENPERATURES ZERU	6000612885 00006125885 000006012 00000612 000006126662389 0000061266643 0000061266643 0000061266643 000006126569 00000612650 00000000000000000000000000000000000
I. 3) GO TO 126 • ENFOI GO TO 126 • ENFOI GO TO 128 (TAB(I), I = 1,1201) 7 • ENFOI GO TO 129 • ENFOI GO TO 116 • NOSTA + 1 • O (TAB(I), I = 1,1201) • TA(IX) • TAB(KX) • O • TAB(KX) • I • XX1 × 1 • SEPARATE STATUMO AND VALUE. • I • XX1 × 1 • SEPARATE STATUNO AND VALUE. • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I • I<	00000612 00000602 00000602 00000612 00000602 00000602 00000602 00000602 00000602 00000602 00000602 00000602 00000602 00000602 00000602 00000602 00000602 00000602 00000602 00000602 00000602 00000602 00000000
<pre> 1. 31 GO TO 126 ENFOI GO TO 128 (TAB(I) + I = 1.12U)) 7 ENFUI GO TO 129 TAB(ITB + 2) TAB(ITB + 2)</pre>	00000613 00000600 00000600 00000600 00000613 0000060000000000
<pre> FNF01 G0 T0 128 (TAB(I) • I = 1.12U1) 7 FB(ITB + 2) FEST FUR ZEMO TEMPERATUUL E0. 0) G0 T0 129 FEST FUR ZEMO TEMPERATUUL E0. 0) G0 T0 116 NOSTA + 1 NOSTA + 1 TX(IX) + K1 - 1 TX(IX) + 1 T * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1</pre>	00000605 0000061612 0000061612 0000061612 000006183 0000006183 000000000000000000000000000000000000
<pre>(TAB(I). I = 1.1201) 7 . ENFU) GO TO 129 . TAB(ITB + 2) . TEST FUR ZERO TENPERATUUL E0. 0) GO TO 116 NOSTA + 1 NOSTA + 1 . TX(IX) + K1 - 1 . TX(IX) + 1 . TX(IX) - 1 . TX(IX)</pre>	30000604 00000612 00000612 00000614 00000614 00000616 00000618 00000618 00000618 00000618 00000618
7 • ENFU) GO TO 129 • ENFU) GO TO 129 • EQ. 0) GO TO 116 • NOSTA + 1 • K1 - 2 • K1 • K1 - 1 • K1 - 2 • K1 • K1 - 2 • K1 - 2	00-00616 000-0612 000-0612 000-0613 000-0614 000-0618 000-0620 000-0620 000-0620 000-0620 000-0620 000-0620 000-0620
• ENFU) GO TO 129 TAB(ITB + 2) TEST FUR ZERO TEMPERATURE EQ. 0) GO TO 116 • K1 - 1 TX(IX) + K1 - 1 TX(IX) + K1 - 1 TX(IX) • K1 - 1 TX(IX) • K1 - 1 • K2 + 4 • K2 + 4 • K1 - 1 • K1 - 2 • K1 -	00000612 00000612 00000612 00000616 00000616 00000620 00000620
1 ABUILIS + Z) TEST FUR ZERO LEMPERATURE C0 0 NOSTA + 1 0 (TAB(1) + 1 = 1.1201) 1 X(1X) 1 X(1X) 1 X(1X) 1 X(1X) 1 X(1X) 1 X(1X) 2 K2 + 4 2 K2 + 4 3 K2 + 4 3 K2 + 4 1 = K1,K2.2 1 = K1,K2.4	0000014 00000613 00000613 00000618 00000628 000006320
EQ. 0) GO TO 116 NOSTA + 1 0 (TAB(1), 1 = 1,1201) TX(1X) TX(1X) TAB(X) EQ. 0) GO TO, 116 NOSTA - 2 + K1 = K2 + 4 NOSTA - 2 + K1 = K1 + K2 + Z = K2 + 4 NOSTA - 2 + K1 = K1 + K2 + Z = K2 + 4 NOSTA - 2 + K1 = K1 + K2 + Z = K2 + K2 + Z + Z + Z + Z + Z + Z + Z + Z + Z +	00000118 000006118 000006118 000006118 000006118 000006520 000006520
NOSTA + 1 0 (TAB(I). I = 1.1201) TX(IX) TX(IX) TX(IX) TAB(X) A C D 116 NOS A - 2 + KI = K2 + 4 NOS A - 2 + KI = K1 + K2 + 2 = K1 + K2	00000616 00000618 00000620 00000620 00000632
NOSTA + 1 0 (TAB(I), I = 1,12∪1) TX(IX) TABIXX)	00000618 00000620 00000630 00000632
0 (TAB(I). I = 1.1201) TX(IX) TX(IX) TAB(XX) EQ. 070,116 NOSTA - 2 + K1 EQ. 0, 16 NOSTA - 2 + K1 EQ. 0, 16 NOSTA - 2 + K1 EQ. 16 NOSTA - 2 + K1 EQ. 0, 16 I = K1.K2.2 I = K1	00000450 00000630 00000630
<pre>(1148(1). 1 = 1.1201) TX(1X) TX(1X) TAB(XX) Co. 0) G0 T0 116 NOSTA - 2 + K1 E0. 0) G0 T0 116 NOSTA - 2 + K1 E0. 0) K0 E1. EX1.44 E0. E1. EX1.44.45 E1.</pre>	000000632
<pre>*K1 = 1 *K1 = 2 + K1 * K2 + 4 *K1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 *</pre>	000000222
TABIKX) . </td <td></td>	
EQ. 0) GO TO 116 NOSTA - 2 + K1 = K2 + 4 NOSTA - 2 + K1 = K2 + 4 NOSTA - 2 + K1 = K1.K2.2 I = K1.K2.2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	4690000
NOSTA - 2 + K1 = K2 + 4 I = K1.K2.2 + 1 + 1 + 1 TAR(KX) TAR	00000638
<pre>= K2 + 4 = K2 + 4 I = K1.K2.2 + I + I + I Tar(KX)</pre>	0000000000
I = K1.K2.2 + I + I + I + I (IR - 601) /10 FIT VALUES TO 20 TEMP. STATIONS A (KS.STN.FRT(11).STA.VAL.K0. 1.) WERE BOTH TEMPERATURES AUZERU	00000642
0 SEPARATE STATIONS AND VALUES 42 I = K1,K2,2 * K0 + 1 * ITB + I * ITB + I * 0) = TAR(KX+1) * 1 + (ITB - 601) /10 * I + (ITB - 601) /10 * FIT VALUES TO 20 TEMP STATIONS CODIMA (KS,STN,FTG(II),STA,VAL,K0, 1.0) * EQ. 1) GO TO 157 * EQ. 1) GO TO 157	00000648
 0 42 I = K1,K2,2 K0 + 1 ITB + I 0) = TAR(KX) 0) = TAR(KX+1) 0) = TAR(KX+1) 0) = TAR(KX+1) 1 + (ITB - 601) /10 FIT VALUES TO 20 TENP. STATIONS CODIMA (KS.STN.FRT(II).SIA.VAL.K0. 1.) 	000000649
(42 I = KI,K2.2 * K0 + 1 * ITB + I * 0) = TAR(KX+1) 0 10 0 157 0 157 0 157	1900-000
<pre>x 0 + 1 i TB + i 0) = TAR(xx+1) 0) = TAR(xx+1) i + (ITB - 601) /10 FIT VALUES TO 20 TEAP. STATIONS CODIMA (KS.STN.TAT(II).STA.VAL.K0. 1.) were BOTH TEAPERATURES AUZERU (.EQ. 1) GO TO 157 C.L</pre>	00000652
<pre>(0) = TAR(KX) (0) = TAR(KX+1) (0) = TAR(K</pre>	000000604
0) = TAR(KX+1) = 1 + (ITB - 601) /10 FIT VALUES TO 20 TEAP. STATIONS CODIMA (KS.STN.TRT(II).STA.VAL.KO. 1.) WERE BOTH TEAPERATURES AUZERU (.EQ. 1) GO TO 157 C.L	00000750
- I + (ITB - 601) /10 FIT VALUES TO 20 TEAP. STATIONS CODIMA (KS.STN.TRI(II).STA.VAL.K0. 1.) WERE BOTH TEMPERATURES NUZERU (.EQ. 1) GO TO 157 C.L	000000000000000000000000000000000000000
CODIMA (KS.STN.TRT(II).STA.VAL.KO. 1.) (.EQ. 1) GO TO 157 WERE BOTH TEMPERATURES AUZERU	00000665
CODIMA (KS.STN.TBT(II).STA.VAL.KO. 1.) CODIMA (KS.STN.TBT(II).STA.VAL.KO. 1.) WERE BOTH TEMPERATURES AUZERU X .EQ. 1) GO TO 157 C.L	<u>00000668</u>
X •EQ• 1) GO TO 157 WERE BOTH TEMPERATURES NO -ZERU	00000670
•EQ. 1) 60 TO 157	000000
5.4 11- DN DEF DTH	00000672
Jer OD FN. FFE. FID.	Cont)
L 1 1)	

- 220 -

00 155 155 TBT(1) =			677
157 ENOT = KS GO TO (200+850)+	KS 0•850)• IX		679 680 682
200 1X - 2 178 = 6	601		69 697 692
GO TO (106. 126.	16. 126. 8 30. 900). ITTP	CHOOSE TOP TEMPERATURE PATH SET UP TEMPERATURE STATIONS	00000693 694 00000978
н н ((N/19) + 1 1		086 086
00 312 STN(KS) = 312 KS = KS +			486 986 986
<u>10</u> 111 1			0 992 992 992 992
E OO	FC I = 1.N	FORM STATION NO. COLUMN	00000000000000000000000000000000000000
DO 330 EM5(1) = 330 EMN5(1) = GO TO _4	I = 1.80 SDA(I + 775) = SDA(I + 925)	MOVE BND. MATRICES TO DLD DATA	000000000000000000000000000000000000000
• ••• الآ أن ••• •••	676 PILD	FOURIER SUMMING	
160 = 1 53 = A0 401 NTH = 2 1F(INDC = 0 05111 - 1	/506 NTH LT. 0) G0 T	SET UP THETAS FOR SYMMETRICAL OR UNSYM. 0 405	1113 1114 1118 00001159 0 0 1160 0 0 1160

Subroutine to Set Up PN, PFE, PTH, TMP (Cont)

IM 6.28918953 /ENTH SIN PART NOT AVAILABLE 0000 FIX(I) 5.1 BELTH + 57.295779 TEST FOR ZERO LOAD 0000 FIX(I) 2.1 BELTH + 57.295779 TEST FOR ZERO LOAD 0000 FIX(I) 2.1 BELTH + 57.295779 TEST FOR ZERO LOAD 0000 FIX(I) 2.1 BELTH + 57.295779 TEST FOR ZERO LOAD 0000 FIX(I) 2.1 BELTH + 57.295779 TEST FOR ZERO LOAD 0000 FIX(I) 2.1 BELTH + 57.295779 TEST FOR ZERO LOAD 0000 FILE 1 BELTH + 57.295779 TEST FOR ZERO LOAD 0000 FILE 1 BELTH + 57.295779 TEST FOR ZERO LOAD 0000 FILE 4.1 2.1 BELTH + 57.295779 TEST FOR ZERO LOAD 0000 FILE 4.1 2.1 BELTH + 57.27557 TERP LINE 0000 FILE 4.1 2.1 ARE 1 1<1111 FILE 4.1 2.1 THE 1 0000 FILE 4.1 2.1 1<1111 1<1<1 0000	<u>52 = 53 /(ENTH - 1.)</u> /2. <u>60 T0 407</u>	0 001164
405 DELTH 5.23931953 FWTH 0 410 FIF(1) 2.1 DELTH 57.295779 TEST FOR ZERO LOAD 0000 410 FIF(1) 2.1 DELTH 57.295779 TEST FOR ZERO LOAD 0000 420 FIF(10) 2.1 DELTH 57.295779 TEST FOR ZERO LOAD 0000 420 FIF(10) CO 0.0 GO 0.0 0000 0000 100 FIF(2) TAB(TTB+2) GO 0.0 0000 0000 0000 110 2.2 7.8 1 CO 0.0 0000 0000 110 2.2 7.8 1 0.0 0000 0000 0000 111 10 1 1.0 1.0 1.0 0000 0000 111 10 1 1.0 1.0 1.0 1.0 0000 111 10 1.0 1.0 1.0 1.0 1.0 0000 111 10 1.0 1.0 1.0 1.0 1.0 1.0	SEN	
407 303 7.201 37.295779 TEST FOR ZERO LOAD 0000 4.07 1 1 4.07 1 1 4.07 0 1 1 4.07 0 1 1 4.07 0 1 1 4.07 0 1 1 4.07 0 1 1 4.07 0 0 0 0000	DELTH .	
4.0 TEST FOR ZERO LOAD 0000 4.10 TEST FOR ZERO LOAD 0000 4.20 TTABUTTS E0 10 10 0000 4.10 TTABUTTS E0 10 51 00 0000 4.20 TTABUTTS E0 10 51 00 0000 1 TTABUTTS E0 10 51 00 0000 1 TTABUTTS E0 10 51 00 0000 1 TTABUTTS TABUTTS 51 00 0000 1 TTA TABUTTS 10 10 0000 1 TTA TABUTS 10 10 0000 1 TTA TABUTS 10 10 0000 1 TTA TABUTS 10 0000 0000 1 TTA TABUTS 10 0000 0000 1 TTA TABUTS 10 0000 0000 1 TTA TABUTS TABUTS 0000 0000	52 = 53 /ENTH	3172
410 WETKITJ 2.1.4 BELTH + 57.295779 TEST FOR ZERO LOAD 0000 420 IFTABKITB) -EG. 0.3 GO TO 510 SET UP STALIOMS TO SUM 0000 17 2 7 ME 1 0000 0000 17 2 7 1 K14.22.2 0000 0000 17 2 1 K14.22.2 000 0000 0000 17 1 1 K14.22.2 000 0000 0000 17 2 1 K14.22.2 000 0000 0000 1 2 00 4 000 0000 0000 0000 1 2 1 1 1<00		3 2 5 6
720 IFITABURTED .EQ. 0.1 GO TO (790.116). 1GO TEST FOR ZERO LOAD 0000 IFFISL2 EQ. 0.1 GO TO 510 SET UP STATIONS TO SUM 0000 NFE TABRITED-2) SET UP STATIONS TO SUM 0000 R1 3 NFE 1 0000 R1 1 K1. 1 0000 R2 TABLITD-2) FC NUMMING NO SUMMING MATRIX 0000 R2 FT B + 1 FC NUMING MATRIX 0000 R3 FT B + 1 FC NUMING MATRIX 0000 R3 FT B + 1 FC NUMING MATRIX 0000 R3 FT B + 1 FC NUMING MATRIX 0000 R3 FT PLAG SOUNNENT THETXLU). STATION FORMANING AREA ON NEG. IND. 0000 R3 DO 440 1 1.0111 1.0111 0000 R4 AND FORMAT(/// TOX. ITHETXLU). STATION FORMANG AREA ON NEG. IND. 0000 0000 R4 AND FORMAT(/// TOX. ITHETXLU). F.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A	THETE(1) = 2: + DELTH + 57,295779	00001178
420 IF(TABK(ITB) *E0. 0.) GO TO (790+116), IGO 0000 IF(SL2 *E0. 0.) GO TO \$10 SET UP STALIONS TO SUM 0000 NFE * TAB(ITB+2) SET UP STALIONS TO SUM 0000 K1 * TAB(ITB+2) SET UP STALIONS TO SUM 0000 K2 * 7 NFE * 1 0000 K2 * 1 NFF * 0000 0000 K3 * 1 NFF * 0000 0000 \$50 \$0 400 * 1 NFF * 1 NFF 0000 \$50 \$0 400 * 1 NFF * 1 NFF 0000 \$50 \$51 NFF(1+FTX(J), STA(IT), TAB(ITB)) 1 NHT 0000 \$50 \$51 NFF(1+FTX(J), STA(IT), TAB(ITB)) 1 NHT 0000 \$50 \$51 NFF(1+FTX(J), STA(IT), TAB(ITB)) 1 NHT 0000 \$50 \$51 NFF(1+FTX(J), STA(IT), TAB(ITB)) 1 NHT 0000	TEST FOR ZERO LOAD	00001199
IFFISL2 *E0* 0*) GO TO 510 SET UP STATIONS TO SUM 0000 NTE * TABUTTB-2) SET UP STATIONS TO SUM 0000 NT * 0 * NE * 1 0000 NT * 1 * 1 * 0 0000 NT * 1 * 1 * 1 0000 NT * 1 * 1 * 1 0000 NT * 1 * 1 * 1 0000 NT * 1 * 1 * 0 0000 NT * 1 * 1 * 1 * 0 0000 NT * 1 * 1 * 1 * 1 * 0 0000 * 0 * 0 * 0 * 0 * 0 * 0 0000 * 0 * 0 * 0 * 0 * 0 * 0 0000 * 0 * 0 * 0 * 0 * 1 * 1 * 0 0000 * 0 * 0 * 0 * 0 * 0 * 0 0000 0 0 0 0 0 0 0 0 0 0 0 0 </td <td>IF(TAB(ITB) .E0. 0.) 60 TO (790.116). 160</td> <td>00001200</td>	IF(TAB(ITB) .E0. 0.) 60 TO (790.116). 160	00001200
NFE TABLITB+2) SET UP STATIONS TO SUM 0000 NFE 1 3 NFE 1 X2 2 7 NFE 1 X2 2 7 NFE 1 X2 2 7 NFE 1 X2 2 1 K1+K2+2 STATO 0000 X0 2 2 1 NTH 0000 X0 2 1 1 NTH 0000 X0 2 1 1 NTH 0000 430 0 40 1 1 NTH 0000 430 0 0 1 1 NTH 0000 40 TEMP(1,J) 5 TALIS 1 0000 40 THTE NTH SUMMING AREA ON NEG. IND. 0000 40 NTT 1 1 1 1 0 0 40 TAL 5 1 1 1 1 1 0 0 0 40 <t< td=""><td>-E0- 0-1 60 TO 510</td><td>21210 - 0 1210</td></t<>	-E0- 0-1 60 TO 510	21210 - 0 1210
WFE TABUITD+2) K2 2 8 HE 1 K2 2 8 HE 1 K0 20 40 1 1 K0 1 1 1 0000 K0 1 1 1 0000 K0 1 1 1 0000 430 00 40 1 1 0000 430 00 40 1 1 0000 430 00 40 1 1 0000 430 00 40 1 1 0000 440 EMP11.J) DIMTRP(THETX(J), STALT), TABLITB) 0000 440 TEMP11.J) JUTH 0000 450 MELE (6.451)NS.(TEMP11.J), STALT), TABLITB) 0000 450 MELE (6.451)NS.(TEMP11.J), STALT), TABLITB) 0000 450 MELE (6.451)NS.(TEMP11.J), STALT), TATHE SUMMING AREA FOR ITB 0000 450 MELE (6.451)NS.(TEMP11.J), STALTB, THE SUMMING AREA FOR ITB 0000 1 1.4	SET UP STALIONS TO SUM	00001219
X2 * 7 * MFE + 1 X0 + 28 1 K1.*K2.2 X0 + 1 0000 X1 = 1.0 0.000 0.000 0.000 1 0.000 0.000 0.000 1 0.000 0.000 1 0.000 0.000 0.000 11 PFLAG >90.000 0.000 0.000 11 PFLAG >90.000 0.000 0.000 11 PFLAG >90.000 0.000 0.000 11 144 MAS (1PELI1.J). 1 1 0.000 144 MAS (1PELI1.J). 1 1 0.000 0.000 144 MAS (1PELI1.J). 1 1 0.000 0.000 144 MAS <td># •</td> <td>1220</td>	# •	1220
K0 *20 1 = K1.*K2.2 K0 *20 1 = K1.*K2.2 K1 = ITB + I *30 Do 40 1 = 1.0NF \$40 1 = 1.0NF FORM SUMMING MARIX 0000 \$50 400 1 = 1.0NF FORM SUMMING MARIX 0000 \$50 400 1 = 1.0NF FORM SUMMING MARIX 0000 \$50 400 1 = 1.0NF FORM SUMMING MARIX 0000 \$50 400 1 = 1.0NF FORM SUMMING MARIX 0000 \$50 400 1 = 1.0NF FORM SUMMING AREA ON NEG. IND. 0000 \$51 FORMAT(/// 10X, 11HFOR REGION, 13, 27H THE SUMMING AREA FOR ITB =0000 1 1 4.0 0000 \$51 FORMAT(/// 10X, 11HFOR REGION, 13, 27H THE SUMMING AREA FOR ITB =0000 1 1 4.0 0000 \$51 FORMAT(/// 10X, 11HFOR REGION, 13, 27H THE SUMMING AREA FOR ITB =0000 1 1 4.0 0 <td></td> <td>1221</td>		1221
D0 428 I K1.4X2.2 KX = K0 + I NIT 00000 X38 STA(K0) = 1.0NF N 00000 *30 0.40 I = 1.0NF N 00000 *30 0.40 I = 1.0NF N 00000 *30 0.40 I = 1.0NF N 00000 *1 D0 400 T E 1.0NH 00000 *50 MKIF Stations (FBMF(1,J), STA(I), TBB(ITB)) T 00000 00000 *51 FORMAT(/// IOX, 11HFOR REGION, 13, 27H THE SUMMING AREA FOR ITB -00000 1 1 4, 4H WAS // (1P8E13.4, 1) 00000 *51 FORMAT(/// IOX, 11HFOR REGION, 13, 27H THE SUMMING AREA FOR ITB -00000 1 1 1 00000 *51 FORMAT(/// IOX, 11HFOR REGION, 13, 27H THE SUMMING AREA FOR ITB -00000 1 0 0 0 *60 MRIFE(1111TB.0FE.((TEMP(1.J)), 1 = 1.0NFE), 2 1<000000		1223
KQ KQ<	428 1 =	1230
426 STAKC0) = 140 426 STAKC0) = 140 430 DO 440 I = 140 440 I = 140 DO 0000 117 PELAG > 450,460 PRINT SUMMING AREA ON NEG. IND. 0000 450 PENAG > 50,460 PRINT SUMMING AREA ON NEG. IND. 0000 451 PPLAG > 50,460 PRINT SUMMING AREA ON NEG. IND. 0000 450 NRITE (6,451)NS+(ITMF) I = 1,NFE) J = 1,NTH) 0000 450 NRITE (1111FB*/IFE*(ITEMP(I,J))* I = 1,NFE) J = 1,NTH) 0000 450 NRITE(1111FB*/IFE*(ITEMP(I,J))* I = 1,NFE) J = 1,NTH) 0000 460 WRITE(1111FB*/IFE*(ITEMP(I,J))* I = 1,NFE) J = 1,NTH) 0000 1 14+ H MAS (1198E13.4)) 0000 1 14+ H MAS (1198E13.4)) 0000 0 0 460 WRITE(1111FB*/IFE*(ITEMP(I,J))+ I = 1005*1205)+ (574(1)+ I = 1.00F1)+ I = 1.00F1)+ I J = 1.0F1)+ I 0000 1 14+ H MAS (10 0 0 0	•	1232
*30 00 40 I = 1.NTH FORM SUMMING MATRIX 0000 *40 TEMP(I:J) = DINTRP(THETX(J), STA(I), TAB(ITB)) 0000 0000 #60 FELAG) 450.460.460 "RINT SUMMING AREA ON NEG, IND, 0000 0000 #51 FELAG) 450.460.460 "RINT SUMMING AREA ON NEG, IND, 0000 0000 #51 FELAG) 450.460.460 "RINT SUMMING AREA ON NEG, IND, 0000 0000 #51 FORMAT(/// 10X, 11HFOR REGION, 13, 2TH THE SUMMING AREA FOR ITB =0000 0000 #51 FORMAT(/// 10X, 11HFOR REGION, 13, 2TH THE SUMMING AREA FOR ITB =0000 0000 #51 FORMAT(/// 10X, 11HFOR REGION, 13, 2TH THE SUMMING AREA FOR ITB =0000 0000 #51 FORMAT(/// 10X, 11HFOR REGION, 13, 2TH THE SUMMING AREA FOR ITB =0000 0000 #60 WRITE(11)ITB.NFE.(TEMP(I,J), I = 1.NFE), J = 1.NTH), 0000 1 (0 520 (DLD(1), I = 1005,1205), (STA(I), I = 1.NFE) \$10 FERO THE? 520 1 0000 1 (0 520 1 0 0 \$20 FESO THE? 1 1 0 0 0 \$10 520 1 1	KX = 115 + STAURAL =	1234
#30 D0 440 I = 1.0NF D0 A0 J = 1.0NF D0 D		1340
*30 b0 440 I = 1.NTRP(THETX(J). STa(I). Tab(ITB) 0000 440 TEMP(I.J) = DINTRP(THETX(J). STa(I). Tab(ITB) 0000 450 NEITE (6.451)NS.(TED((1.J). T.I.NFE). J = 1.NTH) 0000 450 NEITE (6.451)NS.(TED((1.J). I = 1.NFE). J = 1.NTH) 0000 451 I : 4+ HWAS // (198E13.4)) I = 1.NFE). J = 1.NTH) 0000 460 WRITE(11)ITB.NFE.(TEMP(1.J). I = 1.NFE). J = 1.NTH) 0000 0000 1 :4+ HWAS // (198E13.4)) I = 1.0NFE). J = 1.NTH) 0000 460 WRITE(11)ITB.NFE.(TEMP(1.J)). I = 1.NFE). J = 1.NTH). 0000 1 :4+ HWAS // (198E13.4)) 0000 000 1 :4+ HWAS // (198E13.4)) I = 1.NTH). 0000 0 1 :4+ HWAS // (198E13.4) I = 1.0NE(1.1). I = 1.NTH). 0000 1 :40 :1005.1205). :574(1).		00001349
440 TEMP(I.J) = DINTRP(THETX(J), STA(I), TAB(ITB)) 0000 IF(PFLAG) 450,460 "RINT SUMMING AREA ON NEG. IND. 0000 450 MRITE (6.451)NS, ITB, (TEMP(I,J), I = 1,NFE), J = 1,NTH) 0000 451 FORMAT(/// 10X, 11HFOR REGION, 13, 27H THE SUMMING AREA FOR ITB =0000 1 14, 4H WAS // (1P8E13.4)) 1 = 1,NFE), J = 1,NTH), 0000 6 0		1350
IF(PFLAG) 450-460.460 PRINT SUMMING AREA ON NEG. IND. 0000 450 WRITE (6.451)NS.1TB.((TEMP(1.J)). [= 1.NFE). J = 1.NTH) 0000 451 FORMAT(/// 10X. 11HFOR REGION. 13. 27H THE SUMMING AREA FOR ITB =0000 0000 1 1.4. 4H WAS // (1P8E13.4)) 1 = 1.NFE). J = 1.NTH). 0000 6 0 0 27H THE SUMMING AREA FOR ITB =0000 6 0 1 1.4. 4H WAS // (1P8E13.4)) 1 = 1.NFE). J = 1.NTH). 0000 6 0 0 520 (DLD(1). I = 1005.1205). (STA(I). I = 1.NFE) 0000 6 1 0 520 (DLD(1). I = 1005.1205). (STA(I). I = 1.NFE) 0000 7 0 520 1 1.005.1205). (STA(I). I = 1.NFE) 0000 7 0 520 1 1.1005.1205). (STA(I). I = 1.NFE) 0.000 7 0 0 2 0 0.000 0.000 8 0 1 1<005.1205). (STA(I). I = 1.NFE)	TEMP(1,J) = DINTRP(THETX(J), STA(I),	00001370
<pre>IF(PFLAG) 450.460.460</pre>		1360
*RINT SUMMING AREA ON NEG. IND. 0000 *50 WRITE (6.451)NS.[TB.((TEMP(1,J). [= 1.NFE). J = 1.NTH) 0000 *51 FORMAT(/// 10X.11HFOR REGION.13.2TH THE SUMMING AREA FOR ITB =0000 0 1 I.4. 4H WAS // (1P&E13.4) 1 = 1.NFE). J = 1.NTH) 0000 *60 WRITE(11)1TB.NFE.((TEMP(1.J).1 = 1.NFE). J = 1.NTH). 0000 0 0 1 I.4. 4H WAS // (1P&E13.4) 1 = 1.NFE). J = 1.NTH). 0000 60 WRITE(11)1TB.NFE.((TEMP(1.J).1 = 1.NFE). J = 1.NTH). 0000 0 0 1 0.005.1205). (STA(1).1 = 1.NFE). J = 1.NFE) 0000 0 0 510 READ(11) 17B.NFE.((TEMP(1.J).1 = 1.005.1205). (STA(1).1 = 1.NFE) 0 0 0 510 READ(11) 17B.NFE.((TEMP(1.J).1 = 1.005.1205). (STA(1).1 = 1.NFE) 0 0 0 510 READ(11) 17B.NFE.(TEMP(1.J).1 = 1.005.1205). (STA(1).1 = 1.NFE) 0	IF(PFLAG) 450.460.460	1390
450 WRITE (6.451)NS, [TB, ((TEMP(1,J), [= 1,NFE), J = 1,NTH) 0000 451 FORMAT(// 10X, 11HFOR REGION, 13, 27H THE SUMMING AREA FOR ITB =0000 0 1 1 4.4 WAS // (1P8E13.4) 0	SUMMING AREA ON NEG.	00410000
<pre>*51 FORMAT(// 10X* 11HFOR REGION* 13, 27H THE SUMMING AREA FOR ITB =0000 1 14* 4H WAS // (1P8E13*4)) 6 0 6 0 6 0 000 1 0 0000 6 1 0 0000 6 1 0 0000 5 0 0 5 2 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>		01410000
<pre>1 14. 4H MAS // (1PGE13.4)) 460 WRITE(11)115.NFE.((1FMP(1.J), 1 = 1.NFE), J = 1.NTH), 60 WRITE(11)115.NFE.((TEMP(1.J), 1 = 1.NFE), (STA(1), 1 = 1.NFE) 0000 510 READ(11) 17B.NFE.((TEMP(1.J), 1 = 1.NFE), J = 1.NTH), 1 520 READ(11) 17B.NFE.((TEMP(1.J), 1 = 1005.1205), (STA(1), 1 = 1.NFE) 0000 520 THETA = 0. 520 THETA</pre>	FORMAT(/// 10X, 11HFOR REGION, 13, 27H THE SUMMING AREA FOR ITB	00001420
460 WRITE(1)115.WFE.((TEMP(1.J). 1 = 1.WFE). J = 1.WFE). 0000 1 (DLD(1). 1 = 1005.1205). (STA(1). 1 = 1.WFE) 0000 60 TO 520 0000 1 = 1.005.1205). (STA(1). 1 = 1.WFE) 0000 510 READ(11) ITB.WFE.((TEMP(1.J). 1 = 1.WFE). 1 = 1.WFE). 0.000 0.000 510 READ(11) ITB.WFE.((TEMP(1.J). 1 = 1.WFE). 0.000 0.000 0.000 510 READ(11) ITB.WFE.((TEMP(1.J). 1 = 1.WFE). 0.000 0.000 510 READ(11) ITB.WFE.(TEMP(1.J). 1 = 1.WFE). 0.000 520 THETA = 0. 2ER0 THETA AND VAL 0000 520 THETA = 0. 2ER0 THETA AND VAL 0000 520 THETA = 0. Subroutine to Set UD FN. PFE. PTH, TMP (Cont) 0100		0 0 1 4 3 0 1 4 4 0
1 (DLD(I), I = 1005,1205), (STA(I), I = 1.NFE) 0000 60 70 520 (DLD(I), I = 1,NFE), J = 1,NTH), 0000 510 READ(11) ITB.NFE,((TEMP(I,J), I = 1,NFE), J = 1,NTH), 0.000 1 (DLD(I), I = 1005,1205), (STA(I), I = 1,NFE) 0.000 2 THETA = 0. 2ER0 THETA AND VAL 0000 520 THETA = 0. 2ER0 THETA AND VAL 0000 520 THETA = 0. 2ER0 THETA AND VAL 0000 520 THETA = 0. 2ER0 THETA AND VAL 0000 520 THETA = 0. 2ER0 THETA AND VAL 0000 520 THETA = 0. 2ER0 THETA AND VAL 0000 520 THETA = 0. 2ER0 THETA AND VAL 0000 520 THETA = 0. Subbroutine to Set UD PN. PFE, PTH, TMP (Cont) 0000	WRITE(11) ITB.NFE,((TEMP(I.J), I = 1.NFE), J = 1.NTH).	00001450
<pre>510 READ(11) ITB.NFE.((TEMP(1.J), I = 1.NFE), J = 1.NTH), 0.00 510 READ(11) ITB.NFE.((TEMP(1.J), I = 1.NFE), 0.00 520 THETA = 0. 520 THE</pre>	<pre>{DLD(I), I = 1005,1205), (STA(I), I = ** ***</pre>	15410000
<pre>510 READ(11) ITB.NFE.((TEMP(1.J), I = 1.NFE), J = 1.NTH). 0.00 1 (DLD(1), I = 1005.1205). (STA(1), I = 1.NFE) 0.00 520 THETA = 0. 520 TH</pre>	2	1470
520 THETA = 0. 520 THETA = 0. 520 530 I = 1.NFE Subroutine to Set UD PN, PFE, PTH, TMP (Cont)	READ(II) ITB.NFE.((TEMP(I.J), I = 1.NFE), J = 1.NTH). (DLD(I), I = 1005.1205), (STA(I), I = 1.	0-001480
bo 530 I = 1.4NFE Subroutine to Set Up PN, PFE, PTH, TMP (Cont)	ZERO THETA	00001499
PFE, PTH,	DO 530 I =	1510
	PFE, PTH,	ont)

.- 222 -.

FORM FOURIER COMP. AT THETA=0. STATIONS 0000 670 J = 1,414 16 F = 0.000 680 0 0 500 680 10 620 680 10 620 10 621 11 623.622.623 10 - NTH) 624.622.623 10 - NTH) 624.622.623 11 623.622.623 12 - NTH) 624.622.623 13 - 11 523.622.623 10 - NTH) 624.622.623 11 - State 12 - NTH) 624.622.623 13 - NTH 14 - 11 523.622.623 15 - NTH 16 - NTH 17 - State 10 - NTH 11 - NTE 11 - NTE 11 - VAL(1) + TEHM(1,J) + S1 11 - VAL(1) + TEHM(1,J) + S1 11 - State 11 - State 11 - VAL(1) + TEHM(1,J) 12 - State 11 - VAL(1) + TEHM(1,J)	0 J = 1,4NTH +NE+ 776) GO TO	COMPIED FOND AT THETAED. CTA		
70 J = 1.411 8 KE. 776) GO TO 620 5 SIN(EWF * THETA) 5 SIN(EWF * THETA) COS(EW * THETA) CONOCULATION CO	670 J = 1,41 (ISDA =NE= 776)		TIONS	96510000
<pre>*Eda 0.1 G0 T0 790 SINEENE * THETA) SINEENE * SINEE * SINE * SI</pre>				O
521 621 621 621 621 621 621 621 621 621 630 630 630 630 630 630 630 630 630 630 630 630 630 630 630 0<00	(ENF .EQ. 0.) GO TO			1620
COSIENE * THETA! 1) 623.622.623 6.30 6.30 6.30 6.30 6.30 6.10 6.30 6.10 6.30 6.10 6.30 6.10 6.31 1.11 5.32.622.623 0 6.30 6.022 6.30 6.025 6.30 6.025 6.30 6.025 7.31 5.1 7.31 5.1 7.31 5.1 7.31 5.1 7.32 0 7.32 0 7.32 0 7.33 5.1 7.4 0.1 6.1 401 6.1 401 6.1 401 6.1 401 6.1 401 6.1 5.1 6.1 401 6.1 401 6.1 401 6.1 401 6.1 401 6.1 1.1	TO 621			1640
1) 623.622.623 NTH) 624.622.624 C .LT. 0) G0 T0 622 2. E 20 G0 70 622 5 I = 1.NFE = VAL(I) + TEMP(I.J) * 51 * 55 = VAL(I) + TEMP(I.J) * 51 * 50 = VAL(I) + TEMP(I.J) * 51 * 50 = VAL(I) + TEMP(I.J) * 51 * 55 = VAL(I) + TEMP(I.J) * 51 * 55 = VAL(I) + TEMP(I.J) * 51 * 51 * 50 = VAL(I) + TEMP(I.J) * 51 * 55 = VAL(I) * 51 = VAL(I) * S1 = VAL(I) * VAL(I) * 51 = VAL(I) * TAVAL *	= COS(ENF			1650
630 NTH) 624.622.624 0 00 0 000 2. 0.1 60 T0 622 0 000 0 0000 50 I = 1.NFE - 0000 0 0000 0 0000 51 710.700.710 51 * 55 0 0000 0 0000 52 750 - 010 60 T0 610 0 0000 0 0000 52 750 - 010 60 T0 810 F1T PRESSURES T0 ALL STATIONS 0 0000 61- 4010 60 T0 810 F1T PRESSURES T0 ALL STATIONS 0 0000 0 T50 - 4010 60 T0 810 F1T PRESSURES T0 ALL STATIONS 0 0000 0 T51 - 10 F1T PRESSURES T0 ALL STATIONS 0 0000 1 1 1 + 150 - 10 F11 A PRESSURE T0 ALL STATIONS 0 0000 1 1 + 150 - 4010 420.420.995 F111. A PRESSURE LOAD WITH ZERO 0 0000 1 1 - 1 - 1 - 1 - 1 - 1 0 0 2 1 - 10 - 1 - 1 - 1 - 1 0 0 0 0 0 2 1 - 10 - 200 - 1 - 1 - 1 - 1 0 0 0 0 0 0 0 0 0 0 0	(1 - 7) 			
NTH) 624.622.624 0 00 2. 0 1 = 1.NFE 0 000 50 I = 1.NFE = VAL(I) + TEMP(I.J) * SI * S5 0 0000 51 710.700.710 51 * S5 0 0000 52 750 2.* S2 0 1 = 1.NFE 61 1 = 1.NFE 10.700.710 51 * S5 750 2.* S2 0 1 = 1.NFE 61 * 401) G0 T0 B10 F1 PRESSURES T0 ALL STATIONS 0000 61 * 401) G0 T0 B10 F1 PRESSURES T0 ALL STATIONS 0000 61 * 401) G0 T0 B10 F1 PRESSURES T0 ALL STATIONS 0000 11 = 1.NFE 1.0 F1 + 200 F1 + 200 11 E + 200 1 PRCREMENT SUBSCRIPTS FOR NEXT P 0000 11 B + 200 F1 + 1.0 1.0 0000 11 S20.420.95 F1 + 1.0 1.0 0000 1 S2A + 150 F1 + 1.0 1.0 0000 1 S2A + 1.0 1.0 1.0 1.0 0000 1 S10A + 10 1.0 F1 + 1.0 0.0 0000 1 S2A + 1.0 1.0 1.0 1.0 0.0 0000 1 S10A + 1.0 1.0 1.0 0.0	0			1680
C «LT » 0) GO TO 622 2. * AL(1) + TEMP(IJ) * 51 * 55 = VAL(1) + TEMP(IJ) * 51 * 50 = VAL(1) * 51 0 I = 1.NFE = VAL(1) * 51 0 000 = VAL(1) * 51 0 0 0 0 0 000 = VAL(1) * 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NTH) 624+622+624			1690
<pre>2. 50 I = 1.NFE = VAL(I) + TEMP(I.J) * S1 * S5 = VAL(I) + TEMP(I.J) * S1 * S5 = VAL(I) + TEMP(I.J) * S1 * S5 = VAL(I) + DELTH = VAL(I) + DELTH = VAL(I) + S1 0 I = 1.NFE = VAL(I) * S1 0 I = VAL(I) * VAL(I) * S1 0 I = VAL(I) * VAL(I) * VAL(I) *</pre>	(INDC .LT. 0) 60 TO			00
50 I = 1.NFE = VAL(I) + TEMP(I.J) * S1 * S5 = VAL(I) + TEMP(I.J) * S1 * S5 = VAL(I) + T00.710 52 750 2. * S2 0 I = 1.NFE = VAL(I) * S1 6 I = 1.NFE = VAL(I) * S1 6 I = 1.NFE 0	Ņ			1710
<pre>* VAL(I) + TEMP(I.J) * S1 * S5 * THETA + DELTH S2 S2 750 2. * S2 0 I = 1.NFE * VAL(I) * S1 6T * 401) 60 T0 810 5T * 401) 420.420.95 FIIL A PRESSURE 10AD WITH ZERO * 1000 TEB + 200 * 150A + 150 * 101) 420.420.95 FIIL A PRESSURE 10AD WITH ZERO * 0000 TEB + 1 = 1 * 000 * 0000 * 00000 * 0000 * 0000 * 00000 * 0000</pre>	# 1			1730
<pre># THETA + DELTH F) 710+700+710 S2 S2 S2 S2 S2 C = 10+FE = 1.4FE = 1.4FE = 1.4FE = 1.4FE = 1.4FE C = 401) G0 T0 B10 FIT PRESSURES TO ALL STATIONS 00000 ODIMA (N+X+SDA(ISDA)+ STA+VAL+NFE+ 1+) ODIMA (N+X+SDA(ISDA)+ STA+VAL+NFE+ 1+) = 15DA + 150 C = 401) 420+420+95 FII L A PRESSURE LOAD WITH ZERO 0000 ITB + 200 I</pre>	L(I) = VAL(I)	*		00001750
<pre>F) 710.700.710 S2 S2 750 2. * S2 0 I = 1.NFE = VAL(I) * S1 6T = 401) G0 T0 B10 eft + 401) G0 T0 B10 eft PRESSURES T0 ALL STATIONS 0000 ITB + 200 ITB + 200 e 401) 420.420.95 F11.1 A PRESSURE LOAD WITH ZER0 0000 ISDA + I = 1 1 = 0 A .NE 926) G0 T0 780 0 0</pre>	= THETA +			
F 1 710.700.710 52 750 2. * 52 . 750 . T50 . VAL(I) * 51 . VAL(I) * 51 . Gr. 401) GO TO 810 . FIT PRESSURES TO ALL STATIONS 0000 . FIT PRESSURES TO ALL STATIONS 0000 . TB + 200 . TB + 20				. 1770
750 750 750 750 750 750 750 750	(ENF)			0921
<pre>2. * S2 0 I = 1.NFE = VAL(I) * S1 .GT. 401) G0 T0 B10 .GT. 401) G0 T0 B10 .GT. 401) G0 T0 B10 .GT. 401) G0 T0 B10 .GT. 401) G0 T0 B10 ITB + 200 ITB + 2</pre>	, ,			
0 I = 1.NFE = VAL(I) * SI .6T. 401) GO TO 810 .6T. 401) STA.VAL.NFE, 1.) .7A.VAL.NFE,	= 2• +			1810
0 I = 1.0FE = VAL(I) * S1 .6T. 401) G0 T0 810 FIT PRESSURES T0 ALL STATIONS 0000 .6T. 401) G0 T0 810 FIT PRESSURES T0 ALL STATIONS 0000 0DIMA (N.X.SDA(ISDA). STA.VAL.NFE. 0DIMA (N.X.SDA(ISDA). STA.VAL.NFE. .6T. 401) G0 T0 810 FIL STATIONS 0000 0DIMA (N.X.SDA(ISDA). STA.VAL.NFE. .6T. 401) 420.420.95 FIL. A PRESSURE LOAD WITH ZERO 0000 .185A + 1 50 FILL A PRESSURE LOAD WITH ZERO 0000 .185A + 1 - 1 STA. P.00 .185A + 1 - 1 A.NE. 926) G0 T0 780	ė			1820
<pre>- VALUIT = SI .6T. 401) GO TO 810 FIT PRESSURES TO ALL STATIONS 0000 ODIMA (N.X.SDA(ISDA), STA.VAL.NFE. 1.) 0000 ITB + 200 = 150 + 150 - 401) 420.420.95 FILL A PRESSURE LOAD WITH ZERO 0000 2 I * 1.N ISDA + I = 1 1 = 0. A .NE. 926) GO TO 780 0 000</pre>	0 I = 1,4NFE			
FIT PRESSURES TO ALL STATIONS 0000 STA-VAL-NFE- 1-) IMCREMENT SUBSCRIPTS FOR NEXT P 0000 FILL A PRESSURE LOAD WITH ZERO 0000	= VAL(I) =			18590
FIT PRESSURES TO ALL STATIONS 0000 STA-VAL-NFE+ 1+) DOCO IMCREMENT SUBSCRIPTS FOR NEXT P 0000 FILL A PRESSURE LOAD WITH ZERO 0000 FILL A PRESSURE LOAD WITH ZERO 0000	•GT. 401) GO TO			1860
DIANALINES IN THE TANK TO DO THE TANK THE DO THE THE THE THE TOT THE TOT THE THE TOT THE THE THE THE THE THE THE THE THE TH		FIT PRESSURES TO ALL ST	TIONS	00001869
<pre>= ITB + 200 A = ISDA + 150 ITB - 401) 420.420.95 ITB - 401) 420.420.95 FIL A PRESSURE LOAD WITH ZER0 0000 792 I = 1.0N = ISDA + I = 1 IIX1 = 0. IIX1 = 0. ISDA .NE. 926) GO TO 780 TO 95</pre>		ţ		0/910000
ITB - 401) 420.420.95 FIL A PRESSURE LOAD WITH ZERO 0000 792 I = 1. 792 I = 1. 1504 + I - 1 I 1504 * NE. 926) GO TO 780 10 95	= 17B + 20			165.
792 I " 1°N = ISDA + I - I M(IX) = 0. [ISDA •NE• 926) GO TO 780 TO 95 0 0	rs - 401)			1890
	- 1 COL		ZERO	0001899
= 0. •NE. 926) GO TO 780 95	I + YC I E			1905
[ISDA •NE• 926) GO TO 780 TO 95	о С			
	[ISDA •NE• 926) TO 95			Ö

	LS USED ARGUN		
<pre>X USED TO BFIRMINE MICH TABLE OF DUES (WINE UNEVE OF TABLE TY ON OF TABLE OF DUES (WINE UNEVER ALL OF DUES (WINE UNE) ALONG CURVE) MEANILY' TAR(1) NO. OF TABLES (NO. OF CURVE IN FAMILY') TAB(2) NO. OF TABLES (NO. OF CURVE MIST FABLE (POIN'S ALONG CURVE) 000000 TAB(3) NO. OF REGENT FIRST TABLE (POIN'S ALONG CURVE) 000000 TAB(3) TAR(2) TABLES LONG CURVE INTERACED TAR(2) TAR(2) THE NO. OF TABLES LISTED IN TAB(1) OF TIMES MECES- 000000 SY ITS NO. OF PIS VALUES AND REPEATED THE NO. OF TIMES MECES- 000000 SY ITS NO. OF PIS VALUES AND REPEATED THE NO. OF TIMES MECES- 000000 SY ITS NO. OF PIS VALUES AND REPEATED THE NO. OF TIMES MECES- 000000 SY ITS NO. OF PIS VALUES AND REPEATED THE NO. OF TIMES MECES- 000000 SY ITS NO. OF PIS VALUES AND REPEATED THE NO. OF TIMES MECES- 000000 SY ITS NO. OF PIS VALUES AND REPEATED THE NO. OF TIMES MECES- 000000 SY ITS NO. OF PIS VALUES AND REPEATED THE NO. OF TIMES MECES- 000000 SY ITS NO. OF FAMILY OF CURVE IN FAMILY N = 7AB + 0 N = 7AB + 0 N = FAB + 0 N = FAB + 0 N REPRESENTS NEXT LOWEST CURVE IN FAMILY N = TAB + 0 N = FAB + 0</pre>	X USED TO DESERVINE WHICH LABLE Y ARGUMENT USED AS X COORDINATE		
Y ARGUMENT USED AS X CURVENTED TO THE Y CURVE. WILL CURVENTED TAKEN TAKE		TO USE (WHICH CURVE	LY)0000004
TARI1 NO. OF FARES ING. OF CURVE. INFAULTY AD0000 TAR13 NO. OF FARES ING. CURVE. INTERLYTS AD0000 TAR13 NO. OF FARES ING. CURVE. INTERLYTS AD0000 TAR13 NO. OF FARES IN FIRST TABLE FOOINTS ALONG CURVE) AD0000 TAR12*/ NO. OF FARES ALONG CURVE. INTERLACED) AD00000 TAR12*/ NO. OF FARENTS IN FERST TABLE FOOINTS ALONG CURVE) AD00000 SARY BASED ON THE NO. OF FABLES LISTED IN TABLID. D000000 SARY BASED ON THE NO. OF TABLES LISTED IN TABLID. D000000 SARY BASED ON THE NO. OF TABLES LISTED IN TABLID. D000000 SARY BASED ON THE NO. OF TABLES LISTED IN TABLID. CULOWED AD00000 SARY BASED ON THE NO. OF TABLES LISTED IN TABLID. TABLID. D00000 SARY BASED ON THE NO. OF TABLES LISTED IN TABLID. CULOWED AD00000 EWNISTON DINTRPLETANT ALUE AD00000 AC005 FINSTON DINTRPLETANT AND LUC CURVES AD00000 A SELECTS ONE OF FAMILY OF CURVE IN FAMILY AND LUE A000000 A SELECTS ONE OF FAMILY OF CURVE IN FAMILY AND LUE A000000 A SELECTS ONE OF FAMILY OF CURVE IN FAMILY AND LUE A000000		5.0	
TABLE 100 NIT STATE TABLE 100 NIT STATE TO N	I) NO. UF LARLES INC	2	
<pre>Indidifierce x and y values along curve (iNTERLACED) = 000000 Tan(2*TAB(3)+4) LIKE TAB(2) FOR ZND CURVE (INTERLACED) = 000000 SAY BASED ON THE NO. OF TABLE'S LISTED IN TAB(1) MECES- 000000 SAY BASED ON THE NO. OF TABLE'S LISTED IN TAB(1) MECES- 000000 SAY BASED ON THE NO. OF TABLE'S LISTED IN TAB(1) MECES- 000000 FUNCTION DINTAP(X+VTAB) = 000000 FUNCTION DINTAP(X+VTAB) = 000000 METAB + •5 MU = TAB + •5 MU = TAB + •5 MU = FAB +</pre>	21 NO. OF ARGIMENTS		
TAKI2*TARI3)+4) LIKE TABI2J FOR 2ND CURVE. THIS IS FULLOWED 200000 TAKI2*TARI3)+4) LIKE TABLES AND REPEATED THE NOL OF TIMES NECES- 000000 SARY BASED ON THE NOL OF TABLES LISTED IN TAB(1) OF 1000000 SARY BASED ON THE NOL OF TABLES AND REPEATED THE NOL OF TIMES NECES- 000000 DIMENSION TAB(1) N = 748 - 5 N = 748 - 7 N =	TTC X AND	2	
<pre>8Y ITS NOW OF FIS** VALUES* AND REPEATED THE NOM OF TIMES NECES- 000000 SARY BASED ON THE NO. OF TABLE'S LISTED IN TABLI) OF TIMES NECES- 000000 FUNCTION DINTRP(X*Y*TAB) DIMENSION TABLI) N = 748 + .5 I = 0 5 0 I=1.4 N = 748 + .5 I = 0 5 0 I=1.4 N = 743 A = 0 MU = 74-1 F(TABLH1) X) 20*10.4 F(TABLH1) X) 20*10.4 F(TABLH1</pre>	TAB(3)+4)	2 2ND CURVE. THIS IS FULLOW	
SARY BASED ON THE NO. OF TABLES LISTED IN TAB(1) 000000 FUNCTION DINTRP(X.Y.TAB) DIMENSION TAB(1) N = TAB + 5 N = TAB + 0 N = TAB	BY ITS NO. OF PIS. VALUES. AND	D. OF	
FUNCTION DINTRPIX.V.*TAB) DIMENSION TABL11 N = 78 + .5 N = 0 A = 0 A = 0 A = 0 A = 0 DO 50 I=1.N MU REPRESENTS NEXT LOWEST CURVE IN FAMILY MU REPRESENTS NEXT LOWEST CURVE IN FAMILY DINTRP = 1 + (X - TAR(MU+1)) * (Z2 - Z1) / (TAB(M+1) - TAB(MU+1))000000 STOP DINTRP = 21 + (X - TAR(MU+2)) 21 = ENTERPLY.FIAB(MU+2)) 21 = ENTERPLY.FIAB(MU+2)) 21 = ENTERPLY.FIAB(MU+2)) 21 = ENTERPLY.FIAB(MU+1)) * (Z2 - Z1) / (TAB(M+1) - TAB(MU+1))000000 FERRENTS STOP CAL FXIT 1 OHARGUMENT = 1PEI2.4 / 10X.0 12HIABLE VALUES. 5X.1PAEI2.4 / 10X.000001 1 OHARGUMENT = 1PEI2.4 / 10X.0 12HIABLE VALUES. 5X.1PAEI2.4 / 10X.000001 1 OHARGUMENT = 1PEI2.4 / 10X.0 12HIABLE VALUES. 5X.1PAEI2.4 / 10X.000001 1 OHARGUMENT = 1PEI2.4 / 10X.0 12HIABLE VALUES. 5X.1PAEI2.4 / 10X.0000001 1 OHARGUMENT = 1PEI2.4 / 10X.0 12HIABLE VALUES. 5X.1PAEI2.4 / 10X.000001 1 OHARGUMENT = 1PEI2.4 / 10X.0 12HIABLE VALUES. 5X.1PAEI2.4 / 10X.0000001 1 OHARGUMENT = 1PEI2.4 / 10X.0 12HIABLE VALUES. 5X.1PAEI2.4 / 10X.0000001 1 OHARGUMENT = 1PEI2.4 / 10X.0 12HIABLE VALUES. 5X.1PAEI2.4 / 10X.0000001 1 OHARGUMENT = 1PEI2.4 / 10X.0 12HIABLE VALUES. 5X.1PAEI2.4 / 10X.00000001 1 OHARGUMENT = 1PEI2.4 / 10X.0 12HIABLE VALUES. 5X.1PAEI2.4 / 10X.00000000000000000000000000000000000	SARY BASED ON THE NO. OF TABLES		11000000
DIMENSION TABLUT N = TAB + .5 N = TAB + .5 DO 50 I=1.N M = I+J M = I+J M = I+J = 0.00000 M = I+L = 0.00000 M = I+L = 0.00000 M = I+L = 0.00000 M = I+L = 0.000000 M = I+L = 0.000000000 M = I+L = 0.0000000000000000000000000000000000	Į		20
<pre>N = TAB + •5 1 = 0 K = 0 K = 0 K = 0 M = 1+J M = 1+J M = 1+J MU REPRESENTS NEXT LOWEST CURVE IN FAMILY MU REPRESENTS NEXT LOWEST CURVE IN FAMILY FITABUM+1)-X) 20:010:4 FITABUM+1)-X) 20:010:4 Z = ENTERPIY*IABUM+2)) Z = ENTERPIX*IABUM+2)) Z = ENTERPIY*IABUM+2)) Z = ENTERPIX*IABUM+2)) Z = ENTERPIX*IABUM+2) = Z = Z = Z = Z = Z = Z = Z = Z = Z =</pre>	DIMENSION TAB(1)	•	25
J = 0 K = 0 K = 0 A SELECTS ONE OF FAMILY OF CURVES EQUAL TO OR ABOVE X VALUE MU REPRESENTS NEXT LOWEST CURVE IN FAMILY MU REPRESENTS NEXT LOWEST CURVE IN FAMILY MU = 1+4 MUTRP=FINTERP(Y+TAB(M+2)) E(1-1) 5.5.7 UNTRP=FINTERP(Y+TAB(M+2)) RETURN RETURN DINTRP = 21 + (X - TAR(MU+1)) * (Z2 - Z1) / (TAB(M+1)) - TAB(MU+1))000000 RETURN DINTRP = 21 + (X - TAR(MU+1)) * (Z2 - Z1) / (TAB(M+1)) - TAB(MU+1))000000 RETURN DINTRP = 21 + (X - TAR(MU+1)) * (Z2 - Z1) / (TAB(M+1)) - TAB(MU+1))000000 RETURN DINTRP = 21 + (X - TAR(MU+1)) * (Z2 - Z1) / (TAB(M+1)) - TAB(MU+1))000000 RETURN DINTRP = 21 + (X - TAR(MU+1)) * (Z2 - Z1) / (TAB(M+1)) - TAB(MU+1))000000 RETURN DINTRP = 21 + (X - TAR(MU+2)) MP1 = M + 1 MP1 = M + 1 MP1 = M + 1	= TAB +		30
<pre>k = 0 k = 0 M 50 1=1.N M FERCIS ONE OF FAMILY OF CURVES EQUAL TO OR ABOVE X VALUE 00000 M = 14x1 M represents NEXT LOWEST CURVE IN FAMILY 0.0 MU = 14x1 MU = 14x1 MU = 14x1 TE(11) 5.51 DINTRP=FNTERP(Y.TAB(M+2)) FE(12) 5.52 DINTRP=FNTERP(Y.TAB(M+2)) FE(12) 5.52 DINTRP=FNTERP(Y.TAB(M+2)) FE(12) 5.52 DINTRP=FNTERP(Y.TAB(M+2)) FE(12) 5.52 DINTRP=FNTERP(Y.TAB(M+2)) FE(12) 5.52 DINTRP=FNTERP(Y.TAB(M+2)) FE(12) 5.52 DINTRP=FNTERP(Y.TAB(M+2)) FE(12) 5.52 DINTRP=FNTERP(Y.TAB(M+1)) * (22 - 21) / (TAB(M+1)) - TAB(MU+1))00000 DINTRP=FNTERP(Y.TAB(M+2)) FILTEN FILTEN FILTEN MP1 = M + 1 MP1 = M + 1</pre>	= 0		35
00 50 I=1.N M = 14.1 00000 M = 14.1 000000 M = 14.1 M KEPRENTS NEXT LOWEST CURVE IN FAMILY 0.0 0.0 M KEPRENTS NEXT LOWEST CURVE IN FAMILY 0.0 0.0 M KEPRENTS NEXT LOWEST CURVE IN FAMILY 0.0 0.0 M KEPRENTS 0.10.4 0.0 0.0 F(TAB(M+1)-x) 20.10.4 0.0 0.0 F(TAB(M+1)-x) 20.10.4 0.0 0.0 If(TAB(M+1)-x) 20.10.4 0.0 0.0 If(TAB(M+1)-x) 20.10.4 0.0 0.0 Z2 = ENTERP(Y+TAB(M+2)) K = J 1 1 1 Z1 = ENTERP(Y+TAB(M+2)) K = J 1 0.0000 1 Z2 = ENTERP(Y+TAB(M+1)) * (Z2 - Z1) / (TAB(M+1)) - TAB(MU+1))000000 1 1 1 Z1 = ENTERP(Y+TAB(M+2)) K = J 1 0.0 1 1 Z1 = ENTERP(Y+TAB(M+2)) K = J 1 1 0.0 1 1 Z1 = ENTERP(Y+TAB(M+2)) K = J 1 1 1 0.0 0 1 Z1 = ENTERP(Y+TAB(M+2)) K = J 1<			40
<pre>% SELECTS ONE OF FAMILY OF CURVES EQUAL TO OR ABOVE X VALUE 00000 M = 1+J M U REPRESENTS NEXT LOWEST CURVE IN FAMILY 0_0 IF(TB(M+1)-X) 20.10.4 IF(TB(M+1)-X) 20.10.4 IF(TB(M+1)-X) 20.10.4 IF(TB(M+1)-X) 20.10.4 IF(TB(M+1)-X) 20.10.4 IF(TB(M+2)) Z2 = ENTERP(Y.TAB(M+2)) Z2 = ENTERP(Y.TAB(M+2)) Z1 = ENTERP(Y.TAB(M+2)) Z2 = ENTERP(Y.TAB(M+2)) Z2 = ENTERP(Y.TAB(M+2)) Z2 = ENTERP(Y.TAB(M+2)) Z2 = ENTERP(Y.TAB(M+2)) Z2 = ENTERP(Y.TAB(M+2)) Z2 = ENTERP(Y.TAB(M+2)) Z1 = ENTERP(Y.TAB(M+2)) Z1 = ENTERP(Y.TAB(M+2)) Z1 = ENTERP(Y.TAB(M+2)) Z1 = ENTERP(Y.TAB(M+2)) Z1 = ENTERP(Y.TAB(M+2)) Z2 = ENTERP(Y.TAB(M+1)) Z2 = ENTERP(Y.TAB(M+1)) /pre>	DO 50		45
M = I+J M. REPRESENTS NEXT LOWEST CURVE IN FAMILY 0,0 MU = 1+K-1 21+K-1 0.046 If (TBB(M+1)-X) 20:10:4 1 0.0 If (TBB(M+1)-X) 20:10:4 1 0.0 If (TBB(M+1)-X) 20:10:4 1 0.0 If (TBB(M+1)-X) 20:10:4 0.010:4 0.0 If (TBB(M+1)-X) 20:10:4 0.010:4 0.0 If (TBB(M+2)) 22 = ENTERP(Y.TBB(M+2)) 0.000:1 Z2 = ENTERP(Y.TAB(M+2)) 21 + (X - TAR(M+2)) 0.000:1 Z1 = ENTERP(Y.TAB(M+2)) 21 + (X - TAR(M+1)) + (Z2 - Z1) / (TAB(M+1)) - TAB(MU+1))0000000 1 Z1 = ENTERP(Y.TAB(M+2)) 21 + (X - TAR(MU+2)) 0.000 1 Z2 = ENTERP(Y.TAB(M+2)) 4.1 + J 1 0.000 1 Z1 = ENTERP(Y.TAB(M+2)) 5.1 + J J 0.000 1 Z2 = ENTERP(Y.TAB(M+2)) 4.1 + J J 0.000 1 Z1 = INT (TAB(M+2)) 4.1 + J J 0.000 1 Z1 = INT (TAB(M+2)) 1.00000 1.00000 0.0000 1 Z1 = INT (TAB(M+2)) 2.1 + J J 0.0000 1 Z1	SELECTS ONE OF FAMILY OF CURVES	TO OR ABOVE X	0000000
MU REPRESENTS NEXT LOWEST CURVE IN FAMILY 0.0 MU = 1+K-1 1 F(17b)(H+1)-55.7 20.10.4 F(1-1) 55.7 25.7 DINTRPENTERP(Y.TAB(H+2)) 0.001 RETURN 22 = ENTERP(Y.TAB(H+2)) 21 = ENTERP(Y.TAB(H+2)) 1.0000000 RETURN 21 = ENTERP(Y.TAB(H+2)) 22 = ENTERP(Y.TAB(H+2)) 1.0000000 RETURN 21 = ENTERP(Y.TAB(H+2)) 21 = ENTERP(Y.TAB(H+2)) 1.0000000 RETURN 21 + (X - TAR(MU+1)) * (Z2 - Z1) / (TAB(H+1)) - TAB(MU+1))0000000 RETURN 21 + (X - TAR(MU+1)) * (Z2 - Z1) / (TAB(H+1)) - TAB(MU+1))0000000 RETURN 21 + (X - TAR(MU+1)) * (Z2 - Z1) / (TAB(H+1)) - TAB(MU+1))0000000 RETURN 21 + (X - TAR(MU+1)) * (Z2 - Z1) / (TAB(H+1)) - TAB(MU+1))0000000 RETURN 1.01 A = J 1.01 MP1 = M + 1 1.01 MP1 = M + 1<	= 1+J		50
MU = 1+K-1 IF(TAB(M+1)-X) 20.10.4 FE(TAB(M+1)-X) 20.10.4 E(I-1) 5.5.7 UNTRPEFNTERP(Y.TAB(M+2)) DINTRP = FNTERP(Y.TAB(M+2)) Z2 = ENTERP(Y.TAB(M+2)) Z2 = ENTERP(Y.TAB(M+2)) Z2 = ENTERP(Y.TAB(M+2)) Z2 = ENTERP(Y.TAB(M+2)) Z1 = FNTERP(Y.TAB(M+2)) Z2 = ENTERP(Y.TAB(M+2)) Z1 = ENTERP(Y.TAB(M+2)) Z2 = ENTERP(Y.TAB(M+2)) Z1 = ENTERP(Y.TAB(M+2)) Z2 = ENTERP(Y.TAB(M+1)) Z1 = ENTERP(Y.TAB(M+2)) Z1 = ENTERP(Y.TAB(M+2)) Z1 = ENTERP(Y.TAB(M+1)) Z1 = ENTERP(Y.TAB(M+1)) Z1 = ENTERP(Y.TAB(M+2)) Z1 = ENTERP(Y.TAB(M+1)) Z1 = ENTERP(Y.TAB(M+1)) Z1 = ENTERP(Y.TAB(M+1)) Z1 = ENTERP(Y.TAB(M+1)) Z1 = Z1 + (X - TAR(M+1)) Z1 = NT Z1 = NT MI = M + 1 MI = M + 1 MI = M + 1 MR = (A + 1) MR = (A + 1) <td>REPRESENTS NEXT LOWEST CURVE</td> <td>FAMILY</td> <td>°,</td>	REPRESENTS NEXT LOWEST CURVE	FAMILY	°,
IF(TAB(M+1)-X) 20.10.4 F(I=1) 5.5.7 UINTRP=FNTERP(Y.TAB(M+2)) XETURN Z2 = ENTERP(Y.TAB(M+2)) Z1 = ENTERP(Y.TAB(M+2)) ENTE (6. 30) X. (TAB(L). L=1.MP1) MP1 = M + 1 MP1 = M + 1	= 1+K-1	والمحافظ والمحافظ والمحافظ المحافية والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحاف	55
<pre>FE(1=1) 5.5.7 UINTRP=FNTERP(Y.TAB(M+2)) ETURN 22 = ENTERP(Y.TAB(M+2)) 21 = ENTERP(Y.TAB(M+2)) 22 = ENTERP(Y.TAB(M+1)) 21 = ENTERP(Y.TAB(M+1)) 22 = ENTERP(Y.TAB(M+1)) 23 = ENTERP(Y.TAB(M+1)) 24 = FXTT 25 = ENTERP(Y.TAB(M+1)) 20 = ENTERP(Y.TAB</pre>	AB(M+1)-X)		60
<pre>bINTRP=FNTERP(Y.TAB(M+2)) RETURN 22 = ENTERP(Y.TAB(M+2)) 21 = INT (IAB(M+2) + 45) * 2 + 1 + J 2 = INT (IAB(M+2) + 45) * 2 + 1 + IAB(M+2) + 45) * 2 + 1 + IAB(M+2) + 10000000000000000</pre>			65
<pre>Z2 = ENTERP(Y*TAB(M+2)) Z1 = ENTERP(Y*TAB(M+2)) Z1 = ENTERP(Y*TAB(M+2)) DINTRP = Z1 + (X - TAR(MU+1)) * (Z2 - Z1) / (TAB(M+1) - TAB(MU+1))000000 R = J X = J X = J MP1 = M + 1 MP1 =</pre>	UINTRP DETUDN		70
<pre>Z1 = ENIERPIY.FIAR(MU+2)) DINTRP = Z1 + (X - TAR(MU+1)) * (Z2 - Z1) / (TAB(M+1)) - TAB(MU+1))000000 RETURN K = J K = J MP1 = M + 1 MP</pre>	73 = F	والمتعاونين والمتعارفة والمتعارفة والمتعارفة والمتعارفة والمتعارفة والمتعارفة والمتعارفة والمتعارفة والمتعارفة	80
DINTRP = Z1 + (X - TAR(MU+1)) * (Z2 - Z1) / (TAB(M+1)) - TAB(MU+1))00000 R = J X = J J = INT (IAB(M+2) + •5) * 2 + 1 + J MP1 = M + 1 MP1 = M + 1 MRIF (6* 30) X* (TAB(L)* L=1*MP1) PORMAT(//5X* 43HARGUMENT EXCEEDS EXTENT OF TABLE IN DINTRP. /10X* 00000 PORMAT(//5X* 43HARGUMENT EXCEEDS EXTENT OF TABLE IN DINTRP. /10X* 00000 1 10HARGUMENT =*1PE12*4 /10X* 12HIABLE VALUES* 5X*1P6E12*4 / 00000 2 (27X* 6E12*4)) CALL FXIT STOP END	71 = 1		85
K = J J = INT (IAB(M+2) + •5) * 2 + 1 + J MP1 = M + 1 MRITE (6. 30) X. (IAB(L). L=1.MP1) FORMAT(//5X. 43HARGUMENT EXCEEDS EXTENT OF TABLE IN DINTRP. /10X. 00000 FORMAT(//5X. 43HARGUMENT EXCEEDS EXTENT OF ABLE VALUES. 5X.1P6E12.4 / 10X. 00000 1 10HARGUMENT =.1PE12.4 /10X. 12HIABLE VALUES. 5X.1P6E12.4 / 00000 2 (27X. 6E12.4)) CALL FXIT STOP END	NTRP = Z1 + (X - TAR(MU+1)) * (Z	- Z1) / (TAB(M+1) -	1)00000000000
U = INT (IAB(M+2) + •5) * 2 + 1 + J MP1 = M + 1 MRIF (6* 30) X* (TAB(L). L=1.MP1) FORMAT(//5X. 43HARGUMENT EXCEEDS EXTENT OF TABLE IN DINTRP. /10X. 00000 1 10HARGUMENT =.1PE12.4 /10X. 12HIABLE VALUES. 5X.1P6E12.4 / 00000 2 (27X. 6E12.4)) CALL FXIT STOP END			100
MP1 = M + 1 0 0 WRITE (6+ 30) X+ (TAB(L)+ L=1.MP1) 0 0 FORMAT(//5X+ 43HARGUMENT EXCEEDS EXTENT OF TABLE IN DINTRP, /10X+ 00000 1 10HARGUMENT =+1PE12+4 /10X+ 12HIABLE VALUES+ 5X+1P6E12+4 / 00000 2 (27X+ 6E12+4)) CALL FXIT STOP END	J = INT (TAB(M+2) + =5) * 2 +		00-
WRITE (6+ 30) X+ (TAB(L)+ L=1+MP1) FORMAT(//5X+ 43HARGUMENT EXCEEDS EXTENT OF TABLE IN DINTRP+ /10X+ 00000 1 10HARGUMENT =+1PE12+4 /10X+ 12HIABLE VALUES+ 5X+1P6E12+4 / 00000 2 (27X+ 6E12+4)) 2 (21L FXIT 510P 510P END	MP1 = M + 1		110
FORMAT(//5X. 43HARGUMENT EXCEEDS EXTENT OF TABLE IN DINTRP. /10X. 00000 1 10HARGUMENT =+1PE12.4 /10X. 12HIABLE VALUES. 5X.1P6E12.4 / 00000 2 (27X. 6E12.4)) 2 CALL FXIT 5TOP 5TOP END	WRITE (6+ 30) X+ (TAB(L)+		
10HARGUMENT =*1PE12*4 /10X* 12H1ABLE VALUES* 5X*1P6E12*4 / 00000 (27X* 6E12*4)) CALL_FXIT STOP END	FORMAT(//5X + 43HARGUMENT EXCE	OF TABLE IN DINTRP.	•
(27X+ 6E12+4)) Call_FXIT STOP END	10HARGUMENT =+1PE12+4 /10X+	ង	1100000
	(27X)		118
	Ľ		125
	END		140
	-		

.

:

.

Ì. ! İ

ł

ł

Ì

LINEAR INTERPOLATION SUBSCULIER ##FNIERF##	
	200000 200000
LIMIT + THEN CONTINUES	5
SUBROUTINE ARGUMENTS	
X VALUE TO LOOK UP IN TABLE	
TAB(1) NO. OF PAIRS OF ARGUMENTS AND VALUES IN TABLE	80000000
TAB(2)+ETC ARGUMENTS AND FUNCTIONS INTERLACED	00000
FUNCTION ENTERP (X+TAB)	•
DIMENSION TAR(101)	
IF (TAB) 9,99,8	
	•
RETURN	1
8 N = TAB	
a	
1 IF (TAB(2*1)-X) 5.4.83	
AB(2*1-1) + ()	000000065
V (IAB(2*1) - IAb(2*1-21)	•
4 ENTERP = TAB(2*1+1)	
5 CONTINUE	;
X # 2*N+1	
LO WALLE (0110) AN ABIN) LO WALLE (0110) AN ABIN) LO WALLE (0110) AN ABIN OF AND AN ANY AND AN ANY AND ANY ANY ANY ANY ANY ANY ANY ANY ANY ANY	
TURMAL 1// 104 - 35HLIMIIS VE LABER FACEFILLER AROUTENT - 1 / 10% - 519-4. 34H - VALLE LICED EROM TARLE 1	100000
E TAR(K)	
RETURN	
<u>6</u> M = 2*N+3	-
Т 1 1 2	1-1
60 10 105	
	140

Linear Interpolation Subroutine **ENTERP**

.

.

.

SUBROUTINEDATLYR(NS)NÖMENCLATUREDATLYR(NS)ELAYNO. OF LAYER NO. FOR 2ND STRESSEIFHLAYER NO. OF THSTA. STATIONS FTHSTA(20)STATION NUMBRES AT WHICHTHY 20.65)THICKNESSES AT STATIONSTHY 20.65)THICKNESSES AT STATIONSTHY 20.65)THICKNESSES AT STATIONSTHY 20.65)THICKNESSES AT STATIONSTHY 20.65)NO. OF MATERIALS FOR ELAPOIS(6)POISSONS RATIOLAYERNO. OF YOUNGS MODULIT FOIYM1.22.93NO. OF STAL STATIONS FOIENA1.22.93NO. OF STALENA1.22.93NO. OF STALTHYTHERMAL EXPANSIONCENTNO. OF STALSTATIONS FOIGR(10.55)GRADIENTS AT GRAAL STATIONS FOITOPP(20)TEMPERATURES ON INNER SUITOPP(20)TEMPERATURES ON OUTER SUITOPP(40.61)THRERATURES ON OUTER SUITHP(40.61)THICKNESSES /STA /ELAY		
NÖMENCLATURENO.OFLAYER NO.FAXIMUELAYNO.OFLAYERS(6 MAXIMUSTRIXLAYER NO.FOR 2ND STRESSFIFHLAYER-1 = DISCRETEENDTLAYER-1 = DISCRETEENDTNO.OFTHICKNESS INDICATOR +1THISTA(20)STATION NUMBERS AT WHICHTHISTA(5)NO.OFTHICKNESSESAT STATIONSENMATNO.OFTHICKNESSESAT STATIONSENAT6)NO.OFTHICKNESSESAT STATIONSENAT6)NO.OFTHICKNESSESAT STATIONSENAT6)NO.OFYM1.22.3 (10)YOUNGS MODULUS (E)YM1.22.3 (10)YOUNGS MODULUS (E)YM1.22.3 NO.OFTHERMAL EXPANSIONALF1.203THERMAL EXPANSIONCOSTATONS FOIGS 710.5 SONS RATIOALATIONS FOIGS 710.5 SONS RATIOALATIONS FOIGS 710.5 SONS RATIOALATIONS FOISTA400OFTHERMAL EXPANSIONSTA400STATIONS FOISTA400OFTSTASTA400OFTSTASTA400OFTSTASTA400TEMPERATURES ON UNDERS AT MHICHTYOP(20)TEMPERATURES ON UNDERS AT MHICHSTA400COMBINED TSTASTA400TEMPERATURES ON UNDERS AT MHICHSTA400TEMPERATURES ON OULER SUISTA400TEMPERATURES ON OULER SUITHP(40.61)THICKNESSES /STA <td< td=""><td></td><td>000000000000000000000000000000000000000</td></td<>		000000000000000000000000000000000000000
CLATERCLATE		00000030
EIFHTHICKNESS INDICATOR +1LAYER1DISCRETELAYER.STATION NUMBERSAT WHICHTH/20.6)STATION NUMBERSAT WHICHTH/20.6)STATION NUMBERSAT WHICHTH/20.6)STATION NUMBERSAT WHICHTH/20.6)THICKNESSES AT STATIONSEMMATNO. OF MATERIALS FOR ELAEMAT(6)MATERIAL INDICATOR /LAYERPOIS(6)POISSONS RATIO /LAYERENE1.2.3NO. OF YOUNGS MODULUS (E)EN1.2.3(10)YOUNGS MODULUS (E)THERMAL EXPANSION COEF.ENA1.2.3(10)YOUNGS MODULUS (E)THERMAL EXPANSION COEF.ENA1.2.3(10)TEMPERATURE GRADIENT STAGSTA(10)TEMPERATURE GRADIENT STAGSTA(10)TEMPERATURE ON COEF.STA(10)TEMPERATURES ON INNER SUTHOP(20)TEMPERATURES ON INNER SUTHOP(20)TEMPERATURES ON INNER SUTHOP(20)TEMPERATURES ON INNER SUTHR(40.6)THICKNESSES /STA /ELAYTHK(40.6)THICKNESSES /STA /ELAYTHK(40.6)THICKNESSES /STA /ELAYTHK(40.6)THICKNESSES /STA /ELAYSTA(10)POITER OOFSTA(10)POITER COEF.THK(40.6)THICKNESSES /STA /ELAY+1.THK(40.6)THICKNESSES /STA /ELAY+1.THK(40.6)THICKNESSES /STA /ELAY+1.THK(40.6)THICKNESSES /STA /ELAY+1.THK(40.6)THICKNESSES /STA /ELAY+1.THKTHICKNESSES /STA /ELAY+1.THKTHICKNESSES /STA /ELAY+1.THKTHICKNESSES /ST		
ENOTHNO.OFTHSTA: 2TH/20.6)THICKNESSESSTATIONSTH/20.6)THICKNESSESSTATIONSENMATNO.OFMATERIALSFON SIGMATERIALSTATIONSENATNO.OFMATERIALSPOIS(6)POISSONSRATIOPOIS(5)POISSONSRATIOENA1.2.3NO.OFPOIS(5)POISSONSRATIOENA1.2.3NO.OFWA1.2.3NO.OFYM1.2.3NO.OFTHERMALEXPANSIONENA1.2.3NO.OFTHERMALEXPANSIONENA1.2.3NO.OFTHERMALEXPANSIONALF1.2.3NO.OFTHERMALEXPANSIONALF1.2.3NO.OFTHERMALEXPANSIONCORALF1.2.3THOORNUMBERSGR(10.5)STATIONGR(10.5)STATIONTOP(20)TEMPERATURESSTA(20)STATIONTOP(20)TEMPERATURESTOP(20)TEMPERATURESTOP(20)TEMPERATURESTALF(40.6)INNERTHP(40.6)THICKNESSESTHP(40.6)THICKNESSESTHR(40.6)THICKNESSESTHR(40.6)THICKNESSESTHR(40.6)THICKNESSESTHRENSIONTEMPERTACOLADANTEMPERTACOLADANTEMPERTHRENSIONTEMPERTHRENSIONTEMPERTHRENSION	IN A	000000
THSTA(20)STATION NUMBERS AT WHICHTH/20.6)THICKNESSES AT STATIONSENMATNO. OF MATERIALS FOR ELAENMATNO. OF MATERIALS FOR ELAENMATMATERIAL INDICATOR /LAYERPOIS(6)POISSONS RATIO /LAYERFOIS(6)POISSONS RATIO /LAYERENA1.2.3NO. OF YOUNG'S MODULI FOYM1.2.310)YOUNGS MODULUS (E)ENA1.2.3NO. OF THERMAL EXPANSIONENA1.2.3NO. OF THERMAL EXPANSIONENOGRNO. OF GSTA. STATIONS FOGSTA(10)TEMPERATURE GRADIENT STAGR(10.5)GRADIENTS AT GSTA STATIONS FOGSTA(10)TEMPERATURES ON INNER SUTBOT(20)TEMPERATURES ON INNER SUTMP(40.6)UNTER COEF. OF THERMAL ETMP(40.6)THICKNESSES /STA /ELAYTMP(40.6)THICKNESSES /STA /ELAYTA(40)THICKNESSES /STA /ELAY <t< td=""><td>ເບັ</td><td>460000000 960000000</td></t<>	ເບັ	460000000 960000000
TH/20.6)THICKNESSES AT STATIONS- ENMATENMATNO. OF MATERIALS FOR ELAFOIS(6)POISSONS RATIO /LAYERPOIS(6)POISSONS RATIO /LAYERFOIS(6)POISSONS RATIO /LAYERFOIS(2)POISSONS RATIO /LAYERENAI.2.3NO. OF YOUNGS MODULI FOYM1.2.3(10)YOUNGS MODULUS (E)FNA1.2.3NO. OF THERMAL EXPANSIONFNA1.2.3NO. OF THERMAL EXPANSIONALF1.2.3NO. OF GSTA. STATIONS FOGR(10.5)GRADIENTS AT GSTA STATIONSGR(10.5)GRADIENTS AT GSTA STATIONSGR(10.5)STATIONGR(10.5)STATIONGR(10.5)GRADIENTS AT GSTA STATIONSGR(10.5)GRADIENTS AT GSTA STATIONSGR(10.5)GRADIENTS AT GSTA STATIONSGR(10.5)STATIONGR(10.5)STATIONGR(10.5)GRADIENTS AT GSTA STATIONSGR(10.5)GRADIENTS AT GSTA STATIONSGR(10.5)GRADIENTS AT GSTA STATIONSGR(10.5)GRADIENTS AT GSTA STATIONSGR(10.5)GRADIENTS AT GSTA STATIONSGR(10.6)TEMPERATURES ON UNDERS AT WHICHTBOT(20)TEMPERATURES ON UNDERS SUTBOT(20)TEMPERATURES ON UNDERS SUTHP(40.6)UNDER MODULUSTHR(40.6)THICKNESSES /STA /(ELAY+1.0)THK(40.6)THICKNESSES /STA /(ELAY+1.0)THK(40.6)THICKNESSES /STA /(ELAY+1.0)ALFO(40.6)THICKNESSES /STA /(ELAY+1.0)ALFO(40.6)THICKNESSES /STA /(ELAY+1.0)ALFA(40.6)THICKNESSES /STA /(ELAY+1.0) <t< td=""><td>CNFSSES ARE GIVEN.</td><td>00000037</td></t<>	CNFSSES ARE GIVEN.	00000037
ENMAT ENMAT ENATE EMAT(6) MATERIAL INDICAT EMAT(6) MATERIAL INDICAT ENAL-2.3(10) YOUNGS MODULUS ENAL-2.3(10) YOUNGS MODULUS ENAL-2.3(10) YOUNGS MODULUS ALFI-2.3(10) YOUNGS MODULUS ALFI-2.3(10) YOUNGS MODULUS ENOT		0000038
POIS(6)POISSONS RATIOENE1.2.3NO. OF YOUNG'S MFN1.2.3NO. OF YOUNG'S MYN1.2.3NO. OF YOUNG'S MYN1.2.3NO. OF THERMAL EENA1.2.3NO. OF THERMAL EENA1.2.3NO. OF GSTA. STAGSTA(10)TEMPERATURE GRADGSTA(10)TEMPERATURE GRADGSTA(10)TEMPERATURE GRADGSTA(10)TEMPERATURE GRADGSTA(20)TATION NUMBERSTSTA(20)TATION NUMBERSTSTA(20)TEMPERATURES ONTSTA(20)TEMPERATURES ONTSTA(20)TEMPERATURES ONTSTA(40)TONER MODULUSSTA(40)TONER MODULUSSTA(40)TONER MODULUSTMP(40.6)INNER COEF. OFTMP(40.6)TMPR COEF. OFTMP(40.6)THICKNESSESDIMENSIONDNA(150).TSTA(40)POIS(6).TAC(40).POIS(6).TAC(40).POIS(6).TAC(40).POIS(6).TAC(40).POIS(6).TAC(40).POIS(6).	AND	00000030
ENE1.2.3 NO. OF YOUNG'S M ENE1.2.3 NO. OF YOUNG'S M YM1.2.3(10) YOUNGS MODULUS ENA1.2.3 NO. OF THERMAL EXPANSIO ALF1.2.3 THERMAL EXPANSIO ALF1.2.3 THERMAL EXPANSIO ALF1.2.3 THERMAL EXPANSIO ALF1.2.3 THERMAL EXPANSIO FADGR NO. OF TSTA. STA GR(10.5) GRADIENTS AT GRAD GSTA(10) TEMPERATURES ON TSTA(20) TEMPERATURES ON TSTA(20) TEMPERATURES ON TSTA(20) TEMPERATURES ON TSTA(40) TEMPERATURES ON THK(40.6) INNER MODULUS ALF1(40.6) INNER MODULUS ALF1(40.6) THICRNESSES /STA THK(40.6) THICRNESSES /STA	1. 2. OK 3)	0000000000000
ENE1.2.3 NO. OF YOUNG'S M YM1.2.3 10 YOUNGS MODULUS FNA1.2.3 NO. OF THERMAL E ENA1.2.3 NO. OF THERMAL E ALF1.2.3 NO. OF GSTA. STA GSTA(10) TEMPERATURE GRAD GR(10.5) GRADIENTS AT GST GR(10.5) GRADIENTS AT GST GR(10.5) GRADIENTS AT GST GR(10.5) GRADIENTS AT GRAD GR(10.5) GRADIENTS AT GRAD GR(10.5) GRADIENTS AT GRAD TSTA(20) TEMPERATURES ON TTOP(20) TEMPERATURES ON TAC COMPINED TSTA STA(40) OUTER MODULUS ALF1(40.6) OUTER MODULUS ALF1(40.6) THICKNESSES TMP(40.6) THICKNESSES TAC FOILAR TAC FOILAR TMP(40.6) THICKNESSES TAC FOILAR TAC FOILAR TMP(40.6) THICKNESSES <t< td=""><td></td><td></td></t<>		
YM1.2:3(10)YOUNGS MODULUSENA1.2:3NO. OF THERMAL EXPANSIOALF1.2:3NO. OF GSTA. STAENOGRNO. OF GSTA. STAGSTA(10)TEMPERATURE GRADGR(10.5)GRADIENTS AT GSTGR(10.5)GRADIENTS AT GSTGR(10.5)TEMPERATURES ONTDOP(20)TEMPERATURES ONTDOP(20)TEMPERATURES ONTDOP(20)TEMPERATURES ONTDOP(20)TEMPERATURES ONTDOP(20)TEMPERATURES ONTDOP(20)TEMPERATURES ONTDOP(20)TEMPERATURES ONTDOP(20)TEMPERATURES ONTDOP(20)THNER MODULUSSTA(40)OUTER MODULUSTMP(40.6)THICKNESSES /STATMP(40.6)THICKNESSES /STATMPERSIONDNA(150)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)TA(40)POI	EACH MATERIAL	000000000000000000000000000000000000000
ENA1.2.3 NO. OF THERMAL EXPANSIO ALF1.2.3 THERMAL EXPANSIO ENOGR NO. OF GSTA. STA GSTA(10) TEMPERATURE GRAD GR(10.5) GRADIENTS AT GST GR(10.5) GRADIENTS AT GST TSTA(20) STATION NUMBERS TBOT(20) TEMPERATURES ON TTOP(20) TEMPERATURES ON TTOP(40.6) TNNER MODULUS ALF1(40.6) TNNER MODULUS ALF1(40.6) THICKNESSES /STA THK(40.6) THICKNESSES /STA	TMPE	000000
ALF1+2+3THERMAL EXPANSIOENOGRN0+ OF GSTA+ STAGSTA(10)TEMPERATURE GRADGR(10+5)GRADIENTS AT GSTGR(10+5)GRADIENTS AT GSTGR(10+5)GRADIENTS AT GSTFNOTN0+ OF TSTA+ STATBOT(20)TEMPERATURES ONTDOP(20)TEMPERATURES ONTDOP(20)TEMPERATURES ONTDOP(20)TEMPERATURES ONTOOP(20)TEMPERATURES ONTOOP(20)TEMPERATURES ONTOOP(20)TEMPERATURES ONTOOP(20)TEMPERATURES ONTOOP(20)TEMPERATURES ONTOOP(20)TEMPERATURES ONTOOP(20)TEMPERATURES ONTOOP(20)TEMPERATURES ONTOOP(20)THICRNESSES /STATMP(40.6)THICKNESSES /STATMPE(40.6)THICKNESSES /STATMPE(40.6)THICKNESSES /STATMPE(40.6)DNA(150)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)TA(40)POIS(6)	EACH MATERIAL	00000055
ENOGR NO. OF GSTA. STA GSTA(10) TEMPERATURE GRAD GR(10.5) GRADIENTS AT GST GSTA(20) TEMPERATURES AT GST TBOT(20) TEMPERATURES ON TTOP(20) TEMPERATURES ON THP(40.6) THNER MODULUS ALF1(40.6) THNER COEF. OF T TMP(40.6) THNER COEF. OF T TMP(40.6) THICKNESSES /STA THK(40.6) THICKNESSES /STA	+3(10)	000000
GSTA(10)TEMPERATURE GRADGR(10+5)GRADIENTS AT GSTGR(10+5)GRADIENTS AT GSTFENOTNO. OFTSTA(20)STATION NUMBERSTBOT(20)TEMPERATURES ONTOP(20)TEMPERATURES ONSTA(40)COMBINED TSTA ANE1(40+6)INNER MODULUSE1(40+6)INNER MODULUSALF1(40+6)INNER MODULUSALF1(40+6)INNER COEF. OFTMP(40+5)THICKNESSES /STATMP(40+6)THICKNESSES /STATMP(40+6)THICKNESSES /STATMP(40+6)THICKNESSES /STATMP(40+6)POIS(6). YMI(10)STA(40).POIS(6). YMI(10)	GIVEN IN	0000000
GR(10.5) GRADIENTS AT GST ENOT TSTA(20) STATION NUMBERS TBOT(20) TEMPERATURES ON TTOP(20) TEMPERATURES ON STA(40) COMBINED TSTA AN EI(40.6) INNER MODULUS ALFI(40.6) OUTER MODULUS ALFI(40.6) OUTER MODULUS ALFI(40.6) THICRNESSES /STA THR(40.6) THICRNESSES /STA DIMENSION DNA(150). TSTA(20) 2 ALFA(10). FOIS(6). YMI(10)	FOR	
ENOTNO.OFTSTA. STA.STATSTA(20)STATION NUMBERSTBOT(20)TEMPERATURES ONTTOP(20)TEMPERATURES ONSTA(40)COMBINED TSTA ANEI(40.6)INNER MODULUSEO(40.6)OUTER MODULUSALFO(40.6)OUTER MODULUSTMP(40.6)INNER COEF. OFTMP(40.6)THICKNESSES /STATMP(40.6)THICKNESSES /STADIMENSIONDNA(150).TSTA(40).POIS(6).TSTA(40).POIS(6).TSTA(40).POIS(6).	NAL INTER	0000000
TSTA(20)STATION NUMBERSTB0T(20)TEMPERATURES ONTD0P(20)TEMPERATURES ONSTA(40)COMBINED ISTA ANEI(40.6)INNER MODULUS /SE0(40.6)INNER MODULUS /SALF0(40.6)INNER COEF. OFTMP(40.6)THICKNESSES /STATMP(40.6)THICKNESSES /STADIMENSIONDNA(150).STA(40).POIS(6).YMI(10)FALOLADOLUS		0000000
TBOT(20) TEMPERATURES ON TTOP(20) TEMPERATURES ON STA(40) COMBINED TSTA AN EI(40.6) INNER MODULUS /S E0(40.6) INNER MODULUS /S ALFI(40.6) INNER COEF. OF T ALFO(40.6) INNER COEF. OF T TMP(40.7) TEMP. /STA /(ELA THK(40.6) THICKNESSES /STA THK(40.6) THICKNESSES /STA		0000000
TTOP(20) TEMPERATURES ON STA(40) COMBINED TSTA AN EI(40.6) INNER MODULUS /S E0(40.6) INNER MODULUS /S ALFI(40.6) OUTER COEF. OF T ALFO(40.6) OUTER COEF. OF T TMP(40.7) TEMP. /STA /(ELA THK(40.6) THICKNESSES /STA DIMENSION DNA(150). TSTA(2 2 ALFA(10). POIS(6). YM1(10) 2 ALFA(10). FOIS(6). YM1(10)		
STA(40) COMBINED ISTA AND THST EI(40.6) INNER MODULUS /STA /EL/ E0(40.6) OUTER MODULUS /STA /EL/ ALFI(40.6) INNER COEF. OF THERMAL ALFO(40.6) OUTER COEF. OF THERMAL TMP(40.7) TEMP. /STA /(ELAY+1.) THK(40.6) THICKNESSES /STA /ELAY DIMENSION DNA(150). TSTA(20). THS DIMENSION DNA(150). TSTA(20). THS 3 STA(40). POIS(6). YMI(10). YM2(1 2 STA(40). POIS(6). YMI(10). YM2(1). POIS(6). YM1(10). YM2(1). POIS(6). YMI(10). YM2(1). POIS(6). YM1(10). YM2(1). POIS(6). YMI(10). YM2(1). POIS(6). YM1(10). YM2(1). POIS(6). YM2(1). POIS(6). YM2(1). YM2(1). POIS(6).	1 10	0000000
STA(40)COMBINEDTSTATHSTEI(40.6)INNERMODULUSSTAFLEO(40.6)OUTERMODULUSTHERMALALFI(40.6)OUTERCOEF.OFTHERMALTMP(40.7)TEMP.STA/(ELAY+1.)THK(40.6)THICKNESSES/STA/ELAYDIMENSIONDNA(150).TSTA(20).THS2STA(40).POIS(6).YMI(10).YM2(1)2STA(40).POIS(6).YMI(10).YM2(1)		0000008
EI(40.6) INNER MODULUS /STA /EL/ EO(40.6) OUTER MODULUS ALF1(40.6) INNER COEF. OF THERMAL ALF0(40.6) OUTER COEF. OF THERMAL TMP(40.6) THICRNESSES /STA /ELAY THK(40.6) THICRNESSES /STA /ELAY DIMENSION DNA(150). TSTA(20). THY 2 STA(40). POIS(6). YM1(10). YM2(1 2 STA(40). POIS(7). YM1(10). YM1(10). YM1(10). YM2(1). YM1(10). YM2(1). YM2(1). YM2(1). YM1(10). YM2(1). YM2(1). YM2(1). YM1(10). YM2(1). YM2(1). YM1(10). YM2(1). YM1(10). YM2(1). YM1(10). YM1(10). YM1(10). YM2(1). YM1(10). YM1(0000000
E0(40.6) OUTER MODULUS ALF1(40.6) INNER COEF. OF THERMAL ALF0(40.6) OUTER COEF. OF THERMAL TMP(40.6) THICRNESSES /STA /ELAY THK(40.6) THICRNESSES /STA /ELAY DIMENSION DNA(150). TSTA(20). THE 2 ALF010 POIS(6). YM1(10). YM2(1 2 ALF0101. FI(40.6). AL(2). AL(2) 2 ALF0101. FI(40.6). AN(10). YM2(1) 2 ALF0101. FI(40.6). AL(2). AL(2) 2 ALF0101. FI(40.6). AN(10). YM2(1) 2 ALF0101. FI(40.6). AL(2). AL(2) 2 ALF0101. FI(40.6). AL(2). AL(2). AL(2) 2 ALF0101. FI(40.6). AL(2). AL(2		0000000
ALTI(40.6) UNER COEF. OF THERMAL ALFO(40.6) OUTER COEF. OF THERMAL TMP(40.6) THICKNESSES /STA /ELAY THK(40.6) THICKNESSES /STA /ELAY DIMENSION DNA(150). TSTA(20). THI 2 STA(40). POIS(6). YMI(10). YM2(1 2 ALFA101. FILAD.41. FOLLO.41. ALE		1000000
The set of th	SI UN	1000000
DIMENSION DNA(150) + 1 STA(40) + POIS(6) + 1 STA(40) +	NOTO	£/000000
DIMENSION DNA(150). 1 STA(40). POIS(6). 2 ALEALIDISE ELGADAD		00000014
DIMENSION DNA(150). STA(40). POIS(6).		6000000
STA(40) + POIS(6) + '		00100000
ALFALIDIA FILADALIA	YM3(10). ALF1(10). ALF2(10)	101000000
	ALFO (40.	0100000
THK (40.6) . DNAX (40.7)	• ENT(150) • EMT(150) •	00000103
X(150) . TX(150)	(10) TMPE3(10)	00000104
TMPA1(10). TMPA2(10).		00000105
	• E2(150) • T2(150)	00000100
		66100000

٠

AL,F (Section Properties) F F おんよ もとよ Ľ Sucher to Sat IIn D

	00000299 <u>) +0</u> 0000300) +00000301 <u>) +00000302</u>) +00000303) +00000303) +00000340) +00000341) +00000341 00000343 00000343 00000350 00000350	00000369 00000371 00000371 00000372 00000379 00000379	00000382 00000389 00000399 00000392 00000392
).(DAL(152). POIS).(DAL(152). POIS).(DAL(190). YM2).(DAL(290). YM2).(DAL(21)). YM3).(DAL(232). ALF1).(DAL(231). ALF3).(DAL(274). ALF3).(DAL(295). GR).(SDA(3). SPRL).(SDA(1). EMK).(SDA(1). BCLB).(SDA(15). DEL).(SDA(15). DEL). (50A (476).). (50A (476).). (50A (206)). (50A (2498)). (50A (2498).). (50A (2458).). (50A (2458).).(DA(3). 40)).(DA(7). PTHI)).(DA(21). ENFOR)).(DA(21). ENFOR) ELAM2. S1. 52.	u 22. – – – – – – – – – – – – – – – – – –	
).(DAL(146). EMAT).(DAL(159).TMPF1).(DAL(170).TMPF2).(DAL(201).TMPF2).(DAL(222).TMPA1).(DAL(223).TMPA2).(DAL(264).TMPA2).(DAL(285). GSTA)•(SDA(2)• GEOMI)•(SDA(6)• WK)•(SDA(10)• BCIT])•(SDA(10)• BCIT	EK).(SDA(326). ENT). PTH).(SDA(926). PN). .aLF).(SDA(1926). DNA). .GAMA!.(SDA(1976). EN.). .EM1).(SDA(2442). EM5N). . T2).(SDA(2449).DNA2)).(DA(2). A0].(DA(5). PIXI).(DA(10). ENFI).(DA(10). ENFI (TPW. KTPR. SL2. KLM 401. TSTA. TBOT(2	TEST READ	
(DAL(145).ENMAT) (DAL(179).ENE1) (DAL(179).ENE2) (DAL(200).ENE2) (DAL(221).ENA1) (DAL(221).ENA1) (DAL(263).ENA2) (DAL(264).ENA3)	(SDA(1), EX)).(SDA(5), VK)).(SDA(9), ECX) G).(SDA(13), STRI)	•(SDA(176) • E •(SDA(176) • P •(SDA(1376) • A •(SDA(1376) • A •(SDA(1826) • G •(SDA(2478) • E •(SDA(2799) •	A(1), EKK A(5), ENGO A(9), ENFO A(9), ENFO ENE, NTPR, E, ENF, IFR	T0 1	= 1,345 1e (DAL)
	EQUIVALENCE 1 (5DA(4) • UK) 2 (5DA(8) • PSI) 3 (5DA(22) • PFLAG) 4 (5DA(20) • TPC)	((26)) ((1226)) ((1226)) ((1226)) ((2246))	EQUIVALENCE (D. 1(DA(4). EO).(D/ 2(DA(8). SUM).(D/ 3(DA(25). THETA) COMMON DA(35). N' 1 KKE. SQ3. SQ4. SQ COMMON SDA(3098).	<mark>= NS</mark> (SL2 •N	TO 15 2 1 21 = 0 DECRD

•

:

1

	00000419
D0 5 I = 1,126	00000420
= (]	00000422
TO 12	00000424
MOVE MATERIAL PROPERTIES FROM PM	0000043
12 MDITE (4) DAI	00000449
CHANGE EL ATT TA TATERE	
*	00000
MTH = ENOTH	0000001
= ENMAT	000000
	0000021
= ENOGR	000000
1 = NLAY + 1	0000051
= STRIX	0000051
	0000052
# ENE2	00000523
	00000522
= EVAl	0000052
•	0000052
3 s ENA3	00000525
	0000025
	0000052
	00000528
COMMON INICANEDO AND	62600000
r: 2	5000000
	00000532
k(2) = EN	0000053
ARE BOTH TOP AND BOTTOM TEMP=0.	00000537
	0000003
	0000053
	00000240
00 20 I = 1+M	00000542
A(1) = THSTA(1)	00000244
	00000546
22 CALL STCOMB (MT, MTH, M, TSTA, THSTA, STA)	00000250

s) (Cont)

ET TEMPERATURE VALUES IN TMP RADIENT ALONG ALL INTERFACES ERMITS CONST. TO ENTER CONSECUT ERMITS CONST. TO ENTER CONSECUT STA.GRADIENTS TO COMMON STATIONS STA.GRADIENTS TO COMMON STATIONS S	TO 40 TO 40 TO 30 CONSTANT GRADIENT ALONG ALL INTER CONSTANT GRADIENT ALONG ALL INTER FIT TEMP. PERMITS CONST. TO ENTER FIT TEMP. AND GRADIENTS TO COMMON MP(1.841). 55TA.5TA.1100.MT. 1.) TMP(1.841). TSTA.5TOP.MT. 1.) TMP(1.841). 5ET.100.MT. 1.) TO 100 TO	TMP 0000559 00000560 00000560		00000572	•	00000582	00000286	00000290	STATIONS 0000591	00000592	26200000	00000298	00000000	000000000	00000010	00000612		00000639	00000640	14900/00	24900000	00000646	00000649	00000650	00000652	00000654	00000026	00000658
	1) 60 T0 4 1) 60 T0 3 1) 60 T0 3 1) 60 T0 3 1,2 60 T0 25 60 T0 25 1,1 1,0 1,1 1,0 1,1 1,0 1,1 1,1		RADIENT ALONG ALL INTERFAC		ERMITS CONST. TO ENTER CO					STA+GR(1+K)+NOGR+ 1+)		X	anda (THOM -	 ET THICKNESSES IN THK REG					and source we are an an an an an an an an an an an an an			ین میروند. میروند. میروند. میروند. میروند میروند میروند میروند. میروند میروند میروند میروند میروند میروند میرون میروند میروند.	-		

Subr. to Set Up D, IK, ENT, EMT, E1, T, ALF (Section Properties) (Cont)

		66900000
		00000729
200 002	300 K = 1.NLAV	06100000
XXI	EMATCKI	00000732
	XX - NMAT) 209,209,600	00000133
09 IF (K-1	K-1) 210,230,210	00000734
	MAT(K) — EMAT(K-1)) 230+211+230	00000736
211 IF(MT	•EQ. 0)	864.00000
12 00	1 = 1.8	00000140
) = EO(00000742
215 ALFICI	• K) =	00000744
8	(245,255	00000746
	1	00000759
230 60 1	TO (237+247+257)+IXX	00000760
		00000761
237 IF(MT	•NE• 0) GO TO 240	00000762
XWX	TWA	00000763
238 DO	239 KK = 1.M	00000765
		00000166
239 EO(KK+K		00000767
-	10 300	00000768
240 CALL		00000770
CALL	CODIMA (M.TMP(1,K),ALFI(1,K),	00000772
245 CALL		00000774
CALL	(M.TMP(1.K+1).ALFO(1.K).	00000776
6 9	TO <u>300</u>	00000778
		00000786
247 IF (MT	Z	00000787
		00000788
00	ro 236	00000789
250 CALL	CODIMA (M. TMP(1.K).EI(1.K).	000000100
	CODIMA (M, TMP(1,K), ALFI(1,K),	00000792
255 CALL	CODIMA (M.TMP(1.K+1).EO(1.K	96200000
	CODIMA (M.TMP(1,K+1),ALFO(1,K),	00000796
09	TO 300	96200000
		00000806
257 IF(MT	Z,	00000807
	EMY =	808000000
G	TO 238	00000809
260 CALL	CODIMA	00000010
	CODIMA (M.TMP(1,K).ALFI(1,K).	00000812
220 220		

Subr. to Set Up D, IK, ENT, EMT, E1, T, ALF (Section Properties) (Cont)

00000819	ONLY 0000020 00000822	00000824 00000826	00000830	0000034	1	00000550	00000652	0000053	22200000	00000857	0000858	00100560	0000862	0000863	00000864	00000866	0000870	00000899		0000902	0000003	00000904	0000015	00000916 00000916	3160000	00000019	(Section Properties) (Cont)
 300 CONTINUE	C MSP = 1	IF(PTHI eLE. 0.) GO TO 304		NAX(I 0 TO) - -	504 00 320 [± 1,0M		S12 # 0.		•E0• 1) 60 T(S12 = THK(I,K) * (EO(I,K) + EI(I,K)) * S13 * 3.0	305 510 = 510 + 1HK(19K) ++2 +(20+EQ(19K) + EI(19K)) + 512 513 = 513 + THK(1.K1	SII = 511 +	320 DNAX([+]) = - 510 /3. /511	• • •		330 DNAX(1,K) = DNAX(S6 = S5 /6. /HO	<pre>S</pre>	# 04 1	Ħ	DO 370 I = 1+M	IF [mSP + EQ+ U] GO TO 345	•	345 IF(MT ¢EQ• 0) GO TO 347 Ent(1) = 0.	Subr. to Set Up D, IK, ENT, EMT, E1, T, ALF

ğ, . ŀ, h • 7

.

١

.

i

- 233 -

$F(MSP = E0(1+K) + E1(1)$ $S12 = 1_{0} - POIS(K)$ $S12 = 1_{0} - POIS(K)$ $S17 = THX(1+K) + E1(1)$ $S17 = THX(1+K) + DM$ $F(MT = E0(1+K) - M$ $S10 = E0(1+K) - M$ $S13 = 1_{0} - POIS(K)$ $S13 = E1(1+K) + ALF$ $S13 = E1(1+K) + ALF$ $S13 = F1(1+K) + ALF$ $S14 = F1(1+K) + ALF$ $S15 = F1(1+K) + ALF$ $S16 = F1(1$		00000923
59 = E0(1.4) + E1(1 512 = 1 POIS(K) 348 S17 = THK(1.4K) + DN 1F(MT - EQ. 0) GO TO 516 = ALFO(1.4K) - A 510 = E0(1.4K) - E1(513 = 1 FOIS(K) 513 = E1(1.4K) + ALF 513 = TMP(1.4K) + ALF 513 = TMP(1.4K) + ALF 514 = FI(1.4K) + ALF 515 = FI(1.4K) + ALF 516 = COLOS(K) 518 = E1(1.4K) + ALF 518 = E1(1.4K) + ALF 510 = E1(1.4K) + ALF 511 = TMP(1.4K) + ALF 511 = TMP(1.4K) + ALF 512 = E1(1.4K) + ALF 513 = E1(1.4K) + ALF 514 = E1(1.4K) + ALF 515 = E1(1.4K) + ALF 516 = E1(1.4K) + ALF 517 = TMP(1.4K) + ALF 518 = E1(1.4K) + ALF 518 = E1(1.		1000000
$348 S17 = 1_{0} - POIS(K)$ $348 S17 = THX(I_{0}K) = DN$ $IF(MT = EQ_{0} = 0) = GO TO$ $S16 = ALFO(I_{0}K) - EI($ $S10 = EO(I_{0}K) - EI($ $S13 = I_{0} - POIS(K)$ $S13 = EI(I_{0}K) + ALF$ $S13 = TMP(I_{0}K) + ALF$ $S13 = TMP(I_{0}K) + ALF$	1051	
$348 SI7 = THX(I_{0}K) + DH IF(MT = EQ_{0} 0) = GO TO SIG = ALFO(I_{0}K) - EI SIO = EO(I_{0}K) - EI SI3 = I_{0} - POIS(K) SI3 = EI((I_{0}K) + ALF SI3 = TMP(I_{0}K) + ALF SI3 = TMP(I_{0}K) + ALF SI3 = TMP(I_{0}K) + ALF SI3 = D(I_{0}) = O TO SI3 = D(I_{0}) = O TO SI3 = TMP(I_{0}K) + ALF SI3 = TMP(I_{0}K) + ALF SI3 = D(I_{0}) = O TO SI3 = D(I_{0}) = O T$	1	0000030
IF(MT *EQ. 0) GO TO SIG = ALFO(1.4K) - A SIO = EO(1.4K) - EI(SI3 = 1 POIS(K) SI3 = EI(1.4K) # ALF SI1 = TMP(1.4K) # ALF SI1 = TMP(1.4K) + ALF SI1 = TMP(1.4K) + ALF	z	25600000
SIG = ALFU(1, K) = A SIG = EO(1, K) = E1(SI3 = 1, - PO[S(K) SI3 = E1(1, K) # ALF SI1 = TMP(1, K+1) = ALF S11 = TMP(1, K+1) = - 349 [F(MSP + E0, 0) 60 TO	349	0000037
SIO = EO(I•K) - EI(SI3 = I• - POIS(K) SI8 = EI(I•K) # ALF SI1 = TMP(I•K+1) - 349 [F(MSP •EO• 0) 60 TO	ALT1{19K}	8660000
SI3 = 1 POIS(K) SI8 = EI(1.4K) # ALF SI1 = TMP(1.4K) # ALF 349 IF(MSP .EO. 0) 60 TO		66600000
SI8 = EI(I+K) # ALF SI1 = TMP(I+K+1) - 349 IF(MSP •E0• 0) 60 TO		04600000
SII = TMP(I+K+1) - 349 IF(MSP +E0+ 0) 60 T0	F1(1•K)	00000942
349 IF (MSP •E0• 0)	TMP([,K)	44600000
360 Dill - Dill +	0 351	0000018
N.11 - N.11 +		00000019
+ (1) = (1) + (1)	THK(I.k) /512 # 59	09600000
U		48600000
EK(I) = EK(I)	512 #{THK(T+K)##2 #(3+E0(T+K) +	0000085
I.K)) + 517	<pre>> + DNAX(1, K) ++2 + 6.</pre>	#S910000986
		68600000
351 IF(MT .EQ. 0) GO TO	360	06600000
U		16600000
S91 = E0(1 K) + ALFO(FO(1,K)	26600000
592 = EI(1+K) + ALFI(F1(1,K)	00000003
S93 = E1(1+K) * ALF	ALFO(1,K)	* 6600000
594 = EO(1+K) * ALFI	F1(1.K)	000000955
		96600000
ENT(I) = ENT(I) +	THK(I,K) /S13 #(S91 #(TMP(I,K+1)#3,+TMP(I,	•K1100000997
1 + 592 #(TMP(1,K)*3.	+ TMP(I,K+1)) + S93 *(TMP(I,K) + TMP(I,K+1	86600000 (()
+ S94 *(TMP(I .K) +	TMP([,K+1)))	0000000
U		00001000
= S16 + S10 +	511	00001005
ALFI(1,K) *	S10 + S11	0000000
= EI(I+K) + SI	6 * S11	00001001
= TMP(I,K) * S	S16 * 510 + 5102 + 5103	00001008
# S18 # S11		60010000
= ALF1(1,K) +	TWP(I,K) * S10	01010000
= TMP(I,K) +	EI(I+K) * SI6 + SI05 + SI06	00001011
S108	۰۲) ,	00001012
į		00001014
= ENT(I) +	(TH "(1,K) ##2 #(S101 /5. + \$104 /4. + 5107	13.00001015
/2•) + SI7 #((S101 /4. + S104 /3. + S107 /2. + S108)1/S1	3 00001016
lu lu	•	00001020
	0 369	00001028
		00001029
D(1) = S5 + D(1)		00001030
EK(I) = 56 + EK(I)		00001033
C.1.2		AT F (Section Dronerties)

00001034 00001034 00001035 00001037		00001054 00001058 00001058 00001058 00001065 00001068 00001068	00001070 00001072 00001078 00001078 00001080 00001082 00001082	00001999 00002001999 00002001 00002001 00002001 00002004 1 00002004	EI3.4 EI3.4 RE VS. YOUNGS MPD: 00002020 W2. 13X.4HTEMP. 00002022 M2. 13X.4HTEMP. 00002024 HTEMP. 13X.4HALF2.000002056 00002026 00002026 00002026 00002026 00002026 00002030 ALF (Section Properties) (Cont,
FORM STATION COLUMN	FIT VALUES TO ALL STATIONS MEMBRANE STIFFNESS	BENDING STIFFNESS	•) •)	DATA ON NON- ELEM. (TMPE I = 1,10).	EMPERATUR EMPERATUR 14X, 3HYI 14X, 3HYI 14X, 3HYI 14X, 3HYI 14X, 17 F1, 13X, 12 F1, 12
C0. 0) 60 T0 370 - 58 * EM7(!) - 57 * ENT(!) - 1 = 1.N	T	TX(I) MA (N.X.TX. STA.EK.M. 1. I = 1.N TX(I) • 01 GO TO 429	MA (NºXº1/0 51AJEN100 1 T = 1.N TX(1) MA (NºXºTX; STA;EMT.Mº 1 TX(1) CLT2 0, 0 60 T0 430	5 430,500,430 5 430,500,430 K = 1,NLAY K = 1,NLAY 1 = 1,0 435 435 435 1 * YM2([], TMPE3([], YM3	TX+27HTHICKNESS INDI 7X+27HTHICKNESS INDI 7EMP+ 14X+3HYM1+ 13X 19(6E17+6/) //30X+4 COFF+ // 6X+4HTEMP+ • 13X+4HALF3/ (6E17+ K = 1+NLAY Set Up D, IK, ENT
369 IF(MI .E 847(I) = 370 ENT(I) = C D0 340			CALL CODI 410 ENT(I) = C C C C A10 ENT(I) = 420 ENT(I) = 420 ENT(I) =	TF (MT	435 FORMAT(/// 22 3US // EX-4H 4 14X+3HVM3/ 5 EXPANSION 6 13X-4HTEMP C 90 439 Subr. to

IYER. IZ // 39X.445TA 11X.44HTEMP. 11X.44HTHK. / (32X. 1P3E15.5)	00002041
	00002043
ORMAT(/// 36X, 35HSTATION VS. TEMPERATURE, OUTER FACE	//46X+4HSTA00002044
100 TTV0 4015ML / (3040 TK2E1202)	00002049
COMPUTE AND SAVE DNA+ ALF.+ E1+	T 00002058
C FOR BOTH STRESS SURFACES	00002051
CAN TE / CTDT1 K90. E10. K20	25020000
510 WRITE (6.5	00002076
1140X-75455745 INTERFACE	00002078
10UTER F	
	00002084
K = NLA	00002086
1	00002087
60 70	00002088
K = ABS(STRI) + 1.	06020000
IT .EQ. 0) GO TO 530	0000000
CALL CODIMA	00:00:00:00:00:00
CALL CODIMA (N+X+1Z+STA+IMP(]+K)+M+ I+) Kao fati fontma (n+x+f3+ fit+fit+k+1+,k+1+)	00002000
24 CALL COVERS INTOTICAL GLADENT LINE LINE IN TAIL FORTH A N.Y. NAS. CTA. DNAV1. V. N. Y.	
	86070000 86070000
N L	
535 I = 1.0	00002101
(1) = 0.	00002102
GO TO 538	00002104
	00002100
D0 537 L = 1.4	01120000
537 I2(L) = 12(L) + ALF(L)	11120000
SAA TE(MT LED. D) GO TO RAD	01120000
CALL CODIMA (N.X.ALF.	00120000
CODIMA (N.X.TX.STA.TMP.M.	00002122
L CODIMA	00002124
CALL CODIMA (N.X.DNA, STA, DNAX, M, 1.)	00002126
	00002129
IF(MT .NE. 0) GO TJ 560	00002130

cont) 1 J)) ; D D D

÷

1

	00002150 • 00002150 • 00002151 • 00002155 • 00002153 • 00002153	00002199 00003010 00003010 00003020 00003021 00003021	! !	-	Properties)
TO 590 TO 599 • ENMAT, POIS, EMAT, GR(1,2), GR(1,3), GR(1,5), [=1,NOGR)	LAYERS (ELAY) =.1PE13.4// 7X.27HNO. OF E13.4// 7X.27HPOISSONS RATIOS (POIS) =. / 7X.27HMATERIAL IND. (FMAT) =. 3E20.4/ GRAUIENT TABLES // 9X.4HSTA. 33X.29HGRADIEN /	00 01 46HERROR IN DATLYR. EMAT VALUE LARGER THAN FNMAT.)00 01			TT D IV EWT EMT E1 T ALE (Section Properties)
TX(I) = 0. 550 ALF(I) = 0. 560 IF(PFLAG .LT. 0.) G0 1 IF(SL2 .EQ. 0.) G0 1C C 590 WRITE (6.591) ELAY. 1 (GSTA(I). GR(I.1). C	91 FORMAT(// 7X+27) 1 MATERIALS (EW 2 3E20+4 / 34X+ 3 34X+ 3E20+4/// 4TS AT INNER INT 99 RETURN	WRITE (6.610) FORMAT(/// 10X. Call Exit 570P END			

(C .nt)

C THICKNESS WICH LATERED VALUES ARE GIVEN AT I C SUBROUTINE STCOMB (MT. MTH. M. A. B. STA	ULFERENI SIAILUNS.	1100000 13
DIMENSION A(20) + B(20) + STA(40)		100
		197 (197 (
		25
		6 10
د. ا		54
× ₩		5
10 S = A(J)		56
= B(K)		5
IF(S - F) 20+30+40		5.8
20 STA(I) = 5		55
		5
-		60
IF(J - MT) 50.50.25	į	61
J.67.		61
J) = J.		62
TO 50		6.9
30 STA(I) = S		64
•		49
		4 9
		66
IF(J - MT) 35,35,33		67
33 IF (J •GT• 20) GO TO 35		63
A(J) = 10		68
35 K = K + 1		69
IF(K - MTH) 50,50,37		70
201 60		70
$B(K) = 1 \cdot E + 10$		17
TO 50		720
		22
40 STA(1) = F		730
<u>60 TO 35</u>		740
		74
50 1 = 1 + 1		5
IF(1 - M) 1C+10+60		760
60 RETURN		770
		677

to Combine the Two Station Columns for Temp. and Thickness When Layered Values are Given at Different Stations outino

00000781 00000782 10000 •NE. THSTA(MTH), BUT THE CURVE FIT CODIMA CANNOT EXTRA-Polate so they are equal at this time. END

υu

Subroutine to Combine the Two Station Columns for Temp, and Thickness When Layered Values are Given at Different Stations (Cont)

SUBROUTINE PANDX OCCODE OCCO	JT INE P				
<pre>TON R(150). D(150). EK(150). ENT(150). EMT(150). DNA(150). 150). GAMA(150). WTHO(150). XSI(150). PRA(150). 150). GAMA(150). WTHO(150). XSI(150). 141. P(44).150). NO(4). WTHO(150). XSI(150). 144. Em2(4.4).50). NO(4). WTHO(150). XSI(150). 144. Em2(4.4).50). NO(4). WTHO(150). XSI(150). 144. Em2(4.4).50). NO(4). WTHO(150). Z(4.4). 144. Em2(4.4). EM3(4.4). EM3(4.4). EM5(4). 144. Em2(4.4). EC(4.4). EM3(4.4). EM5(4). 152(4.4). EC(4). EM3(4.4). EM5(4). 144. Em2(4.4). EC(4.4). EM3(4.4). EM5(4). 144. Em2(4.4). EL0(4). EM3(4.4). EM5(4). 144. Em2(4.4). EC(4.4). EM3(4.4). EM3(4.4). 144. Em2(4.4). EC(4.4). EM3(4.4). EM3(4.4). 144. Em2(4.4). EC(4.4). EM3(4.4). EM3(4.4). 144. Em2(4.4). EC(4.4). EM3(4.4). EM3(4.4). 144. Em2(4.4). EM3(4.4). EM3(4.4). EM3(4.4). EM3(4.4). 144. Em2(4.4). EM3(4.4). EM3(4.4). EM3(4.4). EM3(4.4). 144. Em2(4.4). EM3(4.4). EM3(4.4). EM3(4.4). EM3(4.4). EM3(4.4). 144. Em2(4.4). EM3(4.4). pre>		, XC	:	1	2000000
<pre>TON R(150). D(150). EK(150). ENT(150). DNA(150). DFE(150) 150). GMA(150). WFE(150). WTHO(150). DNA(150). DFE(150). 150). GMA(150). WFE(150). WTHO(150). SI(150). 44). EM2(44). FE(4). WFE(150). WFE(150). SI(44). 44). EM2(44). EM3(44). ES(4). EM3(44). ES(4). E(4). 44). B2(444). E(4). E(4). ES(4). E(4). 44). B2(444). E(10,4). E(14). E(4). 44). B2(444). E(14). DIS2(444). E(14). 44). B2(444). E(14). BRNCH3(4). BSN(444). E(14). 44). B2(444). E(14). BRNCH3(4). BSN(444). E(14). 44). B2(444). E(14,4). E(14,4). E(14). 44). B2(444). E(14,4). E(14). 44). B2(444). E(14,4). E(14,4). E(14). 44). B2(444). E(14,4). E(14). 44). B2(444). E(14,4). E(14). 44). B2(444). E(14). DIS2(444). BSN(444). 44). B2(444). E(14). DIS2(444). BSN(444). 44). B2(444). E(14). DIS2(444). BSN(444). 44). BSN(444). E(14). 44). BSN(444). 44). 44). BSN(444). 44). 44). 44). 44). 44). 44). 44)</pre>					000000
<pre>(190) GAM(190) WFG(190) WTHO(190) SI(190) GAM(190) WFG(190) WFG(190) SI(190) (44.4) FMS(44.4) FMS(44.</pre>	DIMENSION	0(150) • EK(150) • EN	501. 5	11	1
<pre>44. P(4.4.150). XN(4). X(4.150). ZO(4). Z(4.150). 44.4). EM3(4.4). EM3(4.4). ESIP(4). PSIP(4). FM5(4). EG(4). G(4). 44.4). EM3N(4.4). ENN(4). BSIP(4.4). EM5(4). GI(4). 41. YD(4.4). C2(4.4). GZ(4.). DIS1(4.4). EI1(4.4). F1(4). 41. YD(4.4). C2(4.4). GZ(4.). DIS2(4.4). EI3(4.4). F1(4). 41. YD(4.4). C2(4.4). GZ(4.). DIS2(4.4). EI3(4.4). F1(4). 41. YD(4.4). C2(4.4). GZ(4.). BFTA(4.4). EI1(4.4). F1(4). 41. YD(4.). C2(4.4). C9(4.4). F7(4). EI3(4.4). EI(4.4). 41. SI(4.4). C1(4.4). GZ(4.). F7(4). EI3(4.4). EI(4.4). 41. SI(4.4). C7(4.4). GZ(4.4). F7(4). EI3(4.4). EI(4.4). 41. SI(4.4). C7(4.4). GZ(4.4). F7(4). EI3(4.4). EI(4.4). 4.4). BSI(4.4). C9(4.4). F7(4). BFTA(4.4). EI(4.4). EI(4.4). 4.4). BSI(4.4). C9(4.4). F7(4). F7(4). EI3(4.4). EI(4.4). 4.4). SSI(4.). A9(4.4). C9(4.4). F7(4). EI3(4.4). EI(4.4). 4.4). GSN(4). A9(4.4). C9(4.4). F7(4). EI3(4.4). EI(4.4). 4.4). GSN(4). A9(4.4). C9(4.4). F7(4). EI3(4.4). EI(4.4). 4.4). C2(4.4). F7(4). C9(4.4). F7(4). EI3(4.4). EI4(4.4). 5. D(1). (SDA(1376). EIX). (SDA(1276). EN3). (SDA(1276). EN3). 526. PFE) (SDA(1376). EX). (SDA(1376). EN3). (SDA(2264). EI3 526. PFE) (SDA(1376). EN1). (SDA(21264). EN3). 526. PFE) (SDA(1376). EN1). (SDA(1376). EN3). 526. PFE) (SDA(1376). EN1). (SDA(21269). EN3). 526. PFE) (SDA(1376). EN1). (SDA(21269). EN3). 526. PFE) (SDA(1376). EN3). (SDA(1376). EN3). 526. PFE) (SDA(1376). EN3). (SDA(1376). EN3). 526. PFE) (SDA(1376). EN3). (SDA(1376). EN3). 526. PFE) (SDA(1376). EN3). (SDA(2269). EN3). 526. PFE) (SDA(1376). EN3). (SDA(2269). EN3). 526. PFE) (SDA(1376). EN3). (SDA(1376). EN3). 528. PFE) (SDA(1376). EN3). (SDA(1376). EN3). 528. PFE) (SDA(1376). EN3). (SDA(1376). EN3). 528. PFE) (SDA(1376). EN3). (SDA(1376). EN3). 528.</pre>	RHOX(150) . GAM	50) WFE(150	150) ×SI(1	n .	000000
<pre>4.4.1. EM3(4.4.1) * EM4(4.4.1) * EM5(4.1) * EM6(4.1) 4.4.4.1. EM3(4.4.1) * EM5(4.1) * ESIP(4.1) * EM6(4.1) 4.1. B2(4.4.4) * C2(4.4.4.1) * G2(4.1) * G1(4.4.1) * EI(4.4.1) 4.1. B2(4.4.4) * C1(4.4.4.1) * G1(4.1) * G1(4.4.1) * EI(4.4.1) 4.1. B2(4.4.4) * C1(4.4.4.1) * G1(4.1) * EI(4.4.1) * EI(4.4.1) 4.4.1. B71(4.4.4) * C1(4.4.4.1) * G1(4.4.1) * EI(4.4.1) 4.4.1. B71(4.4.4) * C1(4.4.4.1) * G1(4.1) * SN(4.4.4.1) 4.4.1. B71(4.4.4.1) * C1(4.4.4.1) * G1(4.1) * SPR(4.4.1) 4.4.1. B71(4.4.4.1) * C1(4.4.1) * G1(1.1) * SPR(1.1) * EM8(1.1) * EN8(1.1) *</pre>	P0(4.4), P	150) • X0(4) • X(4+150)	(4) • 2(C	000001
<pre>4.1. B1(4,4). C1(4,4). 62(4). CHI1(4,4). CHI2(4,4). CHI(4,4). 4.1. B2(4,4). C1(4,4). G2(4). H1(4,4). EJ1(4,4). CHI2(4,4). 6.1. S2(4,4). C1(4,4). G2(4). H1(4,4). EJ1(4,4). 1(4,4). B2(4,4). C1(4,4). G2(4). H1(4,4). EJ1(4,4). 1(4,4). BRN(H2(4). BRN(H3(4). BSN(4,4). BSN(4,4). 1(4,4). BSN(4). A9(4,4). C9(4,4). 67(4,4). G1(4). EVE (50(4). A9(4). C9(4,4). 67(4,4). EVE(4,4). EVE(4,4). (55)(4). A9(4). C9(4,4). 67(4). ASN(4,4). BSN(4,4). (55)(4). A9(4). C9(4,4). 67(4). ASN(4,4). BSN(4,4). (55)(4). A9(4). C9(4,4). 67(4). ASN(4,4). BSN(4,4). (55)(4). A9(4). C9(4,4). 67(4). BCIT (55)(4). EVE(4). (55)(4). A9(4). 57(4). (55)(4). BCIT (55)(4)(7). EVE(4). (55)(4). (55)(4)(4). EC (55)(4)(4). EVE(5)(4)(7). EVE(4). (55)(4). (55)(4)(4). (55)(4)(4). EN (55)(4)(6). EN (55)(4)(2). EN (55)(4)(6). EN (55)(4)(2). EN (55)(4)(4). EN (50)(2). EN (55)(4)(4). EN (50)(2). EN (55)(4)(4). EN (50)(2). EN (</pre>	EM1(4+4)+ EM1N(4+4)+	13(4,4); EMEN(4);	EM5(4)	<u>(</u>	00000
 4) B21(4) 4) B21(4) 4) Y0(4,4) 4) C21(4,4) D151(4,4) 6) B1(4,4) 6) CH1(4,4) 7) CH1(4,4)		サートコウト チーナ・シュレー シーマ・マーレー			
<pre>4. YD(4.4). ELD(4). DISI(4.4). DIS2(4.4). EJI(4.4). FI(4). 1(4.4). BRNCH3(4). BRNCH3(4). BFTA(4.4). EJI(4.4). FI(4). 1(4.4). BRNCH2(4). GI(4.4). GI(4.4). BRN(4.4). EJI(4.4). 7.4). BSN(4.4). CSI(4.4). GSN(4.4). BSN(4.4). FILAG). BSN(4.4). CS(4.4). GSN(4.4). BSN(4.4). ENCE (SDA(1). EX).(SDA(2). MK).(SDA(3). SPRL . UK).(SDA(3). STRI).(SDA(10). BCT).(SDA(1). BCTE PSI).(SDA(13). STRI).(SDA(10). BCT).(SDA(1). BCTE PSI).(SDA(13). STRI).(SDA(10). BCT).(SDA(1). ENC . D)).(SDA(13). STRI).(SDA(10). BCT).(SDA(1). ENC . D)).(SDA(13). STRI).(SDA(14). EN).(SDA(2498). WTHU 256). PFL 0. (SDA(176). EK).(SDA(1976). EN).(SDA(2249). WTHU 256). PFL 0.(SDA(1376). GAN).(SDA(1976). EN).(SDA(22126). WTHU 256). FFL 0.(SDA(1286). GAN).(SDA(1976). EN).(SDA(22126). WTHU 256). FFL 0.(SDA(1286). GAN).(SDA(2494). EMSN).(SDA(22126). WTHU 256). FFL 0.(SDA(18). PD).(SDA(2494). EMSN).(SDA(22126). WTHU 256). FFL 0.(SDA(18). PD).(SDA(2494). EMSN).(SDA(22126). WTHU 256). FFL 0.(SDA(18). PD).(SDA(2494). EMSN).(SDA(22498). EM 262). EMIN).(SDA(2799). T2).(SDA(2494). EMSN).(SDA(22126). WTHU 276). FFL 0.(SDA(18). PD).(SDA(1976). EMD).(SDA(22498). EM 276). FFL 0.(SDA(18). PD).(SDA(1976). EMD).(SDA(22126). WTHU 276). FFL 0.(SDA(18). PD).(SDA(2494). EMSN).(SDA(22126). WTHU 276). FFL 0.(SDA(18). PD).(SDA(2494). EMSN).(SDA(22126). EM 276). FFL 0.(SDA(18). PD).(SDA(1970). EMD). ENCE (DA(1). EKK).(DA(1)). EML).(DA(2)). PTHI 276 0.(DA(1). EKK).(DA(2)). ENCI).(DA(2)). FNH 276 0.(DA(1). EKK).(DA(6). PIXI).(DA(2)). FNH 276 0.(DA(1). EKK).(DA(6). PIXI).(DA(2)). FNH 276 0.(DA(1). EKK).(DA(10). ENEI).(DA(2)). ENEI 270 0.(DA(3). ENE).(FNH 2804(3775). Z⁰·Z. A2. R2. C7. G2. A. B. C. G 203 504(3755). Z⁰·Z. A2. R2. C7. G2. A. B. C. G 203 504(3755). Z⁰·Z. A2. R2. C7. G2. A. B. C. G 203 504(3755). Z⁰·Z. A2. R2. C7. G2. A. B. C. G 203 504(3755). Z⁰·Z. A2. R2. C7. G2. A. B. C. G 203 504(3755). Z⁰·Z. A2. R2. C7. G2. A. B. C. G 203 504(3755). Z⁰·Z. A2. R2. C7. G2. A. B. C. G 203 504(3755</pre>	A2(4,4), B	+) + C2(4+4) + G2(4) + CHI	1(4.4), CHI2	(4.4).CHI(
<pre>44) * B1(4,4) * CI(4,4) * GI(4) * HI(4,4) * EJI(4,4) * FI(4) * 1(4,4) * RRNCH2(4) * GRNCH3(4) * GFTA(4,4) * EJI(4,4) * 5 * 4) * GSN(4) • A9(4,4) * G7(4,4) * GSN(4,4) * BSN(4,4) * * * 4) * GSN(4) • A9(4,4) * G7(4,4) * GSN(4,4) * BSN(4,4) * ENCE (SDA(1) * EX) * (SDA(6) * WK) * (SDA(1) * BCIE * UK) * (SDA(1) * EX) * (SDA(10) * BCIT) * (SDA(1) * BCIE * UK) * (SDA(1) * EX) * (SDA(14) * EN) * (SDA(1) * BCIE * UK) * (SDA(1) * EX) * (SDA(14) * EN) * (SDA(1) * BCIE * UC) * (SDA(1) * EX) * (SDA(14) * EN) * (SDA(1) * EN * UC) * (SDA(176) * FTH) * (SDA(1976) * EN) * (SDA(275) * EOI * D) * TLOC) * (SDA(176) * FTH) * (SDA(1976) * EN) * (SDA(2126) * WTHE * D) * TLOC) * (SDA(1376) * OTH) * (SDA(1976) * EN) * (SDA(2126) * WTHE * D) * TLOC) * (SDA(1376) * OTH) * (SDA(1976) * EN) * (SDA(2126) * WTHE * D) * D) * (SDA(1376) * OTH) * (SDA(1976) * RN) * (SDA(2126) * WTHE * D) * (SDA(118) * PD) * (SDA(1976) * RN) * (SDA(2126) * WTHE * SOA(2779) * SIGO) * (SDA(1976) * RN) * (SDA(2491 * EN * D) * (SDA(2778) * EMN) * (SDA(2949) * EMN) * (SDA(2491 * EN * D) * (SDA(2778) * EMN) * (SDA(1976) * RN) * (SDA(2491 * EN * D) * (SDA(2776) * FN) * (SDA(1976) * RN) * (SDA(2491 * EN * D) * (SDA(2778) * EMN) * (SDA(2949) * N) * (SDA(2491 * EN * D) * (SDA(2778) * EMN) * (SDA(2949) * N) * (SDA(2491 * EN * D) * (SDA(2778) * EMN) * (SDA(2949) * N) * (SDA(2491 * EN * N) * (SDA(2778) * EMN) * (SDA(2949) * N) * (SDA(2491 * EN * N) * (SDA(2778) * EMN) * (SDA(2949) * N) * (SDA(2491 * EN * N) * (SDA(2778) * EMN) * (SDA(2949) * N) * (SDA(2491 * EN * N) * (SDA(2778) * N) * (SDA(2949) * N) * (SDA(2491 * EN * N) * (SDA(2778) * N) * (SDA(2949) * N) * (SDA(2491 * EN * N) * (SDA(2778) * N * N * N * N * N * N * N * N * N *</pre>	XD(4+4) + Y	+) + ELD(4) + DISI(4+4) +	DIS2(4,4).	DIS3(4) •DIS	-
<pre>Fight 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1</pre>	AI(4+4)+ B	+) • CI(4•4) • GI(4) • HI(4+4) · EJI(4	+++) + FI(4)	
<pre>Find the second se</pre>	HXWCH1/404) + H	BKNCH3(4), B	(4•4)• ET		1100000
<pre>ENCE (SDA(1), EX),(SDA(2), WK),(SDA(3), SPRL</pre>	CSN(4+4)+ 6SN	<pre>(1) • 80(4 • 4) • C0(4 • 4) • F0(4</pre>	6 (+ + +) NOV	- + + +	
<pre>ENCE (SDA(1), EX),(SDA(2), GEOMI),(SDA(3), SPRL), UK),(SDA(5), VK),(SDA(6), WK),(SDA(15), EMK), PSI),(SDA(13), STRI),(SDA(10), BCIT),(SDA(15), DEL 2), TLOC), (SDA(13), STRI),(SDA(14), EN),(SDA(15), DEL 2), TLOC), (SDA(176), PTH),(SDA(326), PN),(SDA(2459), EM 26), PFE),(SDA(1376), ALF),(SDA(1976), EN),(SDA(2459), EM 26), RHOX),(SDA(1376), ALF),(SDA(1976), EM),(SDA(2459), EM 262), RHOX),(SDA(12799), T2),(SDA(2494), EM3),(SDA(2459), EM 262), SHIN),(SDA(2426), EM1),(SDA(2494), EM3),(SDA(2459), EM 262), SHIN),(SDA(2426), EM1),(SDA(2494), EM3),(SDA(2459), EM 276),WFE),(SDA(2478), EM1),(SDA(2494), EM)),(SDA(2459), EM 276),WFE),(SDA(2799), T2),(SDA(2494), EM)),(SDA(2459), EM 276),WFE),(SDA(2799), T2),(SDA(2494), EM)),(SDA(2459), EM 276),WFE),(SDA(2799), T2),(SDA(2494), EM)),(SDA(2459), EM 276),WFE),(SDA(2799), T2),(SDA(2494), EM 276),WFE),(SDA(2799), T2),(SDA(2949), DN 276),WFE),(SDA(2799), T2),(SDA(2442), EM 276),WFE),(SDA(2799), T2),(SDA(2442), EM 276),WFE),(SDA(2799), T2),(SDA(246), PH 276),SDA(2420, FW, KTPW, KTPW, KTPW, SL2, ELM2, S1, S2, SDA(3775), Z³, A2, A2, R2, C7, G2, A, B, C, G</pre>					000005
<pre> UK) (SDA(5), VK) (SDA(6), WK) (SDA(7), EMK PSI) (SDA(13), STRI) (SDA(10), BCIT) (SDA(15), DEL PCIE) PFLAG) (SDA(13), STRI) (SDA(14), EN) (SDA(25), PDI) (SDA(25), PDI (SDA(2</pre>	ENCE	ົ ຮູ	<u>+</u>	(315	7
<pre>PSL):(SDA(13): STRI):(SDA(10): BCIT):(SDA(15): DEL): TLOC): [SDA(13): STRI):(SDA(14): EN):(SDA(15): DEL): TLOC): [SDA(25): EN):(SDA(25): EN): TLOC): [SDA(242): EN):(SDA(476): EN 26): PFE):(SDA(176): PTH):(SDA(1976): PN):(SDA(2126):WTHD 276):RHOX):(SDA(1826):GAM):(SDA(1976): PN):(SDA(2126):WTHD 276):WFE):(SDA(2426):EM]):(SDA(2442): EM3):(SDA(2126):WTHD 276):WFE):(SDA(2426):EM]):(SDA(2442): EM3):(SDA(2126):WTHD 276):WFE):(SDA(2478):EM]):(SDA(2442): EM3):(SDA(2126):WTHD 276):WFE):(SDA(2478):EM]):(SDA(2492):EM3):(SDA(2458):EM3 248):POI2):(SDA(2478):EM]):(SDA(2492):EM3):(SDA(2459):EM3 248):POI2):(SDA(2799):T2):(SDA(2442):EM3)):(SDA(24569):EM3 248):POI2):(SDA(2799):T2):(SDA(2949):EM3):(SDA(24569):EM3 248):POI2):(SDA(2478):EM3)):(SDA(2492):EM3):(SDA(22649):E2 548):POI2):(SDA(2799):T2):(SDA(2949):EM3)):(SDA(2126):WTHD 260):(DA(1)): EKK):(SDA(2949):EMS)):(SDA(2459):EM3 7): PSIO):(SDA(18): PD):(SDA(19): EMD) FNCE (DA(1): EKK):(DA(2): PND)):(SDA(21): FND) 7): PSIO):(SDA(19): ENC):(DA(10)): EM1):(DA(21): FNF0 6</pre>	•	× ×	XX XX		-
<pre>District Constraint of the second constra</pre>	0. PSI)	(SDA(9), ECX), (SDA(13), STRI).	0), BCIT		<u> </u>
<pre>5). D),(SDA(176), EK),(SDA(326), ENT),(SDA(476), EMT 26). PFE),(SDA(176), PTH),(SDA(926), PN),(SDA(476), EMT 226). T),(SDA(1376),ALF),(SDA(1976), R),(SDA(2498),XSI 276).WFE),(SDA(1826),(GAMA),(SDA(1976), R),(SDA(2126),WTHD 276).WFE),(SDA(1826),(GAMA),(SDA(2442), EM3),(SDA(2126),WTHD 276).WFE),(SDA(2426),EM1),(SDA(2442), EM3),(SDA(2458),EM3 462).EM1N),(SDA(2478),EM3N),(SDA(2442), EM3),(SDA(2458),EM3 462).EM1N),(SDA(2478),EM3N),(SDA(2442), EM3),(SDA(2458),EM3 462).EM1N),(SDA(2478),EM3N),(SDA(2494),EM5N),(SDA(2458),EM3 468).PO12),(SDA(2478),EM3N),(SDA(2494),EM5N),(SDA(2459),EM3 468).PO12),(SDA(2799),T2),(SDA(2949),DNA2), 7). PS10),(SDA(18), PD),(SDA(19), EMD) FNCE (DA(1), EKK),(DA(2), PO),(SDA(19), EMD) FNCE (DA(1), EKK),(DA(2), PO),(DA(3), PTH),(DA(7)), PTH] FNCE (DA(1), EKK),(DA(2), PO),(DA(2)), EMD) FNCE (DA(1), EKK),(DA(2), PO),(DA(2)), EM2), FNCE (DA(1), EKK),(DA(2), PO),(DA(2)), EM2), FNCE (DA(1), EKK),(DA(2), ENE),(DA(21), ENE), FNCE (DA(35), NTPW, NTPR, KTPW, KTPR, SL2, ELAM2, S1, S2, SDA(3725), Z⁰,Z², A2, R2, C2, G2, A, B, C, G</pre>	0) + TLOC)	}	5	(SDA(25).	
26). PFE).(SDA(776). PTH).(SDA(926). PN).(SDA(1076). E1 226). T).(SDA(1376).ALF).(SDA(1976). PN).(SDA(2498).XSI 276).wFDX).(SDA(1826).GAMA).(SDA(1976). R).(SDA(2126).wTHD 276).wFE).(SDA(2426).EM]).(SDA(2442).EM3).(SDA(2458).EM5 462).EMIN).(SDA(2426).EM]).(SDA(2494).EM3).(SDA(2458).EM5 462).EMIN).(SDA(2478).EM3N).(SDA(2494).EM5N).(SDA(2458).EM5 462).EMIN).(SDA(2478).EM3N).(SDA(2494).EM5N).(SDA(2458).EM5 48).PO12).(SDA(2799). T2).(SDA(2494).EM5N).(SDA(2458).EM5 48).PO12).(SDA(2799). T2).(SDA(2949).DNA2). 7). PSIO).(SDA(18). PD).(SDA(19). EMD) FNCE (DA(1). EKK).(DA(2). AO).(DA(3). HO 500).(DA(5). SIGO).(DA(2). ENCI).(DA(7). PTHI 50M).(DA(9). ENFO.).(DA(10). ENCI).(DA(21). ENFOR 50M).(DA(9). ENFO.).(LDA(10). ENCI).(DA(21). ENFOR 50A(3775). Z ⁰ ,Z ² , A2. R2. C7. G2. A. B. C. G 50A(3775). Z ⁰ ,Z ² , A2. R2. C7. G2. A. B. C. G	0 10	(SD	ENT	(SDA(476)	EM T
<pre>226)* T)*(SDA(1376)*ALF)*(SDA(1526)* DNA)*(SDA(2498)*XSI 576)*WFE)*(SDA(1826)*GAMA)*(SDA(1976)* R)*(SDA(2126)*WTHD 276)*WFE)*(SDA(2426)*EM)*(SDA(2442)*EM)*(SDA(2458)*EM) 262)*EMIN)*(SDA(2478)*EM3N)*(SDA(2494)*EM3N)*(SDA(2491)*E 548)*PO12)*(SDA(2799)*T2)*(SDA(2494)*EM5N)*(SDA(26491)*E 548)*PO12)*(SDA(2799)*T2)*(SDA(2494)*EM5N)*(SDA(214)*EM5 548)*PO12)*(SDA(2799)*T2)*(SDA(2494)*EM5N)*(SDA(2491)*E 548)*PO12)*(SDA(2799)*T2)*(SDA(2494)*EM5N)*(SDA(2491)*EM5 548)*PO12)*(SDA(2799)*T2)*(SDA(2494)*EM5N)*(SDA(214)*EM5 548)*PO12)*(SDA(2799)*T2)*(SDA(2949)*DNA2)* 548)*PO12)*(SDA(2799)*T2)*(SDA(2949)*DNA2)* 548)*PO12)*(SDA(2799)*T2)*(SDA(2949)*DNA2)* 548)*PO12)*(SDA(2799)*T2)*(SDA(2949)*EM3)*(SDA(211)*EM50 548)*PO12)*(SDA(19)*ENF0_)*(DA(10))*EMD)* 504(35)*NTPW*NTPR*KTPW*KTPR*SL2*ELAM2*S1*S2* 503*SO4*SO6*ENF*TFR*KLM 503*SO4*SO6*ENF*TFR*KLM</pre>	26) + PFE)	(SD	Z	(SDA(1076)	E
<pre>276).wFHU 276).wFHC 276).wFE 276).wFE 248).wFE 248).wFE 248).wFE 248).pOI2).(SDA(2426).eM]).(SDA(2458).eM 248).pOI2).(SDA(2799).T2).(SDA(2442).eM 248).pOI2).(SDA(2799).T2).(SDA(2494).eM 2548).pOI2).(SDA(2799).T2).(SDA(2494).eM 2548).pOI2).(SDA(18).PD 250.(31).FM 250.(31).FM 250.(31).FM 250.(31).FM 250.(31).FM 250.(31).FM 250.(31).FM 250.(32).SIG 250.(32).SIG 203.SO4.SO6.EMF.IFR.KLM 250.(32).20.2. A2.R2.C2.G2.A.B.C.G 250.(32).20.2. A2.R2.C2.G2.A.B.C.G 250.(32).20.2. A2.R2.C2.G2.A.B.C.G 250.(32).20.2.C.C.G2.A.B.C.G 250.(32).2.2. A2.R2.C2.G2.A.B.C.G 250.(32).2.2. A2.R2.C2.G2.A.B.C.G 250.(32).2.2. A2.R2.C2.G2.A.B.C.G 250.(32).2.2. A2.R2.C2.G2.A.B.C.G 250.(32).2.2. A2.R2.C2.G2.A.B.C.G 250.(32).2.2. A2.R2.C2.G2.A.B.C.G 250.(32).2.2.C.G2.G2.G2.G2.G2.G2.G2.G2.G2.G2.G2.G2.G2.</pre>	226) • T)	S.C.	DNA	(SDA(2498)	XSI)+0000031
<pre>50.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.</pre>	576),RHOX)	(SDA(1826), CAMA)	ۍ ۲	DA(2126)	VTHD 00000031
<pre>501 * Contraction * Contr</pre>	• • • • • •	+ 7 0) • E W 7) •	11 1 1 1 1 1	50A(2458)	E000000 (GW3)
7), PSIO),(SDA(18), PD),(SDA(19), EMD) -FNCE (DA(1), EKK),(DA(2), AO),(DA(3), HO EO),(DA(5), SIGO),(DA(6), PIXI),(DA(7), PTHI SUM),(DA(9), ENFO),(DA(10), ENFI),(DA(21), ENFOR), THETA) DA(35), NTPW, NTPR, KTPW, KTPR, SL2, ELAM2, S1, S2, SO3, SO4, SO6, ENF, IFR, KLM SO3, SO4, SO6, ENF, IFR, KLM SO3, SO4, SO6, ENF, IFR, KLM	407) 548)	+/6/) • EM3N) 790/ • T2/•		120412649	Lacta0000031
<pre>-ENCE (DA(1), EKK).(DA(2), A0).(DA(3), H0 E0).(DA(5), SIGO).(DA(6), PIXI).(DA(7), PTHI SUM).(DA(9), ENFO).(DA(10), ENFI).(DA(21), ENFOR). THETA) DA(35), NTPW, NTPR, KTPW, KTPR, SL2, ELAM2, S1, S2, SO3, SO4, SO6, ENF, IFR, KLM SO3, SO4, SO6, ENF, IFR, KLM</pre>	7) PSIO		9) • FMD)	_	
-ENCE (DA(1), EKK).(DA(2), A0).(DA(3), H0 E0).(DA(5), SIGO).(DA(6), PIXI).(DA(7), PTHI SUM).(DA(9), ENFO.).(DA(10), ENFI).(DA(211, ENFOR). THETA) DA(35), NTPW, NTPR, KTPW, KTPR, SL2, ELAM2, S1, S2, SO3, SO4, SO6, ENF, IFR, KLM SDA(3725), Z ⁰ ,Z, A2, B2, C2, G2, A, B, C, G			3		00000
<pre>E0).(Da(5). SIG0).(Da(6). PIXI).(Da(7). PIHI).0000034 SUM).(Da(9). ENF0).(DA(10). ENFI).(DA(21). ENFOR).0000034). THETA) 0000034 Da(35). NTPW. NTPR. KTPW. KTPR. SL2. ELAM2. SI. S2. 0000035 S03. S04. S06. ENF. IFR. KLM SDA(3275). Z⁰.Z. A2. B2. C7. G2. A. B. C. G 0000035 SDA(3275). Z⁰.Z. A2. B2. C7. G2. A. B. C. G 0000035</pre>	EQUIVALENCE	. EKK) . (DA(2	· A0)	(31.	•
<pre>SUM 1.(Da(9). ENFO_).(DA(10). ENFI_).(DA(211. ENFOR).0000034). THETA) 0000034 Da(35). NTPW. NTPR. KTPW. KTPR. SL2. ELAM2. S1. S2. 0000035 S03. S04. S06. ENF. IFR. KLM SDA(3275). Z⁰.Z. A2. R2. C7. G2. A. B. C. G 0000036 SDA(3275). Z⁰.Z. A2. R2. C7. G2. A. B. C. G 0000036</pre>	1(DA(4), E0),	• SIGO)•	(IXIA	(7) • P	000001
1. (ME.A.) 0000034 DA(35), NTPW, NTPR, KTPW, KTPR, SL2, ELAM2, S1, S2, 0000035 S03; S04; S06; ENF, IFR, KLM SDA(3225), Z ⁰ ,Z, A2; R2, C2; G2, A; B; C; G 0000035 S0A(3225), Z ⁰ ,Z, A2; R2, C2; G2, A; B; C; G 0000035	2 (DA(B) • _ SUM) 1	• _ ENFO_)•	· ENFI)	(LPA(211.	00000
COMMON DA(35), NTPW, NTPR, KTPW, KTPR, SL2, ELAM2, S1, S2, 0000035 KKE, S03, S04, S06, ENF, IFR, KLM COMMON SDA(3225), Z ⁰ ,Z, A2, R2, C2, G2, A, B, C, G 000035 COMMON SDA(3225), Z ⁰ ,Z, A2, R2, C2, G2, A, B, C, G	3(DA(25) . THEIA)				ŵ (
COMMON SDA(3225)+ Z ⁰ +Z+ AZ+ BZ+ GZ+ GZ+ A+ B+ C+ G 000003 COMMON SDA(3225)+ Z ⁰ +Z+ AZ+ BZ+ GZ+ G2+ A+ B+ C+ G 000003		NTDM NTDD.	C 13	. c1. c	
SDA(3225), Z ^A ,Z, AZ, BZ, C2, G2, A, B, C, G 00003	KKE SQ3	SO6. ENF. IF	366		n ƙr
000003	SDA (3	251. ZP.Z. AZ. B2	C2. G2. A	8. C.	1 1
				:	0003

Set Up P and X Matrices (Cont)

•

	S4 = ELAM2 * FK(1) * S1 S6 = 3• * WFF(1) - WTH S7 = 3• * WIU - WFF(1)		00001180 00001200 00001200
50	(I • NF• 1) GO TO 770 (I BCT - 9) 90•180•90		00001220
v v		· OPEN	00001390
06	HP = (-1)(3) + U(2) + 3.** (U(2) WFEP = (-WFE(3) + WFE(2) + 5.** (WFE(2)	- 0)) /DELZX - WFF))/DELZX	00001400
	= (-FK(3) + EK(2) + 3.* (EK(2)		00001420
	= (+ENT(3) + ENT(2) + 3+* (ENT($\hat{\cdot}$	00001430
L	(-EMT(3) + EMT(2) +	- EMT))/DEL2X	00001440
100		÷	00001450
	-	•	00001460
	II S	, ;	00001470
	n	י מענייניים אין אין אין אין אין אין אין אין אין אין	00001480
	= °59 **2	-	00001490
	= 27 ×(• * S6)	0001500
	* 75 =		00001510
ļ			00001520
ر	D0 110 K = 1.4	CERO BOUNDART MAINICES	00001540
	H		00001550
	01	•	00001560
•			00001570
110	$FM4(K_{S}L) = 0_{\bullet}$		00.001580
ر 140	EM2(1+]) = D(]) /DFI		00001630
•	* LOd = ([4	and a second	00001640
	2) = POI * E	2	00001650
	(3) = D(1) * (WF)		00001660
	•1) = -55 * S1 - 58		00001670
	151 = D(1)*51/2		00001680
	.2).		00001690
	•2) = EM2(2•2)		0001700
	513 = 34 * FNF /20 /KHU		-01210000
	3) = - GAM		020113000
) = EM2(2,3) / DEL	ī . !	00001740
1	$E\dot{M}4(3_{1}) = -510$		0001150

	00001960
EM2(1:1) = 1. / DFL EM4(2:1) = 1. EM4(2:2) = 1. EM4(2:2) = 1. EM4(2:2) = 1. EM4(3:3) = 1. EM4(2:2) = 1. EM4(3:3) = 1. EM4(2:2) = 1. EM4(3:3) = 1. EM4(2:2) = 1. EM4(4:4) = 1. EM4(2:2) = 1. GO TO 260 F(ENF - 2.) 240. 250 EM4(2:2) = 1. EM4(2:2) = 1. GO TO 200 EM4(2:2) = 1. GO TO 220 EM4(2:2) = 1. GO TO 220 FMA(2:2) = 1. GO TO 220 EM4(2:2) = 1. GO TO 220 FMA(2:2) = 1. GO TO 220 EM4(2:2) = 1. GO TO 220 FMA(2:2) = 1. GO TO 220 FMA(2:2) = 1. GO TO 220 FMA(2:2) = 1. F(I • NE · 1) GO TO 800 FOP BOUNDARY. CLOSED FF(I • NE · 1) GO TO 800 FOP POUNDARY. CLOSED	

-243-:

: 5

Á.:

<pre>(Ket.) = 2.* EW2(Ket.) 7(Ket.) = 1.* EW2(Ket.) 7(F) = 1.* EW2(F) 100021 100021 1000021 1000022 100002 10</pre>		120000	
<pre>Li = 1.5 * EM7[x:1] S(U (+++ EW+;EW2+82)) S(U (+++ EW+;EW2+82)) BOTTOM BND>, OPEN AND DISCONTINUITY B - 9) 200+180-200 BOTTOM BND>, OPEN AND DISCONTINUITY F(N-1)) / DEL2X = (BT(N-2) - ENT(N-1) + 3.*(ENT(N) - ENT(N-1)) / DEL2X = (BT(N-2) - ENT(N-1) + 3.*(ENT(N) - ENT(N-1)) / DEL2X = (BT(N-2) - ENT(N-1) + 3.*(ENT(N) - ENT(N-1)) / DEL2X = (BT(N-2) - ENT(N-1) + 3.*(ENT(N) - ENT(N-1)) / DEL2X = (BT(N-2) - ENT(N-1) + 3.*(ENT(N) - ENT(N-1)) / DEL2X = (BT(N-2) - ENT(N-1) + 3.*(ENT(N) - ENT(N-1)) / DEL2X = (BT(N-2) - ENT(N-1) + 3.*(ENT(N) - ENT(N-1)) / DEL2X = (BT(N-2) - ENT(N-1) + 3.*(ENT(N) - ENT(N-1)) / DEL2X = (BT(N-2) - ENT(N-1) + 3.*(ENT(N) - ENT(N-1)) / DEL2X = (BT(N-2) - ENT(N-1) + 3.*(ENT(N) - ENT(N-1)) / DEL2X = (BT(N-2) - ENT(N-1) + 3.*(ENT(N) - ENT(N-1)) / DEL2X = (BT(N-2) - ENT(N-1) + 3.*(ENT(N) - ENT(N-1)) / DEL2X = (BT(N-2) - ENT(N-1) + 3.*(ENT(N) - ENT(N-1)) / DEL2X = (BT(N-2) - ENT(N-1) + 3.*(ENT(N) - ENT(N-1)) / DEL2X = (BT(N-2) - ENT(N-1) + 3.*(ENT(N) - ENT(N-1)) / DEL2X = DEL = /pre>	•L) = 2• EM2 •L) = 2• EM2	00000	~
<pre>N 1000 NE N) GO TC 400 NE N) GO TC 400 BOTTOM BND** OPEN AND DISCONTINUITY = (D(N-2) - D(N-1)) / DEL2X (MFE(N-2) - EK(N-1) + 3.*(EMT(N) - FK(N-1))) / DEL2X = (EK(N-2) - EK(N-1) + 3.*(EMT(N) - FK(N-1))) / DEL2X = (EK(N-2) - EMT(N-1) + 3.*(EMT(N) - FK(N-1))) / DEL2X = (EMT(N-2) - EMT(N-1) + 3.*(EMT(N) - FK(N-1))) / DEL2X = (EMT(N-2) - EMT(N-1) + 3.*(EMT(N) - FK(N-1))) / DEL2X = (EMT(N-2) - EMT(N-1) + 3.*(EMT(N) - FK(N-1))) / DEL2X = 0 0 0 0 332 = 0 0 0 0 332 = 0 0 0 0 332 = 0 0 0 0 0 332 = 0 0 0 0 0 0 332 = 0 0 0 0 0 0 332 = 0 0 0 0 0 0 332 = 0 0 0 0 0 0 332 = 0 0 0 0 0 0 332 = 0 0 0 0 0 0 332 = 0 0 0 0 0 0 332 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	K+L) = 1.5 + EM2(MSR (A.A. EM2.EM2	000021	
<pre>NFe N) GG TC 400 EB = 9) 290-180.290 BOTTOM BND** OPEN AND DISCONTINUITY # (WFE(N-2) - D(N-1)) / DEL2X # (KN-2) - WF((N-1) + 3.*(WF(N) - W(N-1))) / DEL2X # (EK(N-2) - WF((N-1) + 3.*(WF(N) - F(N-1))) / DEL2X # (EK(N-2) - ENT(N-1) + 3.*(ENT(N) - F(N-1))) / DEL2X # (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - F(N-1))) / DEL2X # (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - F(N-1))) / DEL2X # (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - F(N-1))) / DEL2X # (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - F(N-1))) / DEL2X # (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - F(N-1))) / DEL2X # (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - F(N-1))) / DEL2X # (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - F(N-1))) / DEL2X # (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - F(N-1))) / DEL2X # (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - F(N-1))) / DEL2X # (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - F(N-1))) / DEL2X # (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - F(N-1))) / DEL2X # (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - F(N-1))) / DEL2X # (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - F(N-1)) / DEL2X # (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - F(N-1)) / DEL2X # (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - F(N-1)) / DEL2X # DEL## /pre>		120000	140
B = 9) 200-180.290 BOTTOM BNDs, OPEN AND DISCONTINUITY = (URE(N-2)-WFT(N-1) + 3.*(WFT(N) - WFT(N-1)))/DEL2X = (WT(N-2)-WFT(N-1) + 3.*(ENT(N) - FK(N-1)))/DEL2X = (ENT(N-2)-ENT(N-1) + 3.*(ENT(N) - FNT(N-1)))/DEL2X = (ENT(N-2)-ENT(N-1) + 3.*(ENT(N) - FNT(N-1)))/DEL2X = (ENT(N-2)-ENT(N-1) + 3.*(ENT(N) - FNT(N-1)))/DEL2X = 000 00 032 = 000 00 033 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10	(1 NE NI CO 30	120000	169
BOTTOM BND., OPEN AND DISCONTINUITY = (D(N-2) - D(N-1) + 3.*(J(N) - D(N-1))) /DEL2X = (WF(N-2) - WF(N-1) + 3.*(EN(T(N) - FK(N-1))) /DEL2X = (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - FNT(N-1))) /DEL2X = (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - FNT(N-1))) /DEL2X = (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - FNT(N-1))) /DEL2X = DEL =	(18C8 - 9)		1 /0
<pre> [D(N-2) - D(N-1) + 3.*(D(N) - D(N-1))) /DEL2X (WFE(N-2)-WFF(N-1) + 3.*(WFF(N) - WFF(N-1)) /DEL2X (EX(N-2) - EX(N-1)) + 3.*(EMT(N) - FX(N-1))) /DEL2X (EX(N-2) - EXT(N-1)) + 3.*(EXT(N) - FX(N-1))) /DEL2X (EX(N-2) - EXT(N-1)) + 3.*(EXT(N) - FX(N-1))) /DEL2X (EX(N-2) - EXT(N-1)) + 3.*(EXT(N-1)) /DEL2X (EX(N-2) - EXT(N-1)) + 3.*(EXT(N-1)) /DEL2X (EX(N-2) - EXT(N-1)) + 3.*(EXT(N-1)) /DEL2X (X-2) - EXT(N-1)) + 3.*(EXT(N-1)) /DEL2X (X-2) - EXT(N-1) + 3.*(EXT(N-1) + 3.*(EXT(N-1)) /DELX (X-2) - EXT(N-1) + 3.*(EXT(N-1) + 3.*(EXT(N-1) + 3.*(EXT(N-1)) /DELX (X-2) - EXT(N-1) + 3.*(EXT(N-1) /pre>	BOTTOM BND OPEN AND DISCON	000021	661
<pre>= (WFE(N-2)-WFF(N-1) + 3.*(WFF(N) - WFF(N-1)))/DFL2X = (EK(N-2)-EWT(N-1) + 3.*(EWT(N) - FNT(N-1)))/DFL2X = (ENT(N-2)-EMT(N-1) + 3.*(EMT(N) - FNT(N-1)))/DFL2X = (EMT(N-2)-EMT(N-1) + 3.*(EMT(N) - FNT(N-1)))/DFL2X = DFL = DFL = DFL = DFL = WFE(N) = NFE 00, GO TO 332 > NEE 00, GO TO 332 > SIND(PSI) = CHT(1,1) = COSDL PSI) = CHT(1,1) = CHT(1,1) = 1 = CHT(1,1) = 1 = CHT(1,1) = 1 = CHT(1,1) = COSDL PSI) = CHT(1,1) = CHT(1,1) = COSDL PSI) = CHT(1,1) = CHT</pre>	= (D(N-2)) - D(N-1) + 3 + (D(N) - D(N-1)))	000052	002
<pre>= (EK(N-2) - EK(N-1) + 3.*(EK(N) - FNI(N-1))) /DEL2X = (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - FNI(N-1)))/DEL2X = (ENT(N-2) -ENT(N-1) + 3.*(ENT(N) - FNI(N-1)))/DEL2X = DEL = DEL = DEL = DEL = DEC = NFE 00, GO TO 332 0.NE 00, GO TO 332 0.NE 00, GO TO 332 (.NE 00, GO TO 332 1.4. A. PI. IERN) = ECX/AO = NFE 00, GO TO 332 1.4. A. PI. IERN) = ECX/AO = D = COSDL PSI 1 = /pre>	= (WFE(N-2)-WFF(N-1) + 3.*(WFF(N) - WFF(N-1)))	000022	012
<pre></pre>	<pre>= (EK(N-Z) - EK(N+1) + 3.**(EK(N) - EK(N+1))) - 'SMIT(N-2)_EMI(N-1) + 3.**(ENI(N) - ENI(N-1));</pre>	220000	000
0 100 BOTTOM DISCONTINUITY POINT= (1) = DEL = WFE(N) = WFE(N) 60 T0 332 • NE= 0+1 GO T0 332 50 T0 332 • NE= 0+1 GO T0 332 50 T0 332 • NE= 0+1 GO T0 332 50 T0 332 • NE= 0+1 GO T0 332 50 T0 332 • NE= 0+1 GO T0 332 50 T0 332 • NE= 0+1 GO T0 332 50 T0 332 • N= 1+1 10 = 1+1 50 T0 332 = 1+1 50 T0 332 = 1+1 50 T0 333 = 2 CH(13+1) 506 = 1+1 50 T0 333 = 2 CH(13+1) 506 = 2 COSD(1 T0 1) * PD / SQ6 = 1+1 50 T0 333 = 2 COSD(1 T0 333 = 2 COSD(1 T0 333 = 2 COSD(1 T0 1) * PD / SQ6 = 2 COSD(1 T0 333 = 2 COSD(1 T0 333 = 2 COSD(1 T0 333 = 2 COSD 10 350	= (EMI(N-2) - EMI(N-1) + 3 - *(EMI(N) - FMI(N-1))) $= (EMI(N-2) - EMI(N-1) + 3 - *(EMI(N) - FMI(N-1)))$	220000	040
<pre>BOTTOM DISCONTINUITY POINLe_U(I)</pre>	TO 100	000022	250
<pre>= DEL = WFF(N) .NE. 00. GO TO 332 0.NE. 00. GO TO 332 1.NE. 00. GO TO 332 1.NE. 00. GO TO 332 1.NV [4+ A+ PI+ IERR] = ECX/A0 = ECX/A0</pre>	BOTTOM	~	282 .
<pre>= WFF(N) = WFF(N) = WFF(N) = NE: 0:) GO TO 332 = NE: 0:) GO TO 332 = 1 = NE: 0:) GO TO 332 = 1 = NUV [4+ A+ PI+ IERR] = ECX/A0 = ECX/A0 = 2) = 1 = COSD(PSI) = 2 = CHI(3+1) = 1 = COSD(PSI) = 0:) GO TO 333 = CHI(3+1) = 1 = COSD(F IO) * PD / SQ6 = COSD(F IO) * PD / SQ6 = COS</pre>	H	000022	062
<pre>> NE: 0:) G0 T0 332 > NE: 0:) G0 T0 332 </pre> <pre>(NE: 0:) G0 T0 332 </pre> <pre>(NE: 0:) G0 T0 332 = 1: (N' [4: A: PI: IERR) = ECX/A0 = ECX/A0 = 2] = 1: (N' [4: A: PI: IERR) = COSD(PSI) = 2] = 1: (N' [4: A: PI: IERR) = 1: (N' [4: A: PI: IERR) = 1: (N' [4: A: PI: IERR) = 0: 00 T0 333 = CHI(1:1) = 1: (N' [4: ECX * CHI(1:1) (A: A: ECX * CHI(1:1) (A: ECX *</pre>		000022	163
<pre></pre>	•NE• 0•) 60 TO 33	000022	202
<pre></pre>			
= 1. NV [4. A. PI. IERR) = ECX/A0 2] = 1. 4) = 1. 4) = 1. 5] = 2. 1] = COSD(PSI) 3] = CHI(1.1) 3] = CHI(1.1) 3] = CHI(3.1) 5] = -CHI(3.1) 5] = -CHI(3.1) 5] = -CHI(3.1) 5] = -CHI(3.1) 5] = -CHI(3.1) 50 TO 333 5] = -CHI(3.1) 50 TO 333 5] = -COSD(T IO) * PD / SQ6 1) = SIND(PSIO] * PD / SQ6 1) = SIND(PSIO] * PD / SQ6 1) = -COSD(T IO) * PD / S	•NE: 0•) 60 TO 3	000023	302
<pre>INV [4* A* PI* IERR) = ECX/A0 22 = 1 44) = 1 44) = 1 45 = 1</pre>	1	000023	303
= ECX/A0 2) = 1 4) = 1 2) = 1 2) = CHI(1:1) 3) = CHI(3:1) 5) = -CHI(3:1) 50 = 0 + GO TO 333 5) = -CHI(3:1) 50 = 0 + GO TO 333 50 = -COSD(F IO) + PD / SQ6 50 = -COSD(F IO) + PD / PD / PD / PD / PD / PD / PD / PD	INV _ [4. A. PI.	000023	306 205
<pre>44) = 1. 44) = 1. 53) = CHI(1:1) 53) = CHI(1:1) 53) = CHI(1:1) 53) = -CHI(3:1) 500002 50 = 0000000000000000000000000000000000</pre>	H C	000023	307
<pre>11 = Cospl Ps1 1 33 = CHI(1:1) 33 = CHI(3:1) 34 = COSp(f 10) * Pp / Sq6 00002 1 = - COSp(f 10) * Pp / Sq6 00002 1 = - COSp(f 10) * Pp / Sq6 00002 1 = - COSp(f 10) * Pp / Sq6 00002 1 = - COSp(f 10) * Pp / Sq6 00002 1 = - COSp(f 10) * Pp / Sq6 00002 1 = - COSp(f 10) * Pp / Sq6 00002 1 = - COSp(f 10) * Pp / Sq6 00002 1 = - COSp(f 10) * Pp / Sq6 00002 1 = - COSp(f 10) * Pp / Sq6 00002 1 = - COSp(f 10) * Pp / Sq6 00002 1 = - COSp(f 10) * Pp / Sq6 00002 1 = - COSp(f 10) * Pp / Sq6 00002 1 = - COSp(f 10) * Pp / Sq6 00002 1 = - COSp(f 10) * Pp / Sq6 00002 1 = - COSp(f 10) * Pp / Sq6 00002 1 = - COSp(f 10) * Pp / Sq6 00002 0002 1 = - COSp(f 10) * Pp / Sq6 00002 0000 00002 00002 00002 00002 00002 0000 0000 0</pre>		620000	
<pre>3) = CHI(1+1) 1) = SIND(PSI) 3) = -CHI(3+1) 600002 3) = -CHI(3+1) 600002 50 = 0+1 60 10 333 500002 50 = 0+1 60 10 337 500002 50 = 0+1 60 10 350 50 = 10 60 10 350 50 = 10 60 10 350 50 = 10 60 10 350 50 = 10 60 10 350 50 = 10 60 10 350 50 = 10 60 10 350 50 = 10 60 10 350 50 = 10 60 10 350 50 = 10 60 10 350 50 = 10 60 10 350 50 = 10 60 10 350 50 = 10 7000 50 = 10 70000 50 = 10 700000 50 = 10 700000 50 = 10 700000 50 = 10 70000000 50 = 10 700000000000000000000000000000000</pre>	494) = T. 1.1) = COCD(D	620000	200
<pre> •1) = SIND(PSI) •3) = -CHI(3.1) •3) = -CHI(3.1) •3) = -CHI(3.1) •60 10 333 •60 0.1 G0 T0 337 •) = EMD / 504 •00002 •) = ECX * CHI(1.1) •60 0.1 COULUTE ECX * CHI(1.1) •60 0.1 •60 0.1 COULUTE ECX * CHI(1.1) •60 0.1 •60 0.</pre>	(1,1,1) = (H(1,1))	000023	311
 3) = -CHI(3*1) 40.0002 40.0003 /ul>	I) = SIND(P	000023	
<pre> 60002 6000 10 333 7 7 7 6000 7 7 7 7 7 7 7 7 7 7 7 7 7 7</pre>	-3) = -CHI(3,1)	000023	<u> </u>
U = SIND(PSIO 1 * PD / Sq6_ 0 = 60 0.) GO TO 337 0 = - EMD / 504 0 = - ECX * CHI(1) 0.0002 0.41) = ECX * CHI(1) 0.0002	•EQ• 0•) GO TU 333	520000 520000	
<pre>*E0* 0*) G0 T0 337 = * EMD / 504 00002 = * EMD / 504 00002 * * ECX * CHI(1,1) * = ECX * CHI(1,1) * * Matrices (Cont) * * Matrices (Cont) * * * * * * * * * * * * * * * * * * *</pre>	$\mathbf{I} = \mathbf{S} \mathbf{I} \mathbf{D} \mathbf{C} \mathbf{D} \mathbf{C} \mathbf{I} \mathbf{I} \mathbf{C} \mathbf{I} \mathbf{A} \mathbf{C} \mathbf{D} \mathbf{C} \mathbf{C} \mathbf{I} \mathbf{A} \mathbf{C} \mathbf{D} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} C$		
<pre>- EMD / 504 00002 - EMD / 504 00002 00002 0 = ECX * CHI(1,1) 00002 00000 00002 00002 00000 00000 00002 00002 00000 0000 00002 0000 00</pre>	• • EQ• 0•) GO TO 337	000023	12
00002 • • EQ. 10) GO TO 350 • = ECX * CHI(1.1) • = ECX * CHI(3.1) • 00002 • • = ECX * CHI(3.1) • • • • • • • • • • • • • • • • • • •) = - EMD / 50	00003	318
00002 4) = ECX * CHI(1,1) 4) = ECX * CHI(1,1) 4) = ECX * CHI(3,1) 00002 4) = ECX * CHI(3,1) 00002 00002		000023	319
$\frac{1}{4} = ECX + CHI(3,1) \qquad 00002$	1 • EQ. 10) 60 TO 3	000023	320
	4) = ECX * CHI (3	000023	331

CHII(1.1) = CHI(1.1) CHII(1.3) = CHI(1.3) CHII(2.2) = 1.4 ECX * WTH CHII(2.3) = ECX * ENF /RHO CHII(2.3) = CHI(3.1) CHII(3.3) = CHI(3.3) CHII(4.4) = 10	c
1(1.3) = CHI(1.3) 1(2.2) = 1. + ECX * 1(2.3) = ECX * ENF 1(2.1) = CHI(3.1) 1(3.2) = CHI(3.3) 1(4.4) = 1	0.002
1(2.2) = 1. + ECX = 1(2.3) = ECX = ENF 1(3.1) = CH1(3.1) 1(4.4) = 1 1(4.4) = 1	
1(2,3) = ECX * ENF 1(3,1) = CH1(3,1) 1(3,3) = CH1(3,3) 1(4,4) = 1	0000
1(3,1) = CH1(3,1) 1(3,3) = CH1(3,3) 1(4,4) = 1	20000
1(4,4) =	
1(4.4) =	
I DOID I EMD. EMA. EMA. AT. UT. CI.	
FIRDT FO 1. Y CO TO 3EX	INICA
	00000
•	
L MMY (4:4.4.	
الــ	
L MAD (4.4. F	
L MMY (4:4.1.	
MMY (4.4.1. A.6.1613	
- Hul 144474	•
L MSU (4.0%)	
- MMY (4.4.24.	
(4.4.4.	
	00002475
ALL MAD (4+4+ E+P(1+1+1)+E)	
L MMY (4+4+4+ EM2+E+ E	
MMY (4.4.4.	
L MAD (4+4+ F.I + FMA+F	
- WWY (4+4-4-	
1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
- INV (49 010 F10 ICKK) - NVV (4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	
L MAU 14949 BKNCH19419	
	
	•
L MAD (4+1+ EC+61+	
(4+1+ 8	
L MMY (4+4+1+ ETA+F1+G1)	
ALL MMY (4+4+1+ AI+61+ EC)	
CH3.EC.B	
Set IIn D and X Matrices (Cont)	(Cont)

- 245 -1

•

08020000 00003090 000-323) 000002860 00002939 00002950 00002979 00002980 00002990 00003020 00003030 000003050 00r.03060 00003070 00003100 00003110 000 33120 00003130 00003143 00003150 0110000 00003180 000032:0 0.0043210 20003220 000003260 00,02570 00002890 00002900 000002910 00002920 00002930 00002940 00002960 00003000 00003010 00003031 0,0003032 00003160 00003190 00003250 00003240 0000327 # D(I)*(WFE(I) + PUI*WIH) + SIU
D(I)*(WFE(I) + PUI*(WFE(I) + PD*(WFE(I) + POI*
D(I)*(WFEC + GAN *(WFE(I) + WIH)) + UP*(WFE(I) + POI* + 5*25) * ナバー (1) + 15×*2/10) * (1) + 10+ × 215 + 10+ × 25×23 = {D{1}/2•*5] + 54/8• * 57**2) /∪CL = 51/2• *{ 542 * D(1) + 5P) = 54/8•*57 *{2•*2FGP = 54% 1 *(-S2 * GAM *S12 + GAM /8. *(6.*S12 - Z.*SFL(1) 2*2 - 3.*STH 2 **2) - WFED/4. *(5.*WTH - 3.*SFE(1))) - S11*UP/EK(1)/4.*S5*S7 = -S5*64点 *(3•-POI) - SI*EAF/2• * EF /KHO + SII * 2• D(I)*(PUI*SI2 + GAM2 + SI*S9 /2.) S11*2. GENERAL DERIVATIVILS ł 52 * 55 + 58 POI*FWF/ RHO * DP - (3. - PUI)*55*6AM 1 #{5•**FE(!) - 3•**[n]} + ELAN2/8•*DF*S1 *57**2 [S2 * GAM**2 * WFE(]] + 59/2- * 56] - S4 #(S2#6AM2*4FL(I)**2 + S6**2 *S9 /6.) [WTH] - S4*S9 * GAM *(S6/2 + S2*WFE([)) (WFE(I+1) - WFE(I-1)) /DEL2X
(EK(I+1) - EK(I-1)) /DEL2X
(ENT(I+1) - ENT(I-1)) /DEL2X = (EMT(1+1) - EMT(1-1)) /DEL2X D(1) /2. * ENF /RHO 54 * ENF /8. /RHO * 56 * 57 (D([+]) - D([-])) /DEL2X F(1.4) * SI * GAM #(S6*S7/8. + S2*S12) POI * BP. * GAN -*#TH#*2 - 512/8. * 57**2) = FLAM2 * WFF(I) (ENF /RHO) **2 54 * 55 /D(1) WIH * WFE(1) D(I) /DEL $= -F(1_{+}2)$ 544 M43 K = 1,44 = 1+4 53 + 8P GAN + D(I) • • ċ • 60 10 1000 Ħ, GA(2+2) = 45 0 H E(1.1) = F(1.1) = Ð 430 430 H • GA(2,1) F(1+21 GA(1.1) GA(1+4) F(4.2) F(4.4) GA (1 + 2) GA (1+3) Ħ F(2+4) . E(K+C) h F(1+3) I * GAM E(2+2) F(2+2) ŧ F(1+4) F(2+1) S10 = S11 = TTP . H ENTP GAM2 WFEP 512 å 88 50 S 8 400 BP 8 410 S3 SS 420 İ 1 430 U 1 i 1 -1

Set Up P and X Matrices (Cont)

, **.**

2445285 744523285 007533295 007533295 007533295 00753350 00733350 00733350 00003430 00003430 00003430 00003430 00003430 00003450) CURC 3460 2020 3480 0000 3480 0000 3520 0000 3520 0000 3550 0000 3550 0000 3550 0000 3550 0000 3550 0000 3550 0000 3550	00003570 00003594 00003640 00003640 00003640 00003660 00003660 00003660 00003700 00003700 00003700 00003700
<pre>FP + 3.* (5A% ~ WFE(1) + 54*55 /D(1) *(6A% + 57 *(6A%2 + 512)) - PHG K(1)*51 *(6A% * 52 *(Z.*S12)) + 59/2.**FE(1) P*S1 *(S2*6A%2**FE(1) W1H*(5. + 2.*PO1)) - W W1H*(5. + 2.*PO1)) - W</pre>	FEP + .9.*6AM2*(WIH - WF5(I 2.*S2*WIH + 57)) + 2.*6AM * 59) + ELAM2 512+WIH**2)+54*59*(52*(512 59*DP*ELAM2 *(3.+P0I)*6AM	<pre>1)) M*WFE(I)*EMT(I)] * DEL2A LAM2*S1*WIF*EMT(I)))*DEL L ELAM2*S1 *(GAM*EMIP L ELAM2*S1 *(GAM*EMIP X Matrices (Cort)</pre>
E(2,3) = 511 * 57 (DELWTH) + 511/EK(1)*DP * 57WTH) + 511/EK(1)*DP * 57Ga(2,3) = -55*2; *(WTH + POI**FF(1WFEP - 2.*GAM2*WFE(1) - 2.*52*59*W1HES(1)*DP * GAM × 57Ga(2,44) = -POI * ELAM2 * WTH * ENFF(3,1)*DP * GAM × 57Ga(2,44) = -POI * ELAM2 * WTH * ENFF(3,1) = -F(1,3)S13 = WTH + POI*WFE(1) - 2.*52*59*W1HF(3,2) = -POI * ELAM2 * WTH * ENFF(3,2) = -POI * ELAM2 * WTH * ENFZ2.* S6)F(3,2) = E(2,3)F(3,2) = S11 * (GAM * (WFE(1)*3)+ S11*DP/EK(1) * S7+ S11*DP/EK(1) * S13 + S1Ga(3,2) = -D(1)*ENF / RHO * S13 + S1Ga(3,2) = -D(1)*ENF / RHO * S13 + S1	(WFE(I) - 2.*WTH) - 59*WTH) + G + \$12*571 - 511*0P/EK(I) *(6A E(3*3) = 54 *(2**59 + 52*6AM2) F(3*3) = -54*(52*6AM *(2**512 + *DP*S1 *(52*6AM2 + 2**59) 6A(3*3) = -54*(52*6AM *(2**512 + *DP*S1 *(52*6AM2 + 2**59) 6A(3*3) = -54*(5AM2 + 2**51) E(3*4) = ELAM2 / DEL F(3*4) = ELAM2 * 6AM *(2**512 + F(4*1) = EK(1) * WFE(1)	GA(4+1) = EK(1) *(WFEP + POI *GAM*WFE(GA(4+2) = F.(1) * POI *ENF*WTH /RHO EL(4-3) = -EK(1) * POI * GAM F(4+3) = -EK(1) * POI * GAM GA(4+3) = -EK(1) * POI * GAM GA(4+4) = -1. G(4+4) = -1. G(4+4) = -1. G(4+4) = -1. G(4+4) = -1. G(4+4) = -1. G(4) = (-FT(1) - LWFT(1) + MTH) *ENT(1) - EMT(1) * (S12 - S9))) * DEL2X G(4) = (-FT(1) - LWFT(1) + MTH) *ENT(1) - EMT(1) * (S12 - S9))) * DEL2X G(4) = EMT(1) * DEL2X G(4) = EMT(1) * DEL2X G(4) = 2. * E(K*L) D(450 L = 1.4 D(450 L = 1.4 D(450 L = 1.4 E(K*L) = 2. * E(K*L) Set U P and
๛ํ๛งํํํํ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛		C 1

•

	•NE•LSP) GO	00003740
	= A0 /EU + A0 /HC	60003741
	1.1) = GA(1.1) - UK * 5	00003742
	2.2) = GA(2.2) - VK *	00003743
	3•3) = GA(3•3) = WK * 5	00003744
	- #1	00003745
	•3) = F(1•3) - 53	00003746
	1,1) =	00003747
		00603749
510	ND (1+4+ E+F	00003750
	<u> </u>	00003755
	DO 515 K. = 1 + 4	00263760
		00003765
		00003770
515	= DEL2X	00003775
	ND (4+4+	00003780
		00003784
;		00003785
	june .	00003786
520	L DOA (ASI• RSI• C	00003787
	(IRCT - 9) 820+1000	00003794
590	IRCT -10)	29750000
600	I .NE. N) GO TO 720	00070000
:		00004001
	DOB (ASN. BSN. CSN. C	00004002
	F(IBCB - 9) 770,1000,330	00004010
		00004119
670	VV (4, C, PI, IERR)	00004120
	CALL MMY (49494, B29C9EM4)	00004130
	CALL, MMY, . (4+++++ EM++B+B2),	00004140
	5U (4+4, B2+A2	00004150
	VV (4, B2, PI,	00004160
	r = 9) 680,6	00004162
675	4× (4,4,4,4 E	0000164
	5U (4+4+ A2+C2	00004166
ļ	.CALL MMY . (4:4:4:4:82:42:42(1+1+2))	00004168
	690	00004170
680	•FM4•A2)	00004175
	4Y (4+4+4+ A2+	00004180
690	≪1 (4+4+1+ EM4+G	00100100
	CALL MS(/ (4+1+ EM6+G2+G2)	00004200
	CALL MMY (4+4+1, B2+62+X(1+2))	- 00004210

-248 --

4TRICES	X ONA Y	0000	0000		UISCONTINUITY 0000 0000 0000 0000	00004550 00004528 00004528 00004528 00004528 00004528 00004558	OPEN	000004620 000046220 000046222 00004628 00004628 00004628	00004634 00004638 00004638 00004638 00004638 00004642
۸. ۲.	GENERAL SOLUTION FUR M4)				POINT JUST BEYOND UIS •I=2)•EM4)	• EM6)	BOTTOM BOUNDARY.	r :	
. I = , 2 100 <i>u</i>	(4*4*4* C*P(I*I*I*I-])*EM4 (4*4* B*EM4*FM4)	*	1 05 (N	(4*4*4* EM4*A*P(1*1*1)) (4*4*1* EM4*EMC*X(1*1)) 000	(4•4•4• DIS2•P(1•1•I=2) (4•4•4• C•DIS1•EM2) (4•4•4• C•EM4•A1)	(4+4+1, DIS2+X(1,1-2)+E (4+1, EM6+DIS4+EM6) (4+1, EM6+DIS3+EM6) (4+4+1, C+EM6+GI) (4+4+1, C+EM6+GI) (4+1, G+EM2, C) (4+1, G+EI, C)	1BCB 50	(4. 4. PI. IERR) (4.4.4. EMI • EM2•GA) (4.4.4. GA.A.EM2) (4.4.4. EMI • FM4•A) (4.4.4. EM2 • A.A) (4.4.4. EM2 • GA2•G4.E) (4.4.4.4. FM2•G4.E)	. 4 ≥ Ο
CALL DOI	CALL MMY CALL MSU			CALL MMY CALL MMY 60 TO 10	CALL MMY Call Mmy Call Mmy	CALL MMY CALL MMY CALL MSU CALL MSU CALL MMY CALL MMY CALL MAD CALL MAD COLL MAD	• • • • • • • • • • • • • • • • • • •	CALL INV CALL MMY CALL MMY CALL MMY CALL MMY CALL MMY CALL MMY CALL MMY CALL MMY	CALL MAY CALL MAY CALL MAY CALL MAY CALL MAY CALL MAY CALL MAY

- 249 -

Z .

00004648 000046595 005550500000000550500000055050000005555050		30004685		20000000000000000000000000000000000000	5240000 ·································	1240000				BOUNDARY . OPEN APEX 20004800	!	000048200				01640000	00004920	07670000	00004670		0/640000		00005000		T UP BUUNDARY CONVITIONS 00005030			i 0000503	00005037	FREE BOUNDARY 00005059		00005061
	(FM2) (/.44. EM2.5M2.4)		· EN2 C	(404040 12/01/11074/11)01241 (4044 841244144)	1 2 2	•	•1• G•EM6	(4*4*1* 7*X(1****)*******************************		TOP	IBCT		• 4 • 4. •	a • • •	(7°44°4°5),950() (7°44°4°5),950()	• † • EM	(4+4+4+ EM2+8+E)	(4+4+	•4•4• EN2•4•	4 •	•4•1• EM	ノ ピ ビ - 0	1. EC.E.G	1000	CF CU			# 0•	. 520	11.00 (TD0 (CD0 (7	t 1	• •
CALL 002	CALL DO3	CALL WMY	CALL MSU	CALL MAT	CALL INV	CALL MMY	CALL MAD	CALL MMY	102		8	0	2	CALL INV		CALL MAD	CALL MMY	CALL MAD	CALL MHY	CALL MAD	CALL MMY	CALL 330		0		655 855	5 (K)	EMILKIKI	EM3(K+K)		11.	EM1(2+2)

•

EMI(1.1) E 1 EM3(2.2) I 1 EM3(3.3) I 1 EM3(4.4) I 1 EM3(4.4) I 1 EM3(4.4) I 1 EM3(1.1) I 1 EM3(1.1) I 1 EM3(1.1) I 1 EM3(2.2) I 1 EM3(3.3) I 1 EM3(3.3) I 1 EM3(2.2) I I EM3(2.2)	OUNDARY
EM1(11.1) = 1 EM3(2.2) = 1 EM3(3.3) = 1 GO TO 870 EM1(4.4) = 1 EM3(3.1) = 1 EM3(3.1) = 1 EM3(3.2) = 1 EM3(3.2) = 1 EM3(3.3) = 1 EM3(3.3) = 1 EM3(3.3) = 1 EM3(3.3) = 1 EM3(3.3) = 1 EM3(3.3) = 1 EM3(4.4) = 1 EM3(iuunbary i NGEC) (CLUSED)
EM3(2+2) = 1 EM3(3+3) = 1 GO TO 870 EM1(4+4) = 1 EM3(1+1) = 1 EM3(2+2) = 1 EM3(2+2) = 1 EM3(3+3) = 1 EM3(3+3) = 1 EM3(1+1) = 1 EM3(3+3) = 1 EM3(3	iuunbary i NGEC) (CLUSED)
EM3(4.4) = 1. EM3(4.4) = 1. GO TO BTO EM1(4.4) = 1. EM3(1.1) = 1. EM3(2.2) = 1. EM3(3.3) = 1. EM3(3.3) = 1. EM3(3.3) = 1. EM3(3.3) = 1. EM3(3.3) = 1. EM3(3.3) = 1. EM3(3.3) = 1. EM3(3.3) = 1. EM3(3.3) = 1. EM3(3.4) = 1. EM3(3.4) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(4.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(4.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(3.5) = 1. EM3(3.5) =	INGED)
G0 T0 B70 FIXED OR CLAMPED G0 T0 B70 FIXED OR CLAMPED EM3(1,1) 1 FIXED OR CLAMPED EM3(1,1) 1 SI EM3(2,2) EM3(3,3) EM3(3,3) 1 SI SI EM3(3,3) EM3(1,1) 1 SI SI EM3(3,3) EM3(3,3) 1 SI SI SUPPORTED EM3(1,1) 1 SI SI SUPPORTED EM3(3,3) 1 SI SUPPORTED SUPPORTED EM3(1,4) 1 SI SUPPORTED SUPPORTED EM3(1,4) 1 SI SUPPORTED SUPPORTED EM3(1,4) 1 SUP SUPPORTED SUPPORTED EM3(1,4) 1 SUP SUPPORTED SUPPORTED EM3(1,4) 1 SUP SUP SUPPORTED EM3(4,4) 1 SUP SUP SUP G0 TO BT SUP COMPLETE	INGEL)
GU 10 670 EM1(4.4) = 1. EM3(1.1) = 1. EM3(2.2) = 1. EM3(2.2) = 1. EM3(2.2) = 1. EM3(3.3) =	INGEL)
Emil(4.4) = 1. FIXED OR CLAMPED Em3(1.1) = 1. Em3(2.2) = 1. Em3(3.3) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(3.3) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED Em3(1.1) = 1. SIIPLY SUPPORTED	INGED)
EM1(4+4) = 1 EM3(1+1) = 1 EM3(2+2) = 1 EM3(3+3) = 1 EM3(3+3) = 1 EM3(1+1) = 1 EM3(2+2) = 1 EM3(2+2) = 1 EM3(3+3) = 1 EM3(3+3) = 1 EM3(3+4) = 1 EM3(4+4) = 1 EM3(4+4) = 1 EM3(4+4) = 1 COMPLET	(CLUSED)
Em3(1.11 = 1. Em3(2.2) = 1. GO TO 870 = 1. Em3(1.1) = 1. Em3(2.2) = 1. Em3(2.2) = 1. Em3(2.2) = 1. Em3(2.2) = 1. Em3(3.3) = 1. GO TO 870 = COMPLET	(CLUSED)
EM3(3:3) = 1. EM3(3:3) = 1. GO TO 870 EM3(1:1) = 1. EM3(2:2) = 1. EM3(2:2) = 1. EM3(2:2) = 1. EM3(2:2) = 1. EM3(2:2) = 1. EM3(2:2) = 1. EM3(2:2) = 1. COMPLET	(CLUSED)
EM3(3:23) = 1. GO TO 870 = 1. EM3(1+1) = 1. EM3(2:2) = 1. EM3(2:2) = 1. EM3(2:2) = 1. EM3(2:2) = 1. EM3(2:2) = 1. COMPLET	(CLUSED)
60 10 610 EM3(1+1) = 1. EM3(2+2) = 1. EM3(2+2) = 1. EM3(2+2) = 1. EM3(2+2) = 1. EM3(2+2) = 1. COMPLET	(ÇLUSED)
EM3(1+1) = 1. EM3(2+2) = 1. EM3(3+3) = 1. GO TO 870 COMPLET	(CLUSED)
EM3(2+2) = 1. EM3(2+2) = 1. EM3(3+3) = 1. GO TO 870	(ÇLUSED)
EM3(2+2) = 14 EM3(3+3) = 14 EM3(4+4) = 1 GO TO 870	(ÇLUSED)
EM3(3+3) = 1. EM3(4+4) = 1. GO TO 870	(ÇLUSED)
EN3(4+4) = 1+ GO TO 870	(ÇLUSED)
GO TO 870	(Črosed)
	(ÇLUSED),
	0000514
(6.)	0000514
EM1(404) = 1.	0000214
<u>(113)(242) = 1 </u>	
	000214
	00005149
868 [F(I .NE. N) GO TO 870	00002120
	00005155
TO 890	
PRINT BOUNDARY	MATRICES
	0/150000
004 TE/T _ 11 704 _ 447 _ 704	
	0000520
900 IF(IBCT -NE- 10) GO TO 920	00005300
SKIP = 0	00005305
TOP BRANCH	POINT 00005309
* 0 .	00002310
L INV (4. C. PI.	0000532
MMY (404040 EM2	0000532
MMY (4+4+4+ E+A	0000532
MAD (414. EM2.	0000532
Set I'n P and Y Matrices (Cont)	Cont)

.

.- 251 -

		0000	00002	0000		00002	0000	0000					0000	0000	0000						00005389	0000	0000539	TOP DISCONTINUITY POINT, J(II) JOSC		000030	000030 2000030	60000	60000	0000	0000	
L MMY (4.4.) -E	CALL TAU (414) ALTERTAALT	L MAD 14-4- CI-E	L MMY (4+4+4+ E	L MAD 14+++ EJI+BETA+AI	4) AWW 1	MMY (454540	MMY (4+4+4+ BRNCH1+	MNY (4.4.4.4. BE	(4*** B*¥*B)	CALL MMY (494949 01 00 19 1	19413014053 47444 005 194134723 23444 005	·	MMY (4+4+1+ BETA+GI+EC	MSU (4+1+ 1	1	LL MSU (4+1+ EC+BRNCH3+E	CALL MAY (4+4+1+ BRNCH	LL MGC (491), CC96 (1 MMV 22.22) D12	K T 1 A C	8 7 7	903	A0(K+L) =	903_C9(K+1) = C1(K+1)		30	IFIDEL .NE. DP	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ון ג ג <	2 * 2 4 4 2 * 4 4	52 = 1. + ALFA	4 1 1	

AKAL) = E(KoL) + F(KoL)	0000348 0000348
.) = (F(K+L) + ALFA + GA(K+L) /2 A(K+L)) +	53 0000350
DIS1(K+L) = 0.	
K+L) =	00003354
"	0000350
(K) = 0.	0000362
- 1	0000364
S1(K+K)	0000370
GO TO 720	00009380
	0001C00
MMY (404040	00010100
MMY 44+4+1+ EM4+PS	10101000
MSU (4+4+ E	20101000
L MSU (4.1. E	00010103
Σ	00010104
L MMY (4+4+1+	00010108
- [14]	00010100
. MAD (4.1. E	60101000
격	01101000
L MAD 14+4. C	00010112
MMY (42424 .	ιιοιασο
INY (4+4+4+ CHI+	00010116
MSU (4.4.	06010118
. MMY (4.4.4.4 CHI2.HI	000101000
MMY (404040	0001012
MY (404040	00010124
MSU (4+4+	00010126
. MAD (4+4+	00010128
MMY (484.44 NMY	05101000
MSU (4+4+ YD+E	00010135
INV (4. C. PI. IF	00010134
- MMY (404040	0001013
MMY (404040 EN20F0 E	00010138
L MAD (4.4, E	00010140
MMY (404040 C2B0 F)	00010142
. MMY (4+4+4 EM2+F+	00010144
2 i	00010146
2	00010148
L MMY(4.4.4.1.9	00101000
L WHY (4.4.1. CHI2.	00010152
CALL M&D (4.1 DISA.PSIN.DISA)	0001015

1-253-

	MMY (414.1.	94101000
	CALL MAD (4919 UISSOUIS40EC) Cali Mad (4.1. Gireid, eid)	50
	MMY (4.4.1. Baff. 61)	PCTOTION -
	CALL MMY 14+4+2+ C+6+ 61)	
	CALL Mu. (4.4.1. EM2.61.6)	00010166
	CALL F (4+1+ 6+ELD+ 6)	0
: '	-, ·	00101170
	- '	00010172
	(++++++)	00010174
	MAD (4,4, F)	00010176
	MMY [424240 GA. 5 C2XD	コ
	MAD (4+4+ GA+XD+	18
	•,• ,	00010182
	MAD	18
		00010185
	DO 950 K # 1+4	06101000
	8	00010193
950	C(K+L) =	00010196
	G0_T0_720_	00010440
666		00010800
1000		00010810
ر	SAVE P AND X MATRICES ON TAPE 3	00010829
	<u> </u>	00010830
	((DISI(K+L)+ DIS2(K+L)+ A9(K+L)+ BI(K+L)+	00010831
	- 1	083
ũ	B2(K+L)+ C2(K+L)+ L=1+4)+	00010833
	10	00010834.
	101	00010840
	3	-00010841
•	010 L =	0 <i>00</i> 10842
1010	PO(K+L) = P(X+L+I)	00010843
2000	CONTINUE	00010847
	<u>WRITE (3)</u> S1	00010850
•.	(KTPR)	00010860
	ELAG	00010870
2005	[6+ 2006)	12801000
2006	FORMAT(/// JUX, J9HLEAVING PANDX, LNK5 J	0.0010872
2010	RETURN	00011000
		01011000
	•	
	Set Up P and X Matrices (Cont)	

ļ

- 254 -

SIBFT	SIBFTC PXDO C DO LOOP SUBROUTINE 6J-148 **	** LNK5	1 00100002 8 8
ບປ	SUBROUTINE TO HELP PANDX FIT COMPILATION TABLE SIZE. VARIABLES. STATEMENT NOS. AND IDENTS ARE COMPATIBLE WITH PANDX	R I ABLES •	00000010 000000110 00000011
	SUBROUTINE DOLP (EM2, EM4, EM6, AI, BI, CI, HI, I GI, FI)	HI. EJI.	00000020
	DIMENSION A(4,4), B(4,4), C(4,4), G(4), A2(4,4), B2(4,4) 1 C2(4,4), G2(4), EM1(4,4), EM3(4,4), EM5(4), EM1N(4,4), 2 EM3N(4,4), EMSN(4), EM2(4,4), EM4(4,4), EM6(4), A1(4,4) 3 B1(4,4), C1(4,4), H1(4,4), EJ1(4,4), G1(4), F1(4)	4) • 4) •	99 00000101 00000102 00000103
	309 EQUIVALENCE 5(SDA(2276).WF2).(SDA(2426).EM1).(SDA(2442). EM3).(SDA(2458).EM5).00000315 6(SDA(2462).EM1N).(SDA(2478).EM3N).(SDA(2442).EM5N).(SDA(2649).E2) 00000316	2458)•EM5) (2649)•E2)	906 313 90000315 00000316
	COMMON DA(35), NTPW, NTPR, KTPW, KTPR, SL2, ELAM2, S 1 KKE, SQ3, SQ4, SQ6, ENF, IFR, KLM COMMON SDA(3225), 20(604), A2, B2, C2, G2, A, B, C	S1, S2, C, G	349 0000350 0 00 351 0000360
0 338 338	DO 340 K = 1,4 GI(K) = G(K)	ATRICES	2374 00002369 2377 2374
			2346 2386 2386 2386 2386 2386
	CJINNEL = EMAINELY GO TO 710 ENTRY DOD(BRNCH1, BRNCH2, BRNCH3) DIMENSION BRNCH1(4,44), BRNCH2(4), BRNCH3(4) RANCH PO RATTOM BRANCH (4,44), BRNCH2(4), BRNCH3(4)		2400 2404 00002405 00002405
352	DO 352 K = 1.44 BRNCH2(K) = 0.6 BRNCH3(K) = 0.6 DO 352 L = 1.44 BRNCH1(K.L) = 0.6 DO 500 Submotion		2412 2412 2416 2416 2418 2418 2420

DO Loop Subroutine

U	60 T0 710	and and a second second second second second second second second second second second second second second se	2422 3780
	ENTRY DO4 (ASI, BS1, CSI, GSI) DIMENSION ASI(4,4), BS1(4,4), C	651(4)	0 003782
520	D0 522 K = 1.4	**PRESERVE A+ B+ C+ G MAIRICES	00003786
	651(K) = 6(K) D0 522 1 = 1.4	a service and the second second second second second second second second second second second second second s	3788
			3790
	BSI(K+L) =		3791
522	$CSI(K_{\bullet}L) = C(K_{\bullet}L)$		•
	0 710 149 LS19		3795
U			; 8
	ENIKI DUG ANNA BUNA CUNA GUNA Dimension Asniala Rukaana		0 003990
υ			100000000
	194		4002
	((K) = G(K)		4003
	لہ		4004
	ų	۱ ۱ ۱	4002 ·
	BSN(K,L) = B		4006
010	CONTRAL) = CIRAL) Tall TNV (4. Aca. Pt. TERRI		1004
	0 710		4004
U			4209
	•	• •	4210
ر	DO 700 K ± 1.4	**PKESEKVE A+ B+ C+ G MAIRICES	02240000
	(K) = G(K)		4240
			4250
	n		4260
002	82(K+L) = 8(K+L) /2///1/ - ////1		4270
710	RETURN		0624
•			4629
	ENTRY DO2		4630
J		BOLLON BOUNDARY + OPEN	00004639
	DO 785 F # 1+4		4646 4645
785	C(K+L) =		8494
U	6G 10 110		4650 4654
		DO Loon Subrantine (Cont).	• •

i

1

DO Loop Subroutine (Cont).

.

(ENTRY	Y D03 (EM2)		
U			BOTTOM BOUNDARY, CLOSED	0000
	8 J 00	605		4660
	6(K)	# 0.		4662
	8	B05 L = 1,4		4664
	AIKILI	H		4666
	CCK+F)	L) = -2. = EM2(K,L)		0 0 4668
	805 EM2(6		0 0 4670
	60 1	GO TO 710		4680
V				5139
	ENTRY	Y D04		5140
U			BOTTOM BNDRY. MATRICES 00005149	S 00005149
	8	869 7 # 1,4		5151
		H		5152
	8	869 L = 1,4		5153
	EM1(K•L)	#		5154
	869 EM3 K+L1	K+L\ = EM3N(K+L)		5155
U				5156
	ENTR	ENTRY DOG		. 5158
υ		a d	NT BOUNDARY MATRICES	00005159
	870 WRIT	870 WRITE (6, 880) ((EM1(K,L), L=1,4),K=1,4), ((EM3(K,L), L=1,4),	<pre>* ((EM3(K*L)* L=1*4)*</pre>	00002160
	1 K=	1 K=1.4). (EAS(K). K=1.4)		5161
	880 FORM	AT(///10X. 21HBOUNDARY MATRICES ***	//IOX,IIHEMI (OMEGA) /	00005170
	1 4(1	1 4(1P4E20+7/)//10X+12HEM3 (LAMRDA) / 4(4E20+7/)//JOX+ 7HEM5 (L)	20.7/)//30X, 7HEM5 (L)	/ 00005171
	2	4E20.7)		5172
	60	TO 710		5179
U				5999
				6000

.

DO Loop Subroutine (Cont)

				## LINK 6	01000000
	SUBROUTINE INTLD				12
U	DIMENSION FF1H(150), RHOX(150), WTHD(150), WFE(150), ENT(1 1 GAMA(150), D(150), FK(150), FMT(150), MA(150), F(150), T 2 ALF(150), XS1(150), V(150), FMT(150), T2(150), R(150), T 3 P0(4,41), P(4,44,150), V(4), X(4,150), Z(4), E0(4,4), G 4 D1S1(4,4), D1S2(4,4), D1S3(4), D1S4(4), B0(4,4), B0(4,4), C 5 M4(4,4), EM6(4), A7(4,4), P1S4(4), B0(4,4), B0(4,4), C 6 EM4(4,4), EN6(4), C1(4,4), F1(4), G1(4), ERCH1(4,4), BC(4,4), C 7 A1(4,4), ERCH4(4), ERCH5(4), C1(4,4), C2(4,4), C2(4), C(4), C(4), C	199 199 199 190 190 190 190 190	50). WFE(150). ENT(DNA(150). F1(150). DNA2(150). R(150). Z0(4). Z(4.150). . B074(4). B0(4.4). . B074(4). G2(4). F7(4).	ENT(150). 0). T(150). 0). T(150). 0). 150). 60(4)	199 50). 0000020 (150).00000201 0000203 60(4).00000203 60(4).00000204 5(4).00000206 6(4).00000206 6(4).00000206
U	FOLITVALENCE SSLADATIO (SSLADAT) (SN(4+4)+ (SN(4)+ ZIM1(4)+ FOLITVALENCE (SDAT)+ FX	19 (201471)+ AUN 444 ZNP1(4))_(SD4(2)_ (SFOM)	11 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ix dy	00000211 299 299
	K) (SDA(1), C K) (SDA(5), V FLAG) (SDA(13), E LDC) (SDA(13), E PFE) (SDA(176), PFE) (SDA(176), C) (SDA(1376), FFIOX) (SDA(1376), FFIOX) (SDA(2426), FMIN) (SDA(2428), FMIN) (SDA(2478), FMIN) (SDA(2478),	ECX) (SDA(L), GCML VK) (SDA(L), WK ECX) (SDA(L), WK EK) (SDA(26), ENT EX) (SDA(226), ENT PTH), (SDA(926), PN .GAMA) (SDA(1526), PN .GAMA) (SDA(1976), EM .EM1), (SDA(2442), EM	TI ::::::::::::::::::::::::::::::::::::	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1 +00000301 1 +00000304 1 +00000304 1 +00000314 1 +00000315 1 +000000315 1 +000000000315 1 +000000315 1 +0000000315 1 +0000000315 1 +000000315 1 +0000000315 1 +0000000315 1 +000000315 1 +000000315 1 +000000315 1 +000000315 1 +000000315 1 +000000315 1 +0000000315 1 +0000000315 1 +0000000315 1 +0000000315 1 +0000000315 1 +0000000315 1 +000000000000000000000000000000000000
U U	EQUIVALENCE (DA(1)) EKK 1(DA(4), EO).(DA(5), C 30 2(DA(8), SUM).(DA(9), ENFO 3(DA(25), THETA)).(DA(2)A0).(DA(6)A0).(DA(6)PIXI).(DA(10)ENFI	(DA(• HO • PTHI)• ENFOR	H0 1+0000340 THI)+00000340 ENFOR)+00000341 343
,	COMMON DA(35), NTPW, NTPR, KTPW, KTPR, SL2, ELAM KKE, SQ3, SQ4, <u>SQ6, ENF, IFR, KLM</u> COMMON SDA(3225), Z0,2, A2, BQ, C2, GQ DIMENSION USUM(150), VSUM(150), WSUM(150), EMFE(150), I EMFT(150), ENFE(150), ENTH(150), ENFT(150), SIGFE(2 SIGTH(5 ¹), SIGFT(150), GFE(150), OTH(150), SGFE2(3 SGTH2(150), SGFT2(150)	PR. KTPW. KTPR. SL2. <u>IFR. KLM</u> A2. B0. C2. G0 50) WSUM(150) EMFE(1 ITH(150) ENFT(150) S GFE(150) GTH(150) S	AI	• S1• S2• EMTH(150)• 150)• 150)•	00000350 00000355 00000360 00000360 00000361 00000361 363 379

ţ

7	0000389
	00000390
(6•2)	100000301
2 FORMATI/// JUX, 29HENTERED INTLD, LNK6)	00000392
	00000396
3 00 2000 KK # 1•KKE	00000000
	00000410
	000000480
	10400000
1	
READ DATA - P.X TAPE /LNK5	00000000000000000000000000000000000000
KTPR) (SDA([], I = 1,3098)	00000200
k = Ck	00000210
IBCT = BCIT	000000211
18C8 = 8C18	1200000
	0000021
S2 = 1 + POI	1200000
	0000001
<u>READ () (((P(K+L+M)+L=1+4)+ X(K+M)+ K=1+4)+ M=L0+N)+</u>	0000052
((DISI(K+L)+ DIS2(K+L)+ AI(K+L)+	00000521
BSI(K+L) CSI(K+L) ASN(K+L) BSN(K+L). CSN(K+L) A2	0000052
BQ(K+L)= C2(K+L).	70000523
	00000524
•	000000698
IF(IA.3 - 10) 305.	002/00/000
. MMY (404040	20700000
MMY (4+4++++++++++++++++++++++++++++++++++	00000204
. MAD (4+1+ BRCH3	00000106
MMY (4+4+1+ Bi+	00000208
MMY (4.4.1. B2 .	00000010
MSU (4.1. E	00000112
L MMY (4:4+1+ EM4+BRCH"	000001
CALL MAD (4+1+ 2(1+N) 2 (4 +2(1+N))	91100000
305	000000720
	00003998
	0 004000
	5EC.0.040000
100	
COMPUTE _ PER REGION + FROM N THRU J-1 STORED IN Z()	

- 259 -

- **...**

n

00004028 00004028 00004028 00004028 00004028 00004028 00004038 00004038 00004038 00004038 00004038 000004028 000004028 0000040028 0000040028 0000040028 0000040028 0000040028 0000040028 0000040028 0000040028 0000040028 0000000000	00004089 00004089 00004089 000040991 000040991 000040992 000040992 000040992 000040992 000040992 000040992	00004120 00004170 00004170 00004119 00004120 00004121 00004121	00004125 00004128 00004128 00004128 00004131 00004133 00004133 00004133 00004133 00004133 00004133
L+IZ+1),EM6) L+IZ)) LFS FOR Z(N) IN BRANCHING	FORM Z AT J+ DISCONTINUITY MOVE 1- AND 1+ 7 VALLIES	FOR FIRST	3.U 3.U (OPEN OR CLOSED TOP) Z AT 1 A FICTITIOUS PUINTS, 0 AND N+1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(4+1+ DIS3+DIS4+EM6) (4+4+1+ DIS2+20+DIS3) (4+1+ EM6+DIS3+EM6) (4+4+1+ DIS1+2+DIS3) (4+1+ EM6+DIS3+EM6)	K = 1.4 = Z(K+1) = EM6(K) - 9) 410.408.490 VF 00.1 GO TO 410 F 0.0	(4.*Z(4.2) - Z(4.3))/ (4.*Z(3.2) - Z(3.3))/ (4.*Z(3.2) - Z(3.3))/ (4.*I. GQ.EM6.62) (4.*I. GQ.EM6.62) (4.*I. G2.EM6.62) (4.*I. G2.EM6.62) (4.*I. C2.62.2(1.1) (4.*4.1. C2.62.2(1.1))
305 DC _ 310 12 _ N CALL MMY 310 CALL MWY 310 CALL MSU BRCH3(K) BRCH4(K) BRCH3(K) BRCH3(K) BRCH3(K) BRCH1(K) 350 BRCH1(K) 350 BRCH2(K) 350 BRCH2(K) 350 BRCH2(K) 350 BRCH2(K) 350 BRCH5(K) 350 BRCH	C C CALL MAD CALL MMY CALL MMY CALL MAD CALL MAD	DO 375 BOT4(K) = 375 Z(K+1) = C 400 IF(IBCT - 408 IF(ENF-NF 408 IF(ENF-NF 2(1-1) =	AMM MSU MMV MMV MMV MMV MMV MMV MMV

NMY (4.4.1. RS)	-211-11-EM41	
(4+1, GSI+	6.651 51.21 S1.21	00004176 00004176 00004178
MMY (404.1.	Z(1•N)•EM6)	00004179
(4•1• 6	1	0000418
MMY (4+4+1+	CSN,Z(1,N-1),EM6)	00004184
-1++++) AWW	• 420 • 200 · 200	00004188
		00002
	COMPUTE INTERNAL LOADS -	000053000
S3 = 1 POI **2		00000
# 51 /2°		50000
2 = SIGO	· ····································	50000
= ENF + THETA		00002390
٩.		00005400
VELEA = 20 = VEL 1x1 = 0		02460000
		00005450
IFLIBCT .NE. 91 GO TO	497	0002460
		00002470
(-Z(3e3) + Z(3	21 + 30	12450000
201 DO 408' 1 211.N		
FETH(1) = ENF /	I) * Z(3,1) + WTHD(I) * Z(2,I)	0000248
CB .NE. 9)	6	0000548
WP = {Z(3*N+2) - Z(3*N+1) FETH(N) = ENF + WP + WTHD	N=1) = 3。*(2(3*N=1)=2(3*N))) /DEL2X WTHD(N) * 7(2*N)	0000548
		00005489
	والمتعادية والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ	06720000
ITLL ONGO I) GU	FFTH(2) + 3. #(FFTH(2) = FFTH)) /0E12X	00005495
CT •EQ. 9)	507	00002464
	DISCONTINUITY III AND TOD BOUNDADY CDEN	86750000 ·····
$\frac{1}{100} = \frac{1}{100} = \frac{1}$	AND TOP BOUNDART	00005500
= (Z(2+2) -		00002201
(Z(3+2) - Z1M1	1) /DEL	00005502
	4)) /DEL2X	00002
	Deflections and Internal Loads (Cont.	ont)

-**1261**,-1

	00005508
) + Z(1,62) + 3. *(2(1,2) - Z(1,1))) /DEL2X	000005510
+ 2(2 + 2) + 3 + 12(2 + 2) - 2(2 + 1)) / 0 = 2(3 + 2) + 3 + 12(3 + 2) - 2(3 + 1)) / 0 = 2(2)	00005512
GO TO 549 CLOSED BOUNDARY EQUATIONS	00005515
•) 511•509•510	00005516
d)-	00005517
	0000000010
• = D(I) *(S2 *(UP + WFE(I)*Z(3,I)) + ENF*POI*VP) - ENT(I)	00005521
2 ENF **2	00005522
) = 2. * ENFE(1) /S6	
	00005524
) ENF * 2(4,1) /56	00005525
) . = 2. * 2(4.1) /56	00005526
10 248	72440000
	51960000 51960000
	00005690
= UP	002002700
549*545*549	00006710
NE. N) GO TO 540	000005720
[FFIH(R-2) - FEIH(N-1) - 3.*(FEIH(N-1)-FEIH(N))) /DFL2X	00005722
	121 CM000
I=N DISCOMTINUITY (JI) AND BOTTOM BOUNDARY, OPEN 0	00005729
(ZNP1(1) - Z(1,N-1)) /DFL2X	00005730
(ZNP)(Z) = Z(Z+N-1)) /UELZX	16/60000
ar = (CMFI(5) - (154N-L)) /UFL2A EM6441 = (ZNP1441 - 7(4+N-1)) /DFL2X	00005733
(RHOX(N-2)-RHOX(N-1) - 3.*(RHOX(N-1)-RHOX(N))) /DEL2X	00005734
	000005735
	10005857
BOTTOM RAUNDARY. CLOSED	00005858
[•N+2)+2(]•N+]) - 3•*(2(]•N−])-2(]+))) /0EL2X	00005860
2+N+21-2(2+N+1) + 3+*(2(2+N+1)+2(2+N1)) /DFL2X	00005861
Z(3+N+2) - Z(3+N-1) - 3+(7(3+N-1)-Z(3+N))) /DELZX	00005862
C(d) = {7[d+3/-2] = 7[d+3/-1] = 3*#{7[d+3/-1]=2[d+3/]])/DEF7X	

Deflections and Internal Loads (Cont)

WP = (2(3,11) - 2(3,11) - 2(3,1-1)) / DEL2X RETHP = (RETH(1+1) - REQX(1-1)) / DEL2X RP = (2(2,1+1)) - 2(1,1) - DEL2X GENERAL EQUATIONS (0 (4) = (2(4,1+1)) - 2(1,1)) / DEL2X GENERAL EQUATIONS (0 (70 515 55 = 511±2(2,1) + 6AM(1) + 2(1,1) + WTHD(1)*2(3,1) 55 = 511±2(2,1) + 6AM(1) + 2(1,1) + WTHD(1)*2(3,1) 55 = 511±2(2,3) + 6AM(1) + 2(1,1) + WTHD(1)*2(3,1) 55 = 511±2(2,3) + 6AM(1) + 2(1,1) + WTHD(1)*2(3,1) 55 = 511±2(2,3) + 6AM(1) + 2(1,1) + VP + 6AM(1)*2(3,1) 56 = 1(1) * 4(1) + (511±2(1,1)) + VP + 6AM(1)*2(2,1))) 57 = 512 + 511 + 511±2(1,1) + VP + 6AM(1)*2(2,1))) 58 = 512 + 511+2(1,1) + VP + 6AM(1)*2(2,1))) 59 = 511 + 2(1) + 3(1) - 511+2(1,1) + VP + 6AM(1)*2(2,1))) 515 = DNA(1) + 4(1) + 7(1) / 51 515 = 58 + 515 + 6M(1) / 51 515 = 50 + 511 + 7(1) / 51 515 = 512 + 51(1) / 51 516 = 513 + 52(1) / 51 517 = 52(1) + 72(1) / 51 518 = 52(1) + 72(1) / 51 519 = 58 + 515 + 6M(1) / FK(1) 510 = 58 + 515 + 6M(1) / FK(1) 510 = 58 + 515 + 6M(1) / FK(1) 510 = 58 + 515 + 6M(1) / FK(1) 510 = 58 + 515 + 6M(1) / FK(1) 510 = 58 + 512 + 5(1) / 51 510 = 58 + 512 + 5(1) / 51 510 = 58 + 513 + 5(1) / 51 510 = 58 + 512 + 5(1) / 51 510 = 58 + 513 + 5(1) / 51 + 5(1) / 5	WP = (2(3,1+1) - 2(3,1-1)) / DEL2X FETHP = (FETH(1+1) - 2(3,1-1)) / DEL2X ROP = (RHOX(1+1) - RHOX(1-1)) / DEL2X VP = (2(2,1+1) - 2(2,1-1)) / DEL2X UP = (2(1,1+1) - 2(1,1-1)) / DEL2X GO TO 515 GO TO 515 FEFE = - WP + WFE(1) * 2(1,1) - DEL2X S11 = ENF / RHOX(1) S5 = S11*2(2,1) + GAMA(1) * 2(1,1) + WTHD(1)*2(3,1) S6 = UP + WFE(1)*2(3,1) S6 = UP + WFE(1)*2(3,1) S6 = UP + WFE(1)*2(3,1) S7 = UP + WFE(1)*2(3,1)	00000693455555 00006934555555555555555555555555555555555555
ROP = (RHOK(1+1) - RHOK(1-11)) /DEL2X UP = (2(2+1+1) - 2(3+1-1)) /DEL2X UP = (2(1+1) - 2(3+1-1)) /DEL2X GO TO 515 GO TO 515 GO TO 515 GENERAL EQUATIONS FEFE = - WP + WFE(1) * 2(1+1)) /DEL2X GO TO 515 GENERAL EQUATIONS S511 * EC(1) + GAM(1)*2(1)) + WTHD(1)*2(3+1) S5 = S113*(5:1) + GAM(1)*2(1) + WTHD(1)*2(3+1) S6 = UP + WEE(1) * 4 GAM(1)*2(1) + WTHD(1)*2(3+1) S6 = UP + WEE(1) * 4 GAM(1)*2(1) + WTHD(1)*2(3+1) S6 = UP + WEE(1) * 4 GAM(1)*2(1) + WTHD(1)*2(3+1) S6 = UP + WEE(1) * 4 GAM(1)*2(1) + WTHD(1)*2(2+1) ENFT(1) = D(1) *(55 + POI*55) - ENT(1) ENFT(1) = D(1) *(55 + POI*55) - ENT(1) ENFT(1) = D(1) *(55 + POI*55) - ENT(1) ENFT(1) = D(1) *(51) + (51) + VP + GAM(1))*2(2+1) ENFT(1) = D(1) *(51) + (51) + (71) + VP + GAM(1))*2(2+1) ENTH(1) = D(1) *(51) + (51) + (71) + VP + GAM(1))*2(2+1) S7 = S15 * S3 S7 = S15 * ENT(1) / AO S10 = S8 * S15 * EMT(1) / EN(1) S10 = S8 * S15 * EMT(1) / EN(1) S10 = S8 * S15 * EMT(1) / EN(1) S10 = S10 *	ROP = (RHOX(I+1) - RHOX(I-1)) / DEL2X VP = (Z(2+I+1) - Z(2+I-1)) / DEL2X UP = (Z(1+I+1) - Z(1+I-1)) / DEL2X EM6(4) = (Z(4+1+1) - Z(4+I-1)) / DEL2X GO TO 515 GO TO 510 SII = ENF /RHOX(I) S5 = S11*Z(2+1) + GAMA(I)*Z(1+I) + WTHD(I)*Z(3+I) S6 = UP + WFE(1)*Z(3+I) S6 = UP + WFE(1)*Z(3+I) S6 = UP + WFE(1)*Z(3+I) S6 = D(1) *(S6 + PO1*S5) - ENT(I)	
UP = (Z(1,1,1) - Z(1,1)) /DELZX EM6(4) = (Z(4,1+1) - Z(4,1-1)) /DELZX GO TO 515 EFEE = -WP + WFE(1) * Z(1,1) - WTHD(1)*Z(3,1) 51 = ENF ZRHOX(1) 51 = ENF ZRHOX(1) 51 = ENF ZRHOX(1) + GAMA(1) * FEFE EKTH = S11 * (54(1)*S(3) - ENT(1) 56 = UP + WFE(1)*S(3) + GAMA(1) * FEFE EKTH = S11 * (54(1)*S(3) - ENT(1) ENTH(1) = D0127(4,1) + 40(1)*S(2,1))) ENTH(1) = D0127(4,1) + (S11*Z(1,1) + VP + GAMA(1)*Z(2,1))) ENTH(1) = D(1)*(55 + PO1*S(3) - ENT(1) ENTH(1) = D(1)*(54 + (-S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = D(1)*(4,4) + (S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = WFE(1) * (S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = WFE(1) * (S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = WFE(1) * (S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = WFE(1) * (S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = WFE(1) * (S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = WFE(1) * (S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = WFE(1) * (S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = WFE(1) * (S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = WFE(1) * (S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = WFE(1) * (S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = WFE(1) * (S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = WFE(1) * (S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = WFE(1) * (S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = WFE(1) * (S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = WFE(1) * (S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = WFE(1) * (S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = WFE(1) * (S11*Z(1,1)) + VP + GAMA(1)*Z(2,1))) ENTH(1) = WFE(1) * (S11*Z(1,1)) + (VP + GAMA(1)) * (S1 * SSES S15 = S15 * ENT(1) / S1 S10 = S15 * ENT(1) / FK(1) + ENT(1) / S1 S13 = Z* S13 = Z* S14 = Z* S15 = S15 * ENT(1) / FK(1) + ENT(1) / S1 S15 = S15 * ENT(1) / FK(1) + ENT(1) / S1 S13 = Z* S15 = S15 * ENT(1) / FK(1) + ENT(1) / S1 S15 = S15 * ENT(1) / FK(1) + ENT(1) / S1 S13 = Z* S14 = Z* S15 = S15 * ENT(1) / FK(1) + ENT(1) / S1 S15 = S15 * ENT(1) / FK(1) + ENT(1) / S1 S15 = S15 * ENT(1) / FK(1) + ENT(1) / S1	UP = (Z(1,1+1) - Z(1,1-1)) /DELZX EM6(4) = (Z(4,1+1) - Z(4,1-1)) /DELZX GO TO 515 5 FEFE = -WP + WFE(1) * Z(1,1) / DFLZX 511 = ENF /RHOX(1) 55 = S11*Z(2,1) + GAMA(1)*Z(1,1) + WTHD(1)*Z(3,1) 56 = UP + WFE(1)*Z(3,1) 56 = UP + WFE(1)*Z(3,1) + GAMA(1) * FEFE EXTH = S11 * FETH(1) + GAMA(1) * FEFE ENFE(1) = D(1) *(56 + PO1*55) - ENT(1) ENFE(1) = D(1) *(56 + PO1*55) - ENT(1)	000069300 00069300 0006910 0006910 00069910 00069920 00006930 00006930 00006930 00006930 00006930 00006930 00006930 00006930 0000000000
<pre>EM6(4) = (2(4+1+1) - Z(4+1-1)) /DEL2X GG TO 515 GENERAL EQUATIONS FEFE = - WP + WFE(1) * Z(1+1) - GENERAL EQUATIONS 531 = ENF 7HOX(1) 55 = \$112(2:0) + GAM(1)*Z(2:1)) + WTHD(1)*Z(3:1) 56 = UP + WFE(1)*Z(3:1) 56 = UP + WFE(1)*Z(3:1) + GAM(1)*Z(3:1) 56 = UP + WFE(1)*Z(3:1) + GAM(1)*Z(1:1) 56 = UP + WFE(1)*Z(3:1) + GAM(1)*Z(1:1) + S 56 = UP + WFE(1)*Z(3:1) + GAM(1)*Z(1:1) + S 56 = UP + WFE(1)*Z(3:1) + VP + GAMA(1)*Z(2:1)) + S 56 = UP + WFE(1)*Z(3:1) + VP + GAMA(1)*Z(2:1)) + S 57 = S13 + S 57 = S15 + S 58 = E1(1) * GS(1:+1) / S 51 = S15 + S 51 = S15 + EMT(1) / S 51 = S15 + S 51 = S 51</pre>	<pre>EM6(4) = (2(4.1+1) - 2(4.1-1)) /DFL2X GO TO 515 GO TO 515 S11 = ENP + WFE(1) * 2(1.1) GENERAL EQUATIONS S11 = ENF /RHOX(1) S5 = S11*2(2.1) + GAMA(1)*2(1.1) + WTHD(1)*2(3.1) S6 = UP + WFE(1)*2(3.1) S7 = UP + WFE(1)*2(3</pre>	00069900 0006990 0006990 0006990 0006990 0006990 0006990 0006950 0006950 0006950 0006950 0006950 0006950 0006950 0006950
General countrols FFEE = -wP + WFE(1) * Z(1+1) S5 = S11#Z(2+1) + GAM(1)*Z(1+1) + WTHD(1)*Z(3+1) S6 = UP + WFE(1) + GAM(1)*Z(1+1) + WTHD(1)*Z(3+1) S6 = UP + WFE(1) + GAM(1)*Z(1+1) + WTHD(1)*Z(3+1) EKTH = S11 * FETH(1) + GAM(1) * S1*EMIL(1) EKTH = S11 * FETH(1) + GAM(1) * S1*EMIL(1) ENFT(1) = D0(1; (+55 + P0(+55) - ENT(1)) ENTT(1) = D0(1; (+55 + P0(+55) - ENT(1))) ENTT(1) = D0(1; (+1) * (S11+Z(1+1)) + VP + GAM(1))*Z(2+1)))) ENTT(1) = EX(1) * (S11+Z(1+1)) + VP + GAM(1))*Z(2+1)))) ENTT(1) = EX(1) * (S11+Z(1+1)) + VP + GAM(1))*Z(2+1))))) ENTT(1) = EX(1) * (S11+Z(1+1)) + VP + GAM(1))*Z(2+1))))) ENTT(1) = EX(1) * (S11+Z(1+1)) + VP + GAM(1))*Z(2+1))))))))))))))))))))))))))))))))))))	5 FEFE = WP WFE(I) * Z(1,1] GENERAL EQUATIONS 511 = ENF /RHOX(I) GENERAL EQUATIONS 511 = ENF /RHOX(I) GENERAL EQUATIONS 511 = ENF /RHOX(I) GENERAL EQUATIONS 55 = S11*Z(2,1) + GAMA(I)*Z(1,1) + WTHD(I)*Z(3,1) 56 = UP + WFE(I)*Z(3,1) 6KTH = S11*FE(I)*Z(3,1) 6KTH = S11*FE(I)*Z(5,1) + GAMA(I) * FEFE	000069300000000000000000000000000000000
FEFE = - WP + WFE([] * Z(1+1]) 511 = ENF /RHOX(1) 56 = UP + WFE(1)*Z(3+1) 56 = UP + WFE(1)*Z(3+1) 56 = UP + WFE(1)*Z(3+1) 56 = UP + WFE(1)*Z(3+1) 56 = UP + WFE(1)*Z(3+1) + GAMA(1) *Z(3+1) 511 = D(1) *(56 + PO1*55) - ENT(1) ENTH(1) = D(1) *(56 + PO1*55) - ENT(1) ENTH(1) = D(1) *(51 + Z(1)) + 0 + GAMA(1)*Z(2+1)) 511 = D(1) *(54 + (VP - GAMA(1)*Z(2+1)) + 0 + GAMA(1)*Z(2+1)) 512 = DNA(1) ZAO 513 = S15 + S3 513 = S15 + S3 514 = S15 + S3 515 = S15 + S3 516 = S8 + S15 + ENT(1) /S1 517 = S15 + S3 518 = S15 + S3 519 = S8 + S15 + EMT(1) /S1 510 = S8 + S15 + EMT(1) /S1 + EMT(1) /S1 510 = S10 + S10 + S10 + S1	<pre>5 FEFE = - wP + WFE(I) * Z(1•[) 511 = ENF /RHOX(I) 55 = S11*Z(2•I) + GAMA(I)*Z(1•I) + WTHD(I)*Z(3•I) 56 = UP + WFE(I)*Z(3•I) + GAMA(I) * FEFE EKTH = S11 * FETH(I) + GAMA(I) * FEFE ENFE(I)= D(I) *(56 + POI*S5) - ENT(I)</pre>	0006910 0006930 0006930 0006930 0006930 0006950 0006950 0006970
<pre>S11 = ENF /RHOX(1) S5 = S11±2(2:1) + GAM(1)*2(1:1) + WTHD(1)*2(3:1) S6 = UP + WEF(1)*2(3:1) S6 = UP + WEF(1)*2(3:1) EKTH = S11 * FETH(1) + GAM(1) * FEFE EKTH = S11 * EK(1)*5(3 + PO(1)) ENTH(1) = DO(1) * (56 + PO(1)*5(3) - S11*2(1)) ENTH(1) = DO(1) * (56 + PO(1)*5(3) - S11*2(1)) ENTH(1) = DO(1) * (56 + PO(1)*2(2:1) - S11*2(1)) ENTT(1) = EK(1) * 4(-S11*EFE + FETHP - GAM(1))*2(2:1))) ENTT(1) = EK(1) * 4(-S11*EFE + FETHP - GAM(1))*2(2:1))) ENTT(1) = EK(1) * 4(-S11*2(1,1) + VP + GAM(1))*2(2:1)))) ENTT(1) = EK(1) * 4(-S11*2(1,1) + VP + GAM(1))*2(2:1)))) ENTT(1) = EK(1) * 4(-S11*EFE + FETHP - GAM(1))*2(2:1)))) ENTT(1) = EK(1) * 4(-S11*2(1,1) + VP + GAM(1))*2(2:1)))))))))))))))))))))))))))))))))))</pre>	<pre>ENF /RHOX(I) Sll*Z(2•I) + GAMA(I)*Z(1•I) + WTHD(I)*Z(3•I) UP + WFE(I)*Z(3•I) UP + WFE(I)*Z(3•I) = Sll * FETH(I) + GAMA(I) * FEFE = Sll * (S6 + POI*S5) - ENT(I) </pre>	0106920 0006930 0006930 0006950 0006950 0006950 0006950 0006980
<pre>56 = UP + WE(I) + GAM(I) + FEFE EKTH = S11 * FETH(1) + GAM(I) * FEFE ENTH(I)= D0(I) *(56 + POI*55) - ENT(I) ENTH(I)= D(I) *(56 + POI*55) - ENT(I) ENTH(I)= D(I) *(56 + POI*56) - ENT(I) ENTH(I)= D(I) *(55 + FETHP - GAM(I) *2(2,1))) ENT(I)= EK(I) *54 *(VP - GAM(I) *2(2,1) - S11*2(1,1) + VP + GAM(I)) *2(2,1))) ENT(I)= EK(I) *54 *(VP - GAM(I) *2(2,1) - S11*2(1,1) + VP + GAM(I)) *2(2,1))) ENT(I)= EK(I) *54 *(VP - GAM(I) *2(2,1) - VP + GAM(I)) *2(2,1))) ENT(I)= EK(I) *54 *(VP - GAM(I) *2(2,1) - S11*2(1,1) + VP + GAM(I)) *2(2,1))) ENT(I)= EK(I) * ALF(I) + T(I) /51 S17 = S15 * S3 S37 = S15 * S3 S37 = S15 * S15 * ENT(I) /EK(I) S1 S10 = S8 * S15 * ENT(I) /EK(I) S1 S10 = S15 * S3 S37 = S15 * S3 S37 = S15 * S3 S38 = S15 * ENT(I) /FK(I) S1 S10 = S8 * S15 * ENT(I) /FK(I) S1 S10 = S1</pre>	ULT	0006950 0006950 0006950 0006950 0006950 0006950
EKTH = S11 * FETH(1) + GAMA(1) * FEFE ENFE(1)= D(1) *(56 + PO1*55) - ENT(1) ENTH(1)= D(1) *(55 + PO1*56) - ENT(1) ENTT(1)= D(1) *(51 + EKL1) * 0(1) *2(2.1)) ENTT(1)= EK(1) * (511*2(1)) + VP + GAMA(1) *2(2.1)) ENTT(1)= EK(1) * (511*2(1)) + VP + GAMA(1) *2(2.1)) S15 = DNA(1) - WFE(1) * (511*2(1)) + VP + GAMA(1) *2(2.1)) S15 = S15 * S3 S1 = S15 * S1 S1 = S15 * S1 S1 = S12 * ENT(1) / FK(1) G0 T0 550 S1 = S12 * E2(1) S1 = S12 * S3 S1 = S12 * E2(1) S1 = S12 * E2(1) S1 = S12 * E2(1) S1 = S12 * S3 S1 = S12 * E2(1) S1 = S12	= S11 * FETH(1) + GAMA(1) * FEFE [)= D(1) *(56 + POI*S5) - ENT(1) 	0006950 0006950 0006970 0006970
ENTH(I)= D(I) *(56 + POI*55) - ENT(I) ENTH(I)= D(I) *(56 + POI*55) - ENT(I) ENTH(I)= D(I)*54 +(VP - GAM(I)*EEHE - 511*2(1,1)) ENT(I)= D(I)*54 +(VP - GAM(I)*EEHE - 511*2(1,1)) ENT(I)= D(I)*54 +(VP - GAM(I))*E(1,1) + VP + GAM(I)*E(2,1))) ENT(I)= EK(I)*54 +(VP - GAM(I))*2(2,1))) ENT(I)= EK(I) * (1) / 51 ST = S15 * S3 S9 = E1(I) * ALF(I) * T(I) / 51 S1 = S15 * S3 S9 = E1(I) * ALF(I) / 1/51 S10 = S8 * S15 * EMT(I) / EK(I) S10 = S8 * S15 * EMT(I) / EK(I) S10 = S8 * S15 * EMT(I) / EK(I) S10 = S8 * S15 * EMT(I) / FK(I) S10 = S8 * S15 * EMT(I) / FK(I) / FK(I) S10 = S8 * S15 * EMT(I) / FK(I)	[)= D(I) *(S6 + POI*S5) + ENT(I)	0006980 0006970 0006980
EMTH(I)= PO1*7(4.1), + EK(I)*S3*EKTH - S1*EMI(J) ENTH(I)= D(1)*(55 + PO1*56) - ENT(I) ENTT(I)= D(1)*S4 *(VP - GAMA(1)*Z(2,1)) + S1*Z(1,1) + S EMTT(I)= EK(1)*S4 *(-S11*EFE + FETHP - GAMA(1)*Z(2,1))) + S EMTT(I)= EK(1)*S4 *(-S11*EFE + FETHP - GAMA(1)*Z(2,1))) + S EMTT(I)= EK(1)*S4 *(-S11*E(1,1) + VP + GAMA(1)*Z(2,1))) + S EMTT(I)= EK(1)*S4 *(-S11*E(1,1) + VP + GAMA(1)*Z(2,1))) + S S15 = DNA(I) / AO S15 = DNA(I) / AO S16 = S15 * S15 * EMT(I) / S1 S10 = S12 * F1(1) S10 = S1 * S15 * EMT(I) / EK(1) S10 = S15 * E2(1) / S1 S10 = S15 * S15 * EMT(I) / FE(I) / S1 S10 = S15 * S15 * EMT(I) / FE(I) / S1 S10 = S15 * S15 * EMT(I) / FE(I) / S1 S10 = S15 * S15 * EMT(I) / FE(I) / S1 S10 = S15 * S15 * EMT(I) / FE(I) / S1 S10 = S15 * S15 * EMT(I) / FE(I) / S1 S10 = S15 * S15 * EMT(I) / FE(I)		0006980
ENFT(I)= D(I)*54 *(VP - GAMA(I)*2(1,1) + VP + GAMA(I)*FETH(I) + 5 * ENFT(I)= E(I)*54 *(VP - GAMA(I)*2(2,1))) + 5 * EMPT(I)= E(I) + (S11*2(1,1) + VP + GAMA(I)*2(2,1))) + 5 * S15 = DNA(I) / A0 S15 = DNA(I) / A0 S15 = S15 * S15 * EMT(I) / S1 S1 = S15 * S15 * EMT(I) / S1 S1 = S15 * S15 * EMT(I) / S1 S1 = S15 * S15 * EMT(I) / S1 S1 = S15 * S15 * EMT(I) / FK(I) S1 = S15 * S15 * EMT(I) / FK(I) S1 = S12 * S15 * EMT(I) / FK(I) S1 = S12 * S15 * EMT(I) / FK(I) S1 = S12 * S15 * S15 * EMT(I) / FK(I) S1 = S12 * S15 * EMT(I) / FK(I) S1 = S12 * S15 * S15 * EMT(I) / FK(I) S1 = S12 * S15 * S15 * EMT(I) / FK(I) S1 = S12 * S15 * S15 * EMT(I) / FK(I) S1 = S12 * S15 * S15 * EMT(I) / FK(I) S1 = S12 * S15 * S15 * EMT(I) / FK(I) S1 = S12 * S15 * S15 * EMT(I) / FK(I) S1 = S12 * S15 * EMT(I) / FK(I) S1 = S12 * S15 * EMT(I) / FK(I) S1 = S12 * S15 * EMT(I) / FK(I) S1 = S12 * S15 * EMT(I) / FK(I) / FK(I) S1 = S12 * S15 * EMT(I) / FK(I)		00000000
<pre>EMFT(I)= EK(I)*S4 *(-S11*FEFE + FETHP - GAMA(I)*FETH(I) + •5 * 1 (WTHD(I) - WFE(I)) * (S11*Z(1•I) + VP + GAMA(I)*Z(2•I))) S15 = DNA(I) / A0 S7 = S15 * S3 S9 = E1(I) * ALF(I) * T(I) / S1 S10 = S8 * S15 * EMT(I) / EK(I) G0 T0 550 S15 = DNAZ(I) / A0 S15 = S15 * S3 S9 = E2(I) * T2(I) / S1 S10 = S8 * S15 * EMT(I) / FK(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * EMT(I) / FMT(I) S10 = S8 * S15 * FMT(I) / FMT(I) S10 =</pre>	[]= D([]*54 ±(VP = 6AMA([]*2(2*]) = S]]*2(]*])]	0006990
<pre>1 (WTHD(I) - WFE(I)) * (S11*Z(1.1) + VP + GAMA(I)*Z(2.1))) 35 = DNA(I) / A0 57 = S15 * S3 59 = E1(I) * ALF(I) * T(I) / S1 50 = S8 * S15 * EMT(I) / EK(I) 510 = S8 * S15 * EMT(I) / EK(I) 510 = S8 * S15 * EMT(I) / EK(I) 51 = DNAZ(I) / A0 57 = S15 * S3 59 = EZ(I) * T2(I) / S1 51 = DNAZ(I) / A0 57 = S15 * S3 59 = EZ(I) * T2(I) / S1 51 = S12 * EZ(I) 510 = S8 * S15 * EMT(I) / FK(I) 511 * FK(I) 510 = S8 * S15 * EMT(I) / FK(I) 510 = S8 * S15 * EMT(I) / FK(I) 510 = S8 * S15 * EMT(I) / FK(I) 510 = S8 * S15 * FK(I) / FK(I) 510 = S8 * S15 * FK(I) / FK(I) 510 = S8 * S15 * FK(I) / FK(I) 510 = S8 * S15 * FK(I) / FK(I) 510 = S8 * S15 * FK(I) / FK(I) 510 = S8 * S15 * FK(I) / FK(I) 510 = S8 * S15 * FK(I) / FK(I) 510 = S8 * S15 * FK(I) / FK(I) 510 = S8 * FK(I) / FK(I) 510 = S8 * FK(I) / FK(I) 510 = S8 * FK(I) / FK(I) 510 = S8 * FK(I</pre>	[] = EK(1)*S4 *(-S11*FEFE + FETHP - GAMA(1)*FETH(1) + •5 *	0007000
\$15 = DNA(1) < A0	(WIHD(I) - WFE(I)) + (SI1+Z(1+I) + VP + GAMA(I)+Z(2+I)))	0001010
S7 = S15 * S3 S9 = E1(1) * ALF(1) * T(1) / S1 S8 = S12 * F1(1) S10 = S8 * S15 * EMT(1) / EK(1) G0 TO 550 S15 = DNAZ(1) / AO S7 = S15 * S15 * EMT(1) / EK(1) G0 TO 550 S15 = DNAZ(1) / AO S7 = S15 * S3 S7 = S15 * S3 S9 = E2(1) * T2(1) / S1 S10 = S8 * S15 * EMT(1) / FK(1) S10 = S8 * S15 * EMT(1) / FK(1) S10 = S8 * S15 * EMT(1) / FK(1) S10 = S8 * S15 * EMT(1) / FK(1) S10 = S8 * S15 * EMT(1) / FK(1) S10 = S8 * S15 * EMT(1) / FK(1) S10 = S8 * S15 * EMT(1) / FK(1) S10 = S8 * S15 * EMT(1) / FK(1) S13 = 2. G0 TO 572 S13 = 2. G0 TO 572 S13 = S15 / FK(1) * IZ(4*I) + EMI(I) / I	215 = DNA(1) /AO	0007016
<pre>59 = E1(1) * ALF(1) * T(1) /51 58 = 512 * F1(1) 60 T0 550 515 = DNA2(1) /A0 57 = 515 * 53 59 = E2(1) * T2(1) /51 58 = 512 * E2(1) 510 = 58 * 515 * EMT(1) /FK(1) 510 = 58 * 515 * EMT(1) /FK(1) 1F(1 - 1) 565+551+565 1F(1BCT - 9) 552+553+559 1F(1BCT - 9) 552+553+559 513 = 2* 60 T0 572 56 = 515 /EK(1) *(2(4+1) + EMT(1))</pre>	S7 = S15 ± S3	0007018
SIO = 515 * EMT(1) / EK(1) GO TO 550 SI5 = DNAZ(1) / AO ST = SI5 * S3 S7 = S15 * S3 S9 = E2(1) * T2(1) / S1 S10 = S8 * S15 * EMT(1) / EK(1) S10 = S8 * S15 * EMT(1) / EK(1) IF(1 - 1) 565+551+565 IF(1 - 1) 565+551+565 IF(1 - 1) 565+551+565 S13 = 2 GO TO 572 S6 = S15 / EK(1) * (Z(4,1) + EMT(1))	9 = El(I) * ALF(I) * T(]) /5]	6102000
GO TO 550 SI5 = DNAZ(I) /AO S7 = SI5 * S3 S9 = E2(I) * T2(I) /S1 S8 = SI2 * E2(I) S10 = S8 * S15 * EMT(I) /FK(I) IF(I - 1) 565+551+565 IF(IBCT - 9) 552+553+559 S13 = 2 GO TO 572 S6 = S15 /EK(I) *(Z(4+I) + EMT(I))	K = SIZ * FI(I) 10 = S8 * S15 * ÉMT(I) /EK(I)	0007021
S15 = DNA2(I) /A0 S7 = S15 * S3 S9 = E2(I) * T2(I) /S1 S8 = S12 * E2(I) S10 = S8 * S15 * EMT(I) /FK(I) IF(I - 1) 565+551+565 IF(IBCT - 9) 552+553+559 S13 = 2. G0 T0 572 S6 = S15 /EK(I) *(Z(4,I) + EMT(I))	5 TO 550	0007022
57 = 515 * 53 57 = 515 * 53 58 = 512 * E2(1) /51 510 = 58 * 515 * EMT(1) /EK(1) 1F(1 - 1) 565+551+565 1F(1BCT - 9) 552+553+559 513 = 2 60 70 572 56 = 515 /EK(1) *(2(4,1) + EMT(1))	SET FOR 2ND ST TSSES	0001023
<pre>59 = E2(1) * T2(1) /S1 58 = S12 * E2(1) 510 = S8 * S15 * EMT(1) /FK(1) IF(1 - 1) 565+551+565 IF(1BCT - 9) 552+553+559 513 = 2* 60 T0 572 56 = S15 /EK(1) *(2(4,1) + EMI(1))</pre>	57 = SI5 + S3	0007025
S8 = S12 * E2(I) S10 = S8 * S15 * EMT(I) /FK(I) IF(I - 1) 565+551+565 IF(IBCT - 9) 552+553+559 S13 = 2. G0 T0 572 S6 = S15 /EK(J) *(Z(4,I) + EMT(J))	= E2(I) * T2(I) /SI	0007026
510 = 58 * 515 * EMT(I) / FK(I) IF(I - 1) 565+551+565 IF(IBCT - 9) 552+553+559 513 = 2. Go To 572 0000703 56 = 515 / EK(J L *(Z(4.1) + EMT(L)) 0000703	= S12 + E2(1)	0007027
IF(I - 1) 565+551+565 IF(IBCT - 9) 552+553+559 S13 = 2. G0 T0 572 0000703 56 = 515 /EK(J) *(Z(4.1) + EMT(L))	0 ■ 58 ★ 515 ★ EMT(I) /FK(I)	0 C
IF(IBCT - 9) 552,553,559 513 = 2. 60 TO 572 56 = S15 /EK(J) *(Z(4.1) + EMT(J)) 0000703 56 = S15 /EK(J) *(Z(4.1) + EMT(J))	IF(I - 1) 565+551+565	10
S13 = 2. G0 T0 572 56 = S15 /EK(J) *(Z(4.1) + EMT(J)/ 0000703 0000703	IF(IBCT - 9) 552+553+559	0
0000703 3 S6 = S15 ZEK(J) *(Z(4+I) + EMI(J))	S13 = 2.	60
3 S6 = S15 ZEK(J) *(Z(4.1) + EMT(J))	0 10 10 215	0000203
	3 S6 = S15 /EK(J) *(2(4,1) + EMT(J))	14

CALCULATE CLOSED + WFE(I) + S21) + S61 - S9 + 56) - S9 + 56) - S9 + 56) - S9 + 56) - S9 + 56) - S9 + 56 / P01) - S9 + FNF+VP + 56 / P01) - S9 + 77 / P01) - S9 + 77 / P01) - S8 + 57 / P01) - S8 + 77 / P01) - S8 / P01) - S	<pre> CALCULATE CLOSED #556*557 #filp + WFE(1) * S21) + 561 - 59 #filp + WFE(1) * S21) + 561 - 59 # ''F /PO1) - 59 # 'UP + PO1#ENF*VP + 56 /PO1) - 59 # UP + FO1#ENF*VP + 56 /PO1) - 59 # 'UP + FO1#ENF*VP + 56 /PO1) - 59 # 'UP + FO1#ENF*VP + 56 /PO1) - 59 # 'UP + FO1#ENF*VP + 56 /PO1) - 59 # 'UP + FO1#ENF*VP + 56 /PO1) - 59 # 'UP + FO1#ENF*VP + 56 /PO1) - 59 # 'UP + FO1#ENF*VP + 56 /PO1) - 59 # 'UP + FO1#ENF*VP + 56 /PO1) - 59 # 'UP + FO1#ENF*VP + 56 /PO1) - 59 # 'UP + FO1#ENF*VP + 56 /PO1) - 59 # 'S11 * 58</pre>	SHELL STRESSES 00001044 00001044 00001050 00001050 00001052	00007063 00007063 00007063 00007063 00007063 00007064 00007071 00007071 00007071	ENF/RHOX(1) *	00001215 00001215 00001215 000012215 000012230 00001259 000001259
	1111 *** ** **E の「CO」 C O」 CON CON CON CON CON CON CON CON CON CON	7 7 + WFE(1) * S21) + 56) - 59	P + 56) - 59 F /POI! - 59 + POI*ENF*VP + 56) - 59 + FNF*VP + 56 /POI) - 59 + FNF*VP + 56 /POI) - 59	559 (3• * WTHD(I) - WFE(I)) + 1•) 574) *(2(4•I) - EMTH(I))+EM6(4) CALCULATE OPEN AN	AMA(I) * 58 * 511 * 58 50 8 88 (I) * 58 (I) * 58 01 * WTHD(I)) * 5 * 58 (I + 57*WFF(I)) * 5

-264 -

•

. ŀ Deflections and Internal Loads (Cont)

	00007599 00007600 00007610	00007620 00007630 00007670	00007690 00207700 00007710	00007740 00007740 00007750 00007750	0000777 00007780 000077900 000077910	00008999 00009010 00009020 00009050 00009050 00009055	00009059 00009060 00009061 00010000 00010000	
· • • • • • • • • • • • • • • • • • • •	DO 1060 I = 1+N IF(I +NE+ 1) GO TO 1020	EMFIP = (-EMFI(3) IF(1BCT - 9) 1055+1 EMFEP = (-EMFE(3) CUTUD - (-EMFE(3)	OFE(1) Elans Elans <t< td=""><td><pre>IF(1 .NE. N) GO TO 1050 EMETP = (EMFT(N-2)-EMFT(N-1) - 3.*(EMFT(N-1)-EMFT(N))) IF(IBCB - 9) 1055.1030.1055 EMEEP = (EMFE(N-2)-EMFE(N-1) - 3.*(FMFF(N-1)-EMFE(N)))</pre></td><td>EMTHP = (EMTH(N-2)-EMTH(N-1) - GO TO 1015 EMETP = (EMFT(1+1) - EMFT(1-1 OTH(1) = ELAM2 /RHOX(1) *(X(1 CONTINUE</td><td>1</td><td></td><td></td></t<>	<pre>IF(1 .NE. N) GO TO 1050 EMETP = (EMFT(N-2)-EMFT(N-1) - 3.*(EMFT(N-1)-EMFT(N))) IF(IBCB - 9) 1055.1030.1055 EMEEP = (EMFE(N-2)-EMFE(N-1) - 3.*(FMFF(N-1)-EMFE(N)))</pre>	EMTHP = (EMTH(N-2)-EMTH(N-1) - GO TO 1015 EMETP = (EMFT(1+1) - EMFT(1-1 OTH(1) = ELAM2 /RHOX(1) *(X(1 CONTINUE	1		
	<u>1</u> 005	1010	1015	1020	1056	2000	C 2005 2010 2010	Ŧ Ţ ŧ

,

Deflections and Internal Loads (Cont)

1 .

WNN(2550).).(DA(1).).(DA(5).).(DA(5).).(DA(5).).(DA(5).).(SDA(197.)).(SDA(197.)).(SDA(19	THETA(11). ENFI(11) DA(2). AG).(DA(3). DA(6). PIXI).(DA(7). P DA(6). PIXI).(DA(7). P DA(0). ENFI).(DA(21). SDA(2498). XSI) * KTPR. SL2. ELAM2. SI S * KTPR. SL2. ELAM2. SI S * KTPR. SL2. ELAM2. SI S * (150). EMTH(15 * GTH(150). SIGFE(150). * GTH(150). SIGFE(150). * SI(150). SIGFE(150). * SIGFE(150)	
DIMENSION SUMN(2550). EQUIVALENCE (DA(4). I(DA(4). E0 I(DA(4). E0 I(DA(4). E0 I(DA(25). THETA I(DA(25). THETA I(DA(25). THETA I(DA(25). THETA I(SDA(15). DEL I(KE. SOS. SOSA(3225). ZON DIMENSION USUM(150). I(SON) SGTA(150). JKL = 1 JKL = 1 JKL = 1 JKK E BACKSPACE BACKSPACE BACKSPACE BACKSPACE BACKSPACE BACKSPACE BACKSPACE SEGN(150). SCI II = 1. N. NOTP N. BACKSPACE BACKSPACE <td< th=""><th>THETA(11). ENFI(11) DA(2). A0).(DA(3). DA(10). ENFI).(DA(7). P DA(10). ENFI).(DA(7). P SDA(2498). XSI) . KTPR. SL2. ELAM2. SI S M * SI (150). SI S * KTPR. SC3. S M * SI (150). SI S * KTPR. SC3. S * S M * SI (150). S * S M * S M</th><th>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</th></td<>	THETA(11). ENFI(11) DA(2). A0).(DA(3). DA(10). ENFI).(DA(7). P DA(10). ENFI).(DA(7). P SDA(2498). XSI) . KTPR. SL2. ELAM2. SI S M * SI (150). SI S * KTPR. SC3. S M * SI (150). SI S * KTPR. SC3. S * S M * SI (150). S * S M * S M	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
EQUIVALENCE (DA(1), EKK (DA(2), SUM), (DA(5), SIGO S(DA(25), THETA), (DA(9), ENFO S(DA(25), THETA), (DA(9), ENFO S(DA(25), THETA), SDA(1976), ENFO COMMON 250, SO4, SO5, ENF, IFR COMMON SO4, SO5, ENF, IFR COMMON SO4, SO5, ENF, IFR COMMON SO4, SO5, ENF, IFR COMMON USUM(150), VSUM(150), DEL(JKL = 1 JKL = 1 JKL = 1	DA(2). A0).(DA(3). DA(6). PIXI).(DA(7). DA(10). ENFI).(DA(7). SDA(2498). XSI) * KTPR. SL2. ELAM2. SI. S * * * * * * * * * * * * * * * * * * *	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<pre>[[ba(4]. E0).(Da(5). SIG0 2(Da(25). THETA). 4(SDA(15). DEL).(SDA(1976). 4(SDA(15). DEL).(SDA(1976). COMMON DA(35). NTPW. NTPR. COMMON DA(35). NTPW. NTPR. COMMON SDA(325). 20.2. DIMENSION USUM(150).VSUM(150). EMFT(150). SIGFI(150). ENTH(1 2 SIGTH2(150). SIGFI(150). DEL(3 SGTH2(150). SGFT2(150). DEL(1 E (THETA(2) .EQ1.6.10) NOTP = 3 DKL = 1 MOTP = 3 DKL = 1.6KKE BACKSPACE 8 BACKSPACE 8 B</pre>	DA(6), PIXI),(DA(7), P DA(10), ENFI),(DA(21), SDA(2498), XSI) , KTPR, SL2, ELAM2, SI, S M B2, C2, G2 (150), EMTH(15 FNFT(150), SIGFE(150), , QTH(150), SIGFE(150), , SI(150), SIGFE(150), , XSI(150), SIGFE(150), SIGFE(150), , XSI(150), SIGFE(150),	~
3(DA(15), THETA); 3(DA(15), THETA); 3(DA(15), DEL);(SDA(1976); 1 KKE, SQ3, SQ4, SQ5, ENF, IFR COMMON DA(351, NTPW, NTPR, NTPR, IFR 1 KKE, SQ3, SQ4, SQ5, ENF, IFR COMMON DA(351, SQ4, SQ5, ENF, IFR 1 KKE, SQ3, SQ4, SQ5, ENF, IFR COMMON USUM(150); ENFE(150); ENF(150); 1 EMFT(150); SGFT(150); OFL(110); 2 SGTHZ(150); SGFTZ(150); OFL(110); 2 SGTHZ(150); SGFTZ(150); OFL(110); 3 SGTHZ(150); SGFTZ(150); OFL(110); 3 SGTHZ(150); SGFTZ(150); OFL(110); 3 SGTHZ(150); SGFTZ(150); OFL(110); 3 SGTHZ(150); SGFTZ(150); 4 THETA(2); SG0, SGFTZ(150); 3 SGTHZ(150); 3 SGTHZ(150); 4 THETA(2); 4 THETA(11); 4 SGTHZ(150); 5 SGTHZ(150); 5 SGTHZ(150); 6 SGTHZ(150); 7 SGTHZ(150); 8 SGTHZ(150); 8 SGTHZ(150); 9 S	SDA(2498) * XSI) SDA(2498) * XSI) * KTPR* SL2* ELAM2 * SI > S # 82, C2 + G2 (150) * EMFE(150) * EMTH(15 [150) * SIGFE(150) * * GTH(150) * SIGFE(150) * * SI(150) * R(150) KansFER FOURIER COMPONENT	
<pre>#(SDA(15)* DEL)*(SDA(1976)* (COMMON DA(35]* NTPW* NTPR* COMMON DA(35]* NTPW* NTPR* COMMON SDA(325)* 20.2* DIMENSION USUM(150)* ENTH(1 COMMON USUM(150)* SIGFI(150)* OFE(COMMON USUM(150)* SIGFI(150)* OFE(COMMON USUM(150)* SIGFI(150)* OFE(COMMON USUM(150)* SIGFI(150)* OFE(COMMON USUM(1)* I = 1, WRITE (3) N* (USUM(1)* I = 1, REWIND 3 SLI = 1, REWIND 3 SLI = 1, REWIND 3 SLI = 1, REWIND 3 SLI = 1, REWIND 3 SLI = 1, REWIND 3 SLI = 1, REWIND 3 SLI = 1, REWIND 3 SLI = 1, REWIND 3 SLI = 1, SLI = 1, SLI = 1, SIN(5) SIGFI(15)* I = 1, SIN(5) SINNT = SIN(55) </pre>	SDA(2498), XSI) * KTPR: SL2, ELA * B2, C2, G2 (150), EMFE(150) FNFT(150), SIGF 0 01H(150), SIGF * 01H(150), SIGF	•
COMMON DA(35) NTPW* NTPR* KTP I KKE* SQS* SQ4* SQS* ENF* IFR* K I KKE* SQS* SQ4* SQS* ENF* IFR* K DIMENSION SDA(3225) * Z0*2* A2 DIMENSION USUM(150) * VSUM(150) * WSU I EMFT(150) * ENFE(150) * WSU I EMFT(150) * SIGFT(150) * WSU I EMFT(150) * SIGFT(150) * WSU JKL<=1	 KTPR: SL2. ELA K20. SL2. ELA K20. S2. S1 K150. S167 G1H(150). S676 G1H(150). S676 K150). S676 K150). S676 K150). K(150) KANSFER FOURIER 	• •
I KKE SO4(+ SO5) E NF+ IFF, K I KKE SO3(+ SO5) E NF+ IFF, K I KKE SO3(225) + SO4(150) + K(150) I EMFT(150) + ENFE(150) + SO4(150) A2 I EMFT(150) + ENFE(150) + SO4(150) A2 I EMFT(150) + SIGFT(150) + DEL(1) A2 JKL = 1 I IFF(150) + SIGFT(150) + DEL(1) JKL = 1 I IFF(150) + SIGFT(150) + DEL(1) JKL = 1 I IFF(150) + SIGFT(150) + DEL(1) JKL = 1 I IFF(150) + SIGFT(150) + DEL(1) JKL = 1 I IFF(150) + SIGFT(150) + DEL(1) JKL = 1 I IFF(150) + SIGFT(150) + DEL(1) JKL = 1 I IFF(150) + SIM(1) + I JKL = 1 I I JKL = 1 I I JKL = 1 I I JKL = 1 I I MOTP = 3 I I MOTP = 3 I I MOTP = 3 I I BACKSPACE 8 BACKSPACE 8 BACKSPACE	B2, C2, G2. (150), EMFE(150) (150), EMFE(150) (150), SIGF (150), SGFE XSI(150), R(150) G0 T0 602 , KANSFER FOURIER	ې • • •
COMMON SDA(3225), 20,2, A2 DIMENSION USUM(150), ENTH(150, EMET(150), ENFE(150), ENTH(150, SIGTA(150), SIGFI(150), DEL(1)), JKL = 1 JKL	B2, C2, G2. (150), EMFE(150) FNFT(150), SIGF 9 0TH(150), SGFE XS1(150), R(150) G0 T0 602 G0 T0 602 RANSFER FOURIER	c
DIMENSION USUM(150), VSUM(150), WSU) EMET(150), ENFE(150), ENTH(150, 2 SIGTA(150), SIGFT(150), DEL(1)), JKL = 1 JKL = 1 JKL = 1 JKL = 1 MOTP = 3 MOTP = 3 DO 520 LL = 1, KKE BACKSPACE 8 BACKSPACE 8 BACKS	(150), EMFE(150) FNFT(150), SIGF , QTH(150), SGFE XSI(150), R(150) GO TO 602 RANSFER FOURIER	c
<pre>I EMFT(150); ENFE(150); ENTH(150, 0 SIGTH2(150); SIGFT(150); DEL(1); JKL = 1 JKL = 1 JKL = 1 JKL = 1 JKL = 1 DC 520 LL = 1;KKE BACKSPACE 8 BACKSPACE pre>	FNFT(150), SIGF , QTH(150), SGFE XSI(150), R(150) GO TO 602 , RANSFER FOURIER	ç
<pre>2 SIGTN(150). SIGFT(150). GFE(150 3 SGTN2(150). SGFT2(150). DEL(1)) JKL = 1 iF (THETA(2) .EQ1.6E+10) NOTP = 3 DO 520 LL = 1.6KKE BACKSPACE 8 BACKSPACE 8 B</pre>	GTH(150), SGFE 51(150), R(150) 50 TO 602 . MSFER FOURIER	c
<pre>3 SGTH2(150). SGFT2(150). DEL(1): JKL = 1 JKL = 1 JKL = 1 DO 520 LL = 1.KKE BACKSPACE 8 BACKSPACE /pre>	XSI(150), R(150) GO TO 602 . TRANSFER FOURIER	c
JKL = 1 IF (THETA(2) .EQ1.6E+10) NOTP = 3 DO 520 LL = 1.6KKE BACKSPACE 8 BACKSPACE 8 BACKSPACE 8 BACKSPACE 8 READ (8) N. (USUM(1): I = 1.255 WRITE (3) N. (USUM(1): I = 1.255 WRITE (3) N. (USUM(1): I = 1.255 SL1 = 1. SL1 = 1. SL1 = 1. SS = ENF * THETA(JKL) * 0.0174532 COSNT = COS(55) SIMNT = SIN(55)	602 . Fourier	c
JKL = 1 IF (THETA(2) •EQ• -1•E+10) NOTP = 3 DO 520 LL = 1•KKE BACKSPACE 8 BACKSPACE 8 BACKSPACE 8 BACKSPACE 8 READ (8) N• (USUM(1); I = 1.255 WRITE (3) N• (USUM(1); I = 1.255 WRITE (3) N• (USUM(1); I = 1.255 KEWIND 3 SLI = 1• SLI = 1• SS = ENF * THETA(JKL) * 0•0174532 COSNT = COS(55) SIMNT = SIN(55)	602 FOURIER	c
NOTP = 3 D0 520 LL 1,KKE BACKSPACE B BACKSPACE B BACKSPACE B N (USUM(I), I = 1,255 WRITE (3) N (USUM(I), I = 1,255 WRITE (3) N (USUM(I), I = 1,255 REWIND 3 SL1 1 255 REWIND 3 SL1 1 255 SL1 1 S5 ENF * THETA(JKL) * 0.0174532 205NT SIMNT SIN(55) 5 5 5	FOURIER	c
D0 520 LL 1,KKE BACKSPACE BACKSPACE BACKSPACE BACKSPACE BACKSPACE 1,255 BACKSPACE N+ (USUM(1), 1 = 1,255 WRITE (3) N+ (USUM(1), 1 = 1,255 WRITE (3) N+ (USUM(1), 1 = 1,255 REWIND 3 SL1 1 255 REWIND 3 SL1 1 2555 SL1 1 S5 ENF * THETA(JKL) 0,0174532 SIMNT SINNT SIN(55) 5 5 5	FOURIER	c
D0 520 LL = 1,KKE BACKSPACE 8 BACKSPACE 8 BACKSPACE 8 READ (8) N, (USUM(1), I = 1,255 WRITE (3) N, (USUM(1), I = 1,255 WRITE (3) N, (USUM(1), I = 1,255 REWIND 3 SLI = 1,255 SLI = 1,255 SLI = 1,255 COSMT = COS(55) SIMMT = SIN(55)		10 3 000003
BACKSPACE 8 BACKSPACE 8 READ (8) N. (USUM(I), WRITE (3) N. (USUM(I), REWIND 3 SLI = 1. SLI = 1. SSL = 1. SSL = 1. SSL = 1. SSL = 1. SSL = 1. SSL = 1. SSL = 1. SSL = 1. SSL = 1. SSL = 1. SSL = 2. SSL =		
BACKSPACE 8 READ (8) N. (USUM(I), WRITE (3) N. (USUM(I), REWIND 3 SLI = 1. SS = ENF * THETA(JKL) * COSNT = COS(S5) SIMNT = SIN(S5)		1010
READ (8) N. (USUM(1), WRITE (3) N. (USUM(1), REWIND 3 SLI = 1. SLI = 1. SS = ENF * THETA(JKL) * COSNT = COS(55) SIMNT = SIN(55)		102
WRITE (3) N+ (USUM(I)+ REWIND 3 SLI = 1+ SS = ENF + THETA(JKL) + COSNT = COS(S5) SIMNT = SIN(S5)	* DFI . XST.	02010000
REWIND 3 SLI = 1. S5 = ENF + THETA(JKL) * COSNT == COS(55 } SIMNT = SIN(55 }	+ DEL+ XSI	00001040
REWIND 3 SLI = 1. S5 = ENF + THETA(JKL) * COSNT = COS(S5) SINNT = SIN(S5)	1	2499
SLI = 1. S5 = ENF + THETA(JKL) * COSNT = COS(55 } SINNT = SIN(55)		2500
ENF * THETALJKL) * = COS(55) * SIN(55)		2509
= COS(S5	925	0000251
* SINC S5		251
		251
THETX = THETAL JKL)		2513
		A .
		0967
IF(SLZ 01241294013 446 IF (THETA(3) _NS, _1.5410)	60 TO 700	2320000
BACKSPACE 8		2526

Variable Theta, Summing

DEL * XSI JM(I) * VS DEFLECT JM(I) * VS DEFLECT JM(I) * SIGFL(I) * CS * 1 P5E13 * 1 P5E13 * 1 P5E13 * 1 P5E13 * 1 P5E13	READ (NOTP) N. (USUM(I). I IF(SUM .LT. 0.) GO TO 730 DO 720 I = 1.44		
<pre>10 prictum =i pan 10 po 720 release vsum(r) = vsum(r) + cosn vsum(r) = vsum(r) + cosn vsum(r) = vsum(r) + cosn emfr(r) = vsum(r) + cosn emfr(r) = vsum(r) + cosn emfr(r) = vsum(r) + cosn emfr(r) = vsum(r) + cosn sigf(r) = sigf(r) + cosn sign(r) = sign(r) + cosn s</pre>	IF(SUM .LT. 0.) GO TO DO 720 I = 1.4	DEL+ XSI	0000
<pre>UD:UN:U: La La La La La La CONT VSUM(I) = USUM(I) = CONT VSUM(I) = WYNET] = CONT EMFT(I) = EMFE(I) = CONT EMFT(I) = EMFE(I) = CONT EMFT(I) = EMFE(I) = CONT EMFT(I) = EMFE(I) = CONT EMFT(I) = EMFE(I) = CONT EMFT(I) = EMFE(I) = CONT SIGFU(I) = EMFE(I) = CONT SIGFU(I) = EMFT(I) = CONT SIGFU(I) = SIGFI(I) = SIMT SIGFU(I) = SIGFI(I) = SIMT SIGFI(I) = SIMT SIGFI(I) = SIGFI(I) = SIMT SIGFI(I) = SIGFI(I) = SIMT SIGFI(I) = SIMT SIGFI(I) = SIMT SIGFI(I) = SIMT SIGFI(I) = SIGFI(I) = SIMT SIGFI(I) = SIGFI(I) = SIMT SIGFI(I) = SIGFI(I) = SIMT SIGFI(I) = SIGFI(I) = SIMT SIGFI(I) = SIMT SIGFI(I) = SIGFI(I) = SIMT SIGFI(I) = SIGFI(I) = SIMT SIGFI(I) = SI</pre>			2538
<pre>VSUM(I) = VSUMET) = CONT ENFIRIT: = EMFERIT = COSNT ENFIRIT: = EMFERIT = COSNT ENFIRIT: = EMFERIT = COSNT ENFIRIT = EMFERIT = COSNT ENFIRIT = EMFERIT = COSNT ENFIRIT = EMFERIT = COSNT ENFIRIT = EMFERIT = COSNT SGFEZIT = EMFERIT = COSNT SGFEZIT = SGFEZIT = SGFEZIT = COSNT SGFEZIT = SGFEZIT = SGFEZIT = COSNT SGFEZIT = SGFEZIT = S</pre>			
<pre>KSUNT: * WENKT: * COSNT EMFE(I) * EMPERI: * COSNT EMFT(I) * EMPERI: * COSNT EMFT(I) * EMPERI: * SINNT EMFT(I) * EMPERI: * SINNT ENFT(I) * EMPERI: * COSNT ENFT(I) * EMPERI: * COSNT ENFT(I) * EMPERI: * COSNT SIGFE(I) * SIGFE(I) * COSNT SIGFE(I) * SIGFE(I) * COSNT SIGFU(I) * SIGFE(I) * SIGNT SIGFE(I) * SIGFE(I) * COSNT SIGFE(I) * SIGFE(I) * COSNT SIGFE(I) * SIGFE(I) * SIGNT SIGFE(I) * SIGFE(I) * COSNT SIGFE(I) * SIGFE(I) * SIGNT SIGFE(I) * SIGFE(I) pre>			2555
EFE(I) = EMFE(I) * COSNT ENTH(I) = EMFE(I) * COSNT ENTH(I) = EMFE(I) * COSNT ENTH(I) = ENTH(I) * COSNT ENT(I) = ENTH(I) * COSNT SIGFE(I) = SIGFH(I) * COSNT SIGFE(I) = SIGFH(I) * COSNT SIGFE(I) = SIGFH(I) * COSNT SIGFT(I) = SIGFH(I) * SINNT OFE(I) = OTH(I) * SICH(I) * SINNT OFE(I) * OTH(I) * SICH(I) * SIGF(I) * SINNT OFE(I) * SINNT OFE(I) = SINNT OFE(I) * SINNT OFE(I) = OTH(I) * SICH(I) * SIGFT(I) * SIGFT(I) * OTH(I) * OTH(I) * OTH(I) * SIGFT(I)			2570
<pre>EMTH(I) = EMTH(I) * COSNT EMTH(I) = EMTT(I) * COSNT ENFT(I) = EMFT(I) * COSNT ENFT(I) = ENFT(I) * COSNT SIGFE(I) = SIGFE(I) * COSNT SIGFE(I) = SIGFE(I) * COSNT SIGFE(I) = SIGFE(I) * COSNT SIGFT(I) = SIGFI(I) * COSNT SIGFT(I) = SIGFT(I) * SINNT SIGFT(I) = GOSNT SIGFT(I) = SIGFT(I) * SINNT GO TO TO SIGFT(I) = SINNT GO TO TO SIGFT(I) = SINNT GO TO TO SIGFT(I) = SINNT GO TO TO SIGFT(I) = SINNT GO TO TO SIGFT(I) = SINNT GO TO TO SIGFT(I) = SINNT GO TO TO SIGFT(I) = SINNT GO TO TO SIGFT(I) = SINNT GO TO TO SIGFT(I) = SINNT SIGFT(I) = SINNT SIGFT(I) = SINNT SIGFT(I) = SINNT SIGFT(I) = SINNT SIGFT(I) = SIGFT(I) +</pre>			2560
EMFT(I)EMFT(I)SINNT EMFT(I)SINNT EMFT(I)SINNT EMFT(I)SONT EMFT(I)0SGFE2(I)EMFT(I)SONT SGFE2(I)00SGFT2(I)SGFE2(I)SGFE2(I)COSNT SGFT2(I)00SGFT2(I)SGFT2(I)SGFT2(I)SGFT2(I)COSNT SGFT2(I)00SGFT2(I)SGFT2(I)SGFT2(I)SGFT2(I)COSNT SGFT2(I)00SGFT2(I)SGFT2(I)SGFT2(I)SGFT2(I)SGFT2(I)COSNT SGFT2(I)00SGFT2(I)SGFT2(I)SGFT2(I)SGFT2(I)SGFT2(I)COSNT SGFT2(I)00SGFT2(I)SGFT2(I)SGFT2(I)SGFT2(I)SGFT2(I)COSNT SGFT2(I)00SGFT2(I)SGFT2(I)SGFT2(I)SGFT2(I)SGFT2(I)COSNT SGFT2(I)00SGFT2(I)SGFT2(I)SGFT2(I)SGFT2(I)SGFT2(I)00SGFT2(I)SGFT2(I)SGFT2(I)SGFT2(I)SGFT2(I)00SGFT2(I)GO TO TSEGO TO TSESGFT2(I)SGFT2(I)SGFT2(I)00SGFT2(I)GG TO TSEGG TO TSESGFT2(I)SGFT2(I)SGFT2(I)SGFT2(I)00SGFT2(I)GG TO TSEGG TO TSESGFT2(I)SGFT2(I)SGFT2(I)000SGFT2(I)GG TO TSEGG TO TSESGFT2(I)SGFT2(I)SGFT2(I)000SGFT2(I)GG TO TSEGG TO TSEGG TO TSEG	* EMTHEIT *		2590
ENFE(I) ENFE(I) COSNT ENFT(I) ENTH(I) COSNT SIGFE(I) ENTH(I) SCONT SIGFE(I) ENTH(I) COSNT SIGFE(I) SIGFE(I) SCONT SIGFE(I) SIGFT(I) SIGFT(I) COSNT SIGFT(I) SIGFT(I) SIGFT(I) COSNT SIGFT(I) SIGFT(I) SIGFT(I) COSNT SIGFT(I) SIGFT(I) SIGNT COSNT SIGFT(I) SIGFT(I) SIGNT COSNT SIGFT(I) SIGNT COSNT COSNT </td <td>* EMFTCI: *</td> <td></td> <td>2600</td>	* EMFTCI: *		2600
ENTH(I) = ENTH(I) * COSNT ENTH(I) = ENTH(I) * COSNT SIGFE(I) = SIGFE(I) * COSNT SIGFE(I) = SIGFE(I) * COSNT SIGFT(I) = SIGFT(I) = SIMNT SGFT2(I) = SGFT2(I) + COSNT SGFT2(I) = SGFT2(I) + COSNT SGFT2(I) = SGFT2(I) + COSNT SGFT2(I) = SGFT2(I) + COSNT SGFT2(I) = SGFT2(I) + SIMNT OTH(I) = OTH(I) + SIMNT SGFT2(I) = SGFT2(I) + SIMNT SGFT2(I) + SGFT2(I) + SIMNT SGFT2(I) + SGFT2(I) + SIMNT SGFT2(I) + SGFT2(I) + SIMNT SGFT2(I) + SGFT2(I) + SIMNT SGFT2(I) + SGFT2(I) + SIMNT SGFT2(I) + SGFT2(I) + SIMNT SGFT2(I) + SGFT2(I) + SIMNT SGFT2(I) + SGFT2(I) + SIMNT SGFT(I) + SGFT(I) + SGFT(I) + SIMT SGFT(I) + SGFT(I)	· ENFECT +		c
SGFE(I) = SGFE(I) * COSNT 0 0 SGFEZ(I) = SGFE(I) * COSNT 0 0 SGFEZ(I) = SGFEZ(I) * COSNT 0 0 SGFTZ(I) = SGFEZ(I) * COSNT 0 0 SGFTZ(I) = SGFTZ(I) * SINNT 0 0 GO TO 750 0 TO 750 Demail 0 TO 750 Demail 0 TO 750 SFTT(I) = SGFTZ(I) * SINNT 0 0000 GO TO 750 0 TO 750 Demail 0 TO 750 SFORMATIJH. 12 = 1.0) GO TO 750 0 TO 750 TEFE(I). 5471(I). 13 + 414. GO TO 750 0 TO 750 DSS THETA = 0 FELEZ. 0 TO 750 DSS THETA = 0 FELEZ. 0 TO 750 DSS THETA = 0 FELEZ. 0 TO 750 DSS THETA = 0 S			2620
SIGFL(I) = SIGFL(I) * COSNT SIGFL(I) = SIGFL(I) * COSNT SIGFL(I) = SIGFL(I) * COSNT SIGFL(I) = SIGFL(I) * COSNT SIGFL(I) = SIGFL(I) * COSNT SGFT2(I) = SIGFT(I) * SINNT SGFT2(I) = SGFT2(I) * SINNT SGFT2(I) = GFT2(I) * SINNT GO TO TO SGFT2(I) = GFT2(I) * SINNT GO TO TO SGFT2(I) = GFT2(I) * SINNT SGFT2(I) = GFT2(I) * SIGFL(I) * SIGFT(I) * SGFT2(I) * ODOO SGFT2(I) = GFT2(I) * SIGFL(I) * SIGFT(I) * SGFT2(I) * ODOO SGFT2(I) * SGFT2(I) * I = 1.N) 3* FORMAT (IHI = 2X+IHI = 5X+SHW(FH1) = KNF(I) + KNF			2632
SigTH(1) = SigTH(1) + COSNT SigTH(1) = SigTH(1) + SINNT SigT(1) = SigTH(1) + SINNT SigT(1) = SigT(1) + SINNT SigT(1) = SigT(1) + SINNT SigT(1) = SigT(1) + SINNT SigT(1) = SigT(1) + SINNT SigT(1) = SigT(1) + SINNT SigT(1) = SigT(1) + SINNT SigT(1) = SigT(1) + SINNT SigT(1) = SigT(1) + SINNT SigT(1) = SigT(1) + SINNT SigT(1) = SigT(1) + SINNT SigT(1) = SigT(1) + SINNT Sigt(1) + SinNT SigT(1) = GPE(1) + COSNT SigT(1) + SINNT Sigt(1) + SinNT Sigt(1) = GPE(1) + SINNT Sigt(1) + SINNT Sigt(1) + SinNT GO TO 758 Sigt(1) + SINNT Sign(1) + SONT OOOO Sigt(1) = Sigt(1) + SinNT Sign(1) + SinNT Sign(1) + SinNT OOOO Sigt(1) + S	# 01616(1) %		C
SGTHZ(I) = SGTHZ(I) * COSNT 0 0 SIGFT(I) = SIGFT(I) * SINNT SIGFT(I) = SIGFT(I) * SINNT SIGFT(I) = SIGFT(I) + SINNT SIGFT(I) = SIGFT(I) + SINNT SIGFT(I) = GFE(I) * COSNT GGE(I) = GFE(I) * COSNT GG TO 756 GFE(I) * COSNT GO TO 756 GFE(I) * COSNT GO TO 756 GFE(I) * COSNT GO TO 756 GFE(I) * COSNT GO TO 756 GFE(I) * COSNT GO TO 756 GFE(I) * COSNT GO TO 756 GFE(I) * COSNT GO TO 756 GFE(I) * COSNT GO TO 756 GFE(I) * COSNT GO TO 756 GHMGTIHL 12X, GHEGT0, 13, 41H, DEFLECTTONS AND INTERNAL LOADDON 255, THETA =: IFEI2.4, 3X, 5HENF = IFEI2.4 0000 27// 3X, 1HI: 6X, 4HU(I): 9X, 4HU(I), 8K, 6HM(PHI), 6X, 0000 0000 285, THETA =: IFEI2.4, 3X, 5HENF = IFEI2.4 0000 27// 3X, 1HI: 5X, 6HM(PHI), 7HETA) // (14, 6EI3.4,) 0000 285, THETA =: IFEI2.4, 3X, 5HM(I), 8K, 6HM(PHI), 6K, 0000 0000 27// 3X, 1HI: 5X, 6HM(PHI), 6X, 8H0(THETA), 6X, 6HN (PHI), 6K, 0000 0000 386 THETA) = 3X, 12HN(PHI, 7HETA) // (14, 195EI3.4,) 0000 390 NITTE (6, 737) [1, 21] 10, 11, 25 0000	* (I)H210 *		0
<pre>SIGFT(I) = SIGFT(I) * SINNT GFT(I) = SIGFT(I) * SINNT GFT(I) = GFF(I) * SINNT GFT(I) = GFF(I) * SINNT GO TO 758 TFF(I) = GFF(I) * SINNT GO TO 758 SINTT GO TO 758 SINNT GO TO 758 SINNT GO TO 758 SINNT GO TO 758 SINNT GO TO 758 SINNT SIN</pre>	* SGTH2(1) *	,	2655
SGFT2(I) = SGFT2(I) * SINNT 0 20 0 0 0 20 0 0 0 0 20 0 0 0 0 20 0 0 0 0 0 20 0 0 0 0 0 0 20 0 0 0 0 0 0 0 30 WRITE (6. 733) KX.F THETX, ENF. (I. USUM(I), VSUM(I), WSUM(I),	= SIGFT(1) #		2660
0 0	= SGFT2(1) *		С
<pre>20 0TH(I) = 0TH(I) * SINNT 60 T0 758 91 MRITE (6. 733) KK, THETX, EWF, (I, USUM(I)), VSUM(I), WSUM(I), 0000 1 EMFE(I), EMTH(I), 24FT(I), I = 1.N) 1 EMFE(I), EMTH(I), 24FT(I), I = 1.N) 2 FORMAT(IHI, 12X, 6HREGION, I3, 41H, DEFLECT(ONS AND INTERNAL LOAD000 25, THETA =: 1PEI2.4, 3X, 5HENF =1PEI2.4 2 /// 3X, 1HI, 6X, 4HU(I), 9X, 4HV(I), 8X, 6HM(PHI), 6X, 0000 2 /// 3X, 1HI, 6X, 4HU(I), 9X, 4HV(I), 8X, 6HM(PHI), 6X, 0000 2 /// 3X, 1HI, 6X, 4HU(I), 9X, 4HV(I), 8X, 6HM(PHI), 6X, 0000 1 I = 1.N) 35 FORMAT (1H1, 2X, 1HI, 5X, 6HO(PHI), 6X, 8HQ(THETA), 6X, 6HN(PHI), 6X, 0000 1 I = 1.N) 35 FORMAT (1H1, 2X, 1HI, 5X, 6HO(PHI), 6X, 8HQ(THETA), 6X, 6HN(PHI), 6X, 0000 1 BNN(THETA), 3X, 12HN(PHI, THETA) // (I4, 1P5EI3.4)) 0 000 3 FORMAT (1H1, 2X, 1HI, 5X, 6HO(PHI), 4X, 10HSIG(THETA), 2X, 0000 3 FORMAT (1H1, 2X, 1HI, 4X, 8HSIG(PHI), 4X, 10HSIG(THETA), 2X, 0000 3 FORMAT (1H1, 2X, 1HI, 4X, 8HSIG(PHI), 4X, 10HSIG(THETA), 2X, 0000 3 FORMAT (1H1, 2X, 1HI, 4X, 8HSIG(PHI), 4X, 10HSIG(THETA), 2X, 00000 3 FORMAT (1H1, 2X, 1HI, 4X, 8HSIG(PHI), 4X, 10HSIG(THETA), 2X, 00000 3 FORMAT (1H1, THETA)// (I4, 1P6EI3.4))</pre>	= QFE(I) *		
G0 TO TO <td< td=""><td>$\mathbf{OTH}(\mathbf{I}) = \mathbf{QTH}(\mathbf{I}) + \mathbf{QTH}(\mathbf{I}) + \mathbf{QTH}(\mathbf{I})$</td><td></td><td>2680</td></td<>	$\mathbf{OTH}(\mathbf{I}) = \mathbf{QTH}(\mathbf{I}) + \mathbf{QTH}(\mathbf{I}) + \mathbf{QTH}(\mathbf{I})$		2680
30 WRITE (6, 733) KX; THETX, ENF. (1, USUM(1), VSUM(1), WSUM(1); 00000 31 EMFE(1): EMTH(1): I = 1.N) 1 = 1.N) 00000 33 FORMAT(1H1. 12X, 6HREGION. 13, 41H, DEFLECTIONS AND INTERNAL L0A0000 0000 31 Sorther a supelizes, 6HREGION. 13, 41H, DEFLECTIONS AND INTERNAL L0A0000 0000 31 Sorther a supelizes, 6HREGION. 13, 41H, DEFLECTIONS AND INTERNAL L0A0000 0000 2 //, 33.1HI. 6X, 4HU(1), 9X, 4HV(1), 9X, 4HW(1), 8X, 6HM(PH1), 6X, 0000 0000 2 //, 33.1HI. 6X, 4HU(1), 9X, 4HV(1), 8X, 6H3(1), 6X, 0000 0000 2 //, 33.1HI. 6X, 4HU(1), 9X, 4HV(1), 8X, 6H3(1), 6X, 0000 0000 2 //, 33.1HI. 6X, 4HU(1), 9X, 4HV(1), 8X, 6H3(1), 6X, 6H3(1), 6X, 0000 0000 3 PMMTTHETA), 3X, 12H4(PH1, 4HETA) // (14, 195E13, 4) 0000 1 I = 1.N) 1 1 1 SCRMAT (1H1, 2X, 1H1, 5X, 6H0(PH1), 6X, 8H0(THETA), 6X, 6H4(1), 6X, 7H4(1	10		2690
<pre>30 WRITE (6, 733) KK; HETX; LY, USUM(L); VSUM(L); WSUM(L); WS</pre>			000002709
<pre>3 FORMATCIN: SAFICIS: 1 = 1*N) 3 FORMATCINE: EXTEND: 0.000 30 FORMATCINE: 12%, 6HREGION: 13, 41H, DEFLECTTONS AND INTERNAL LOADONO 2 /// 3X.1HI: 6X.4HU(1).9X.4HW(1).9X.6HM(PHI).6X. 2 /// 3X.1HI: 6X.4HU(1).9X.4HW(1).9X.6HM(PHI).6X. 2 /// 3X.1HI: 6X.4HU(1).9X.4HW(1).8X.6HM(PHI).6X. 2 /// 3X.1HI: 6X.4HU(1).9X.4HW(1).8X.6HM(PHI).6X. 2 /// 3X.1HI: 6X.4HU(1).9X.4HW(1).8X.6HM(PHI).6X. 0 0000 1 1 = 1.N) 35 FORMAT (1HI.2X.1HI.5X.6H0(PHI).6X.8H0(THETA).6X.6HN(PHI).6X. 1 0 0000 3 FORMAT (1HI.2X.1HI.5X.6H0(PHI).6X.8H0(THETA).6X.6HN(PHI).6X. 3 FORMAT (1HI.2X.1HI.5X.6H0(PHI).6X.8H0(THETA).6X.6HN(PHI).6X. 3 FORMAT (1HI.2X.1HI.5X.6H0(PHI).6X.8H0(THETA).6X.6HN(PHI).6X. 3 FORMAT (1HI.2X.1HI.5X.6H0(PHI).6X.8H0(THETA).6X.6HN(PHI).6X. 3 FORMAT (1HI.2X.1HI.5X.6H0(PHI).6X.8H0(THETA).6X.6HN(PHI).6X. 3 FORMAT (1HI.2X.1HI.5X.6H0(PHI).6X.8H0(THETA).6X.6HN(PHI).6X. 3 FORMAT (1HI.2X.1HI.5X.6H0(PHI).6X.8H0(THETA).6X.6HN(PHI).6X. 3 FORMAT (1HI.2X.1HI.5X.6H0(PHI).6X.8H0(THETA).6X.6HN(PHI).6X. 3 FORMAT (1HI.2X.1HI.5X.6H0(PHI).6X.8H0(THETA).5X.6HN(PHI).6X. 3 FORMAT (1HI.2X.1HI.5X.6H0(PHI).6X.8H0(THETA).2X. 3 FORMAT (1HI.2X.1HI.5X.6HSIG(PHI).4X.10HSIG(THETA).2X. 3 FORMAT (1HI.2X.1HI.5X.6HSIG(PHI).4X.10HSIG(THETA).2X. 3 FORMAT (1HI.2X.1HI.6X.8HSIG(PHI).4X.10HSIG(THETA).2X. 3 FORMAT (1HI.2X.1HI.7X.1HI.7X.1HI.7X.1HI.7X.1HI.7X.1DH</pre>	WRITE (6+ 733) KK# THETX9 EMF+		01/20000
<pre>39 FORMATILITY: LZA: 0FREGIUM: 13; 4LTH: UEFLECTIONS AND INTERNAL LUNDOD 105, THETA =: 19E12.4.3X; 5HENF =1PE12.4 2 /// 3X.1HI: 6X.4HU([]).9X.4HV([]).9X.4HW([]).8X.6HM(PHI).6X. 2 0000 2 /// 3X.1HI: 6X.4HU([]).9X.4HV([]).9X.4HW([]).8X.6HM(PHI).6X. 2 0000 3 PMMITE(6. 735) (I. QFE(I). QTH(I). ENFE(I). ENTH(I). ENFT(I). 3 FORMAT (1H1.2X.1HI.5X.6HQ(PHI).6X.8HQ(THETA).6X.6HN(PHI).6X. 1 I = 1.N) 3 FORMAT (1H1.2X.1HI.5X.6HQ(PHI).6X.8HQ(THETA).6X.6HN(PHI).6X. 3 PMN(THETA). 3X.12HN(PHI.THETA) // (I4. 1P5E13.4)) 3 FORMAT (1H1.2X.1HI.5X.6HQ(PHI).6X.8HQ(THETA).6X.6HN(PHI).6X. 3 PMN(THETA). 3X.12HN(PHI.THETA) // (I4. 1P5E13.4)) 3 FORMAT (1H1.2X.1HI.5X.6HQ(PHI).6X.8HQ(THETA).6X.6HN(PHI).6X. 3 PMN(THETA). 3X.12HN(PHI.THETA) // (I4. 1P5E13.4)) 3 FORMAT (1H1.2X.1HI.5X.6HQ(PHI).6X.8HQ(THETA).6X.6HN(PHI).6X. 3 PMN(THETA). 2X.1HI.5X.6HO(PHI).6X.8HQ(THETA).2X.4) 3 FORMAT (1H1.2X.1HI.5X.6HS(PHI).6X.1HETA).2X. 3 PMN(THETA).2X.8HS(CPHI).4X.10HS(G(THETA).2X.4) 3 FORMAT (1H1.2X.1HI.4X.8HS(CPHI).4X.10HS(G(THETA).2X.4) 3 FORMAT (1H1.2X.1HI.4X.8HS(CPHI).4X.10HS(G(THETA).2X.4) 3 FORMAT (1H1.2X.1HI.4X.8HS(CPHI).4X.10HS(G(THETA).2X.4) 3 PMN(THETA).2X.8HS(CPHI).4X.10HS(G(THETA).2X.4) 3 PMS(PHI.THETA).2X.8HS(CPHI).4X.10HS(G(THETA).2X.4) 3 PMS(PHI.THETA).2X.8HS(CPHI).4X.10HS(G(THETA).2X.4) 3 PMS(CPHI.THETA).2X.8HS(CPHI).4X.10HS(G(THETA).2X.4) 3 PMS(CPHI.THETA).2X.8HS(CPHI).4X.10HS(G(THETA).2X.4) 3 PMS(CPHI.THETA).2X.8HS(CPHI).4X.10HS(CTHETA).2X.4) 3 PMS(CPHI.THETA).2X.8HS(CPHI).2X.4) 3 PMS(CPHI.THETA).2X.8HS(CPHI).2X.4) 3 PMS(CPHI.THETA).2X.8HS(CPHI).2X.4) 3 PMS(CPHI.THETA).2X.8HS(CPHI).2X.4) 3 PMS(CPHI.THETA).2X.8HS(CPHI).2X.4) 3 PMS(CPHI.THETA).2X.8HS(CPHI).2X.4) 3 PMS(CPHI.T</pre>		REFIELD AND THE PAIR	11/200000
<pre>2 /// 3X.1HI = 5Y.4HU(1).9X.4HU(1).8X.6HM(PH1).6X. 2 /// 3X.1HI = 6X.4HU(1).9X.4HV(1).9X.4HU(1).8X.6HM(PH1).6X. 3 8HM(THETA).3X.12HM(PH1.THETA) // (14. 6E13.4)) 1 1 = 1.N) 35 FORMAT (1H1.2X.1H1.5X.6HO(PH1).6X.8HO(THETA).6X.6HN(PH1).6X. 1 8HN(THETA). 3X.12HN(PH1.THETA) // (14. 1P5E13.4)) 38 HN(THETA). 3X.12HN(PH1.THETA) // (14. 1P5E13.4)) 1 8HN(THETA). 3X.12HN(PH1.THETA) // (14. 1P5E13.4)) 7 FORMAT (1H1.2X.1H1.5X.6HO(PH1).6X.8HO(THETA).6X.6HN(PH1).6X. 7 FORMAT (1H1.2X.1H1.5X.6HO(PH1).4X.1OHSIG(THETA).2X. 1 8HN(THETA). 3X.12HN(PH1.THETA) // (14. 1P5E13.4)) 2 15HSG(PH1.THETA).2X.8HSIG(PH1).4X.1OHSIG(THETA).2X. 1 15HSG(PH1.THETA).2X.8HSIG(PH1).4X.1OHSIG(THETA).2X. 2 16HSG2(PH1.THETA).// (14. 1P6E13.4)) 2 16HSG2(PH1.THETA).// (14. 1P6E13.4)) 2 16HSG2(PH1.THETA).// (14. 1P6E13.4)) 2 16HSG2(PH1.THETA).// (14. 1P6E13.4)) 2 16HSG2(PH1.THETA).// (14. 1P6E13.4)) 30 0000 </pre>	FURMALLINIA IZAA BUREGIUNA	UCTLELI (UNS AND INIERNAL	121200000
<pre>2 /// 3x+IH! 6 // 4 // (14, 6E13,4)) 0000 WRITE (6, 735) (1, QFE(1), QTH(1), ENFE(1), ENTH(1), ENFT(1), 0000 1 1 = 1.0) 35 FORMAT (1H1,2x+1H1,5x,6HQ(PH1),6X+8HQ(THETA),6X,6HN(PH1),6X+ 00000 1 8HN(THETA), 3x+12HN(PH1,THETA) // (14, 1P5E13,4)) 0000 1 8GTH2(1), SGFT2(1), 1 = 1.0) 1 5GTH2(1), SGFT2(1), 1 = 1.0) 2 7 FORMAT (1H1,2X+1H1,4X,8HSIG(PH1),4X,10HSIG(THETA),2X+ 1 13HSG(PH1,THETA),2X,8HSG2(PH1),4X,10HSIG(THETA),2X+ 2 14HSG2(PH1,THETA)// (14, 1P6E13,4)) 0000</pre>		CILCON CONCERNENCIES CONCERNENCE	
WRITE (6. 735) (1. QFE(1). QTH(1). ENFE(1). ENTH(1). ENFT(1). 0000 1 = 1.N) 35 FORMAT (1H1.2X.1H1.5X.6HQ(PH1).6X.8HQ(THETA).6X.6HN(PH1).6X.0000 1 8HN(THETA). 3X.12HN(PH1.THETA) // (14. 1P5E13.4)) 8HN(THETA). 3X.12HN(PH1.THETA) // (14. 1P5E13.4)) WRITE (6. 737) (1. SiGFE(1). SIGTH(1). SIGFT(1). SGFE2(1). 9000 1 SGTN2(1). SGFT2(1). I = 1.N) 1 SGTN2(1). SGFT2(1). I = 1.N) 1 SGTN2(1). SGFT2(1). I = 1.N) 2 TORMAT (1H1.2X.1H1.4X.8HSG2(PH1).4X.10HSIG(THETA).2X. 1 TSHSG(PH1.THETA).2X.8HSG2(PH1).4X.10HSIG(THETA).2X. 1 SHSG2(PH1.THETA).// (14. 1P6E13.4)) 2 T4HSG2(PH1.THETA).// (14. 1P6E13.4)) 0 0000		1997494MW([]96790AM(MAL]9079 71 114 - 4613 44 4	22120000
<pre>write (6. 735) (1. QFE(1). QTH(1). ENFE(1). ENTH(1). ENFT(1). 0000 1 1 = 1.N) 35 FORMAT (1H1.2X.1H1.5X.6HQ(PH1).6X.8HQ(THETA).6X.6HN(PH1).6X.0000 1 8HN(THETA). 3X.12HN(PH1.THETA) // (14. 1P5E13.4)) 0000 write (6. 737) (1. SigFe(1). SigTH(1). SigFt(1). SGFE2(1). 0000 1 SGTN2(1). SGFT2(1). 1 = 1.N) 1 SGTN2(1). SGFT2(1). 1 = 1.N) 2 TORMAT (1H1.2X.1H1.4X.8HSG2(PH1).4X.10HSIG(THETA).2X. 1 TSHSG(PH1.THETA).2X.8HSG2(PH1).4X.10HSIG(THETA).2X. 0000 2 14HSG2(PH1.THETA)./ (14. 1P6E13.4))</pre>	/w (90) 4 10 J 50077 5 VC 6 / W 1 301 1 1000		2730
<pre>1 I = 1.N) 35 FORMAT (1H1.2X.1H1.5X.6HQ(PHI).6X.8HQ(THETA).6X.6HN(PHI).6X. 35 FORMAT (1H1.2X.1H1.5X.6HQ(PHI).6X.8HQ(THETA).6X.6HN(PHI).6X. 1 8HN(THETA). 3X.12HN(PH1.THETA) // (14. 1P5E13.4)) WRITE (6. 737) (1. SIGFE(I). SIGTH(I). SIGFT(I). SGFE2(I). 1 SGTH2(I). SGFT2(I). I = 1.N) 37 FORMAT (1H1.2X.1H1.4X.8HSG2(PHI).4X.1OHSIG(THETA).2X. 1 15HSG(PHI.THETA).2X.8HSG2(PHI).4X.1OHSIG(THETA).2X. 2 14HSG2(PHI.THETA)// (14. 1P6E13.4)) 0000</pre>	WRITE (6, 735) (1, QFE(1), QTH(1	<pre>[] ENFE(I), ENTH(I), ENFT(I),</pre>	00002740
<pre>35 FORMAI (1H1.2X*1H1.5X*6H4(FH1).6X*6H4(THE1A).6X*6H4(FHL).2X*6H4(FHL).2X*6H4(FHL).7X*6H4(FHL).7X*6H4(FHL).7X*6H4(FHL).7X*6H4(FHL).7X*0H4(FHL).2X*6H4(FHL).7X*6H4(FHL).7X*6H4(FHL).7X*0H4(FHL).2X*6H4(FHL).7X*6H4(FHL).7X*6H4(FHL).7X*6H4(FHL).7X*6H4(FHL).7X*0H4(FHL).2X*6H4(FHL).7X*6H4(FHL).7X*0H4(FHL).2X*6H4(FHL).7X*0H4(FHL).7</pre>			2745
WRITE (6. 737) [1. ©1GFE(1). SIGTH(1). SIGFT(1). SGFE2(1). 0000 1 SGTW2(1). SGFT2(1). I = 1.N) 0 0-0 37 FORMAT (1M1.2X*1M1.4X.8HSIG(PH1).4X.10HSIG(THETA).2X. 0 0-0 1 ISHSG(PH1.THETA).2X.8HSIG(PH1).4X.10HSIG(THETA).2X. 0 0000 2 14HSG2(PH1.THETA)// (14. 1P6E13.4) 0 0000		X48HQ[HE!A]+6X46HN[PH]}+6X4 // [[4.]P5F]3.4]]	00002755
WRITE (6, 737) (1, SIGFE(1), SIGTH(1), SIGFT(1), SGFE2(1), 0000 1 SGTN2(1), SGFT2(1), I = 1.N) 37 FORMAT (1M1.2X,1M1.4X,8HSIG(PH1).4X,10HSIG(THETA).2X, 0000 1 15HSG(PH1.THETA).2X,8HSG2(PH1), 4X,10HSG2(THETA).2X, 00000 2 14HSG2(PH1.THETA)// (14, 1P6E13.4)) 0 0000	•		2759
<pre>1 SGTH2(I), SGFT2(I), I = 1,N) FORMAT (IN1,2X+1M:+4X,8HSIG(PHI),4X+10HSIG(THETA),2X+</pre>		STH(I) SIGFT(I) SGFE2(I)	ő
FORMAL (IN1.2X.1HL.4X.8HSLG(PHL).4X.10HSLG(THETA).2X. 1 13HSG(PHL.THETA).2X.8HSG2(PHL).4X.10HSG2(THETA).2X. 2 14HSG2(PHL.THETA)// (14. 1P6E13.4)) 0000	.		0 0-2765
14HSG2(PHI+THETA)// (14+ 196E13+4)) 0000	-	94X9_10H516(HE A) 92X9 _ & & _ 10H5G9 / THETA / _ 9X_	00002770
2829		196E13.4)	00002780
			2829

.

· -268-

	12/ fill / acc.acc.3ca	
051		2840
	IF (NTH) 753.751.753	2850
751	FR = FR + 1	2852
	EN	0 2854
752	W	2856
	990	2658
	READ (NTPW) KK+N+THETX+(USUM(1)+ I = 1+2550)	00002860
755	I = 1.N	2900
) = 503 = (2910
	ĥ	2920
	H	2930
) = SQ4 =	2940
	# 205 #	2950
•	* +205 × (2960
	= SQ6 =	2970
-	= 200 =	2980
	= SQ6 =	2990
	≠ 205 =	3000
756	ENT(() = SQ6 + ENT(()	3010
	60 TO 730	3020
758	IF (SL2) 815•820•815	3040
815	EN.	00003060
	0.) 60 70 755	3065
	GO_TO_850	3070
U	l	3080
820	ND (NTPR)	00003090
	DO 830 I × 1, N	3100
	nschw(I) = nschw(I) + schwn(I)	0 0 3101
	H	00003102
•	+ (I)WOSH =	00000103
	= EMFE(1) +	00003104
	= EWTH(I) + (00003105
	# EMFT(1) +	00003106
	+ ENFE(I) + SUMN(I	00003101
	= ENTH(1) +	00003108
•	ENFILL + SUMNLI	00003106
	= SIGFE(I) +	00003110
	I) = SIGTH(I) +	00003111
	I) * SIGFT(I) +	00003112
	+ 01111 +	00003113
	+ (I)+ + + + + + + + + + + + + + + + + + +	00003114
	SGFEZ(I) = SGFEZ(I) + SUMN(I+ZIO)	00003115
	Variable Theta, Summing (Cont)	

00003114 91127 91220 91220 9120 9150	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	4 • • •	
SGTH2(I) = SGTH2(I) = SGFT2(I) = SUMN(I+2400) B30 SGFT2(I) = SGFT2(I) + SUMN(I+2400) G0 TO 815 SUMN(I+2400) - B50 CONTINUE - - SUMN(I+2400) B60 JKL - JKL 1 B60 JKL - JKL - JKL B60 JKL - - SG0 - SG0 B60 JF - JKL - - SG0 - SG - - - SG - - SG - SG - SG - </td <td>THE SCIENCE STREET STREET STREET STREET SCIENCE SCIENC</td> <td></td>	THE SCIENCE STREET STREET STREET STREET SCIENCE SCIENC	

Variable Theta, Summing (Cont)

:

. . . .

	SIBFTC CRT C CRT POCKAGE 6J-148 ++ LINK	•0	01000000
	SUBROUTINE PIX		- 0 C
,	DIMENSION USUM(150), VSUM(150), WSUM(150), EMFE(150), Emft(150), Enfe(150), ENTH(150), ENFT(150), SIGFE(150)	EMTH(150).	000000000000000000000000000000000000000
	• SIGFT(150)• GFE(250)• GTH(150)• • SGET2/160)		0000000
L	DIMENSION XS		
,	DA(35), NTPW, NTPR, KTPW, KTPR, SL2, ELAM2, S1,	S2+	00100000
I	I KKE+ 503+ 504+ 506+ ENF+ IFR+ KLM Common 5da(3225)+ Z0+Z+ A2+ B2+ C?+ G2		01100000
U 1	EQUIVALENCE (SDA(2498). XSI). (SDA(1976).	R)	00100000000000000000000000000000000000
υ	CALL SCOUTV		150
U	DO 300 [X =]+KKE Read {ntdw]kk=N-THFK={!!SIM{[]}-[=]-2550]- DE! - YSI- D		160 200 200
U			220
L	I J X		224
<u>ر</u>	29 WRITE (16+30) IX WDITE (14-34) DEI		500 570 570
	30 FORMAT (1H1+38X+7HREGION +13+10X+14HSHELL GEOMETRY) 35 FORMAT (20X+17HAXIAL LENGTH VS R+10X+6HDEL = +F7+4+10X+ 20H+	1	00000250 57400000260
			270 280
	E (16+45) AT(36X+38HR RADIUS OF		290 00000300
U			310
	0) -34X.7HREGION .13.1 -18H+ - U (MERIDION	, LIAL).	330 00000340 00000350
	I IUX+ZGHT - W (NOKMAL IU KET+ SUKF#) } 65 Call Lineg (1H++ Stax* Usum+ N) Call Lineg (1H0+ Stax+ Vsum+ N)		0,00,360 370 380
	LINEG (1H*, STAX, WSUM, E (16.70)	-	0 0 3 90

CRT Package

<pre>KTHREGION *13*10X*23HMEMBRANE FORCES (LB/IM)) 000000 H N (MERIDIONAL)*10X*23HMEMBRANE FORCES (LB/IM)) 00000 STAX* ENFF: N: \$85) STAX* ENFF: N: \$85) STAX* ENFT: N: \$85) STAX* ENFT: N: \$85) STAX* ENFT: N: \$85) STAX* ENFT: N: \$85) STAX* ENFT: N: \$85) STAX* ENFT: N: \$85) STAX* ENFT: N: \$85) STAX* ENFT: N: \$85) STAX* ENFT: N: \$85) STAX* ENFT: N: \$85) STAX* ENFT: N: \$85) STAX* ENFT: N: \$85) STAX* ENFT: N: \$85) STAX* ENFT: N: \$100) STAX* OFE N0 STAX* OFE N0</pre>	781 1	And the second of the second o	420
<pre>K+THREGIOM *13.10X.23HWEMBRANE FORCES (LB/IN) 1 00000 H</pre>	~		• •
<pre>(INPLANE SHEAR FORCE)) . STAX: ENT: N. 585) . STAX: ENT: N. 585) . STAX: ENT: N. 585) . STAX: ENT: N. 585) . STAX: ENT: N. 585) . STAX: ENT: N. 585) . STAX: ENT: N. 5100, . STAX: ENT: N. 5100) . STAX: ENT: N. 5100) . STAX: ENT: N. 5100) . STAX: ENT: N. 5100) . STAX: ENT: N. 5100) . STAX: ENT: N. 5100) . STAX: ENT: N. 5100) . STAX: ENT: N. 5100) . STAX: ENT: N. 5100) . STAX: ENT: N. 5100) . STAX: ENT: N. 5100) . STAX: ENT: N. 5100) . STAX: ENT: N. 5100) . STAX: ENT: N. 5100) . STAX: SIGT: N. 5115) . STAX: SIGT: N. 5130) . STAX: SIGT: STAX:</pre>	7HREGION +13+10X+23HMEMBRANE - N: MEDIDIOMALL - 10X-23H0 -	(LB/IN))	00000450
<pre>** STAX: ENFF: N) ** STAX: ENFT: N: 585) ** STAX: ENTH: N: 585) ** STAX: ENTH: N: 585) ** OPDOD ** THREGION : 13.10X.23HBENDING MOMENTS IN-LB/IN) 00000 ** STAX: EMFT: N: 5100) ** STAX: EMFT: N: 5100) ** STAX: EMFT: N: 5100) ** STAX: EMFT: N: 5100) ** STAX: EMTT: N: 5100) ** STAX: STGFT: N: 5130) ** STAX: S</pre>	- N (INPLANE SHEAR FORCE))	•	0.00 470
<pre>x TAX, ENFT, N, S85) X THREGION *13.10X,24HBENDING MOMENTS IN-LB/IN) 00000 TH - M (MERIDIOMAL) *10X,23H0 - M (CIRCUMFERENTIAL), 00000 TH STAX, EMFT, N, S100) STAX, EMTH, N) STAX, EMTH, N) STAX, EMTH, N) STAX, EMTH, N) STAX, EMTH, N, S100) STAX, EMTH, N, S100) STAX, EMTH, N, S100) STAX, EMTH, N, S100) STAX, EMTH, N, S100) STAX, EMTH, N, S100) STAX, EMTH, N, S100) STAX, EMTH, N, S100) STAX, EMTH, N, S100) STAX, EMTH, N, S100) STAX, EMTH, N, S100) STAX, EMTH, N, S100) STAX, EMTH, N, S100) STAX, EMTH, N, S100) STAX, EMTH, N, S100) STAX, EMTH, N, S115) STAX, OTH, N, S115) STAX, OTH, N, S115) STAX, OTH, N, S115) STAX, STAX</pre>	(144) STAX, ENFE,		
IX X*7HREGION • 13.10X*24HBENDING MOMENTS IN-LB/IN) 00000 H+ - M (MERIDIOMAL) • 10X*23HG - M (CIRCUMFERENTIAL) • 00000 + STAX* EMFH • N) • STAX* EMFH • N) • STAX* EMTH • N) • STAX* EMTH • N) • STAX* EMTH • N) • STAX* EMTH • N) • STAX* OTH • N • S100) • STAX* OTH • N • S115) • STAX* SIGFF N • S130) • STAX* SIGFF N • S130) • STAX* SIGFF N • S130) • STAX* SIGFT N • S130) • STAX* SIGFT N • S130) • STAX* SIGFT N • S130) • STAX* SIGFT N • S130)	(1H++ STAX+ ENFT+ N+ 585		0
IX ************************************	101		
<pre>X: THREGION .13.10X.24HBENDING MOMENTS IN-LB/IN) 00000 TH: STAX: EMF: N) C: STAX: EMF: N) C: STAX: EMFT: N: \$100) C: STAX: OFF: N) C: STAX: STAY: OFF: N) C: STAX: STAY: STA</pre>	100		526
<pre>X,7HREGION +13+10X+24HBENDING MOMENTS IN-LB/IN) 00000 H+ - M (MERIDIOMAL)+10X+23HG - M (CIRCUMFERENTIAL). 00000 TWISTING)) + STAX+ EMFH N) + STAX+ EMFH N) B+ STAX+ EMFH N) B+ STAX+ EMFH N) B+ STAX+ EMFT N+ 3100) IX IX IX X+7HREGION +13+10X+23HG - G (CIRCUMFERENTIAL)) 00000 ++ - G (MERIDIOMAL)+10X+23HG - G (CIRCUMFERENTIAL)) 00000 ++ - G (MERIDIOMAL)+10X+23HG - G (CIRCUMFERENTIAL)) 00000 ++ - SIG (MERIDIOMAL)+10X+23HG - SIG (CIRCUMFERENTIAL)) 00000 C (STAX+ OTH+ N+ \$115) C STAX+ SIGFT+ N+ \$130) C STAX+ SIGFT+ N+ \$130) C STAX+ SIGFT+ N+ \$130) C STAX+ SIGFT+ N+ \$130) C C RT Package (Cont)</pre>		•	}
<pre>H+ - M (MERIDIOMAL).!OX.23HG - M (CIRCUMFERENTIAL). 00000 (TWISTING))STAX: EMFH. N)STAX: EMFT. N. \$100)STAX: OTH. N. \$115)STAX: SIGFT. N. \$130)STAX: SIGFT. N. \$130]STAX: SIGFT. N. \$130</pre>	+7HREGION +13+10X+24HBENDING	ENTS IN-LB/IN)	000000220
<pre>(TWISTING))</pre>	5X+18H+ - M (MERIDIONAL)+I0X+23H0 -	-	00000200
<pre>************************************</pre>	- M (TWISTING))		540
<pre>IX STAX, EMFT, N, \$100) IX IX IX IX IX IX IX IX IX IX IX IX IX</pre>	(IH++ OTAX+ EMFE+		
IX X THREGION (13,10X,29HTRANSVERSE SHEAR FORCES_LB/IN)00000 H - 0 (MERIDIOMAL) (10X,23H0 - 0 (CIRCUMFERENTIAL)) 00000 STAX: 0FE: N) STAX: 0FE: N) STAX: 0FE: N) X THREGION (13,10X,33HSTRESSES AT THE INNER SURFACE 00000 H - SIG (MERIDIONAL) (10X,25H0 - SIG (CIRCUMFERENTIMO00000 STAX: SIGFT: N) STAX: SIGFT: N, S130) CRT Package (Cont) CRT Package (Cont)	(INU+ ULAX ENTH+ N)	· · · · · · · · · · · · · · · · · · ·	
IX X. THREGION .13.10X.29HTRANSVERSE SHEAR FORCES LB/IN1000000 H - Q (MERIDIOMAL).10X.23HQ - Q (CIRCUMFERENTIAL)) 000000 STAX. QTH. N. S115) 0 (CIRCUMFERENTIAL)) 00000 X. THREGION .13.10X.33HSTRESSES AT THE INNER SURFACE 00000 H - SIG (MERIDIONAL).10X.25HQ - SIG (CIRCUMFERENTIA000000 SIG (SHEAR)) H - SIG (MERIDIONAL).10X.25HQ - SIG (CIRCUMFERENTIA000000 SIG (SHEAR)) STAX. SIGFT. N. S130) 0.00. IX CRT Package (Cont) IX CRT Package (Cont)	(INA ULAN ENTIN NO ULUC		0
IX X.THREGION .I3.10X.29HTRANSVERSE SHEAR FORCES LB/IN100000 H Q (MERIDIOMAL).10X.23H0 - Q (CIRCUMFERENTIAL)) 00000 . STAX. OFE. N) D. STAX. OFE. N) IX IX X.THREGION .I3.10X.33HSTRESSES AT THE INNER SURFACE 00000 H SIG (MERIDIONAL).10X.25H0 - SIG (CIRCUMFERENTIM00000 H SIG (MERIDIONAL).10X.25H0 - SIG (CIRCUMFERENTIM00000 STAX. SIGFT. N) . STAX. SIGFT. N. SI30) CRT Package (Cont) IX CRT Package (Cont)			
<pre>K+THREGION +13+10X+29HTRANSVERSE SHEAR FORCES LB/IN)00000 H+ - 0 (MERIDIOMAL)+10X+23H0 - 0 (CIRCUMFERENTIAL)) 00000 + STAX+ 0FE+ N) 0. STAX+ 0FF+ N+ 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X</pre>	6-1051 T		
<pre>K+THREGION #13*10X*29HTRANSVERSE SHEAR FORCES_LB/IN)00000 H+ - Q (MERIDIONAL)*10X*23H0 - Q (CIRCUMFERENTIAL)) 00000 + STAX* OFE* N) 0. STAX* OFF* N) 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X</pre>	•		
<pre>H+ - 0 (MERIDIONAL).10X.23H0 - 0 (CIRCUMFERENTIAL)) 00000 + STAX.0FE.N) 0. STAX.0TH.N. \$115) 1X 1X THREGION .13.10X.33HSTRESSES AT THE INNER SURFACE 00000 H+ - SIG (MERIDIONAL).10X.25H0 - SIG (CIRCUMFERENTIMO0000 SIG (SHEAR)) + SIAX. SIGFT.N) 0. STAX. SIGFT.N) 1X CRT Package (Cont)</pre>	X+7HREGION		00000020
<pre>+. STAX: OFE: N) 0. STAX: OFE: N) 1X 1X 1X 1X +. STAX: OTH: N. \$115) 1X +. SIG (MERIDIONAL): 10X:25H0 - SIG (CIRCUMFERENTIMODODO H+ - SIG (MERIDIONAL).10X:25H0 - SIG (CIRCUMFERENTIMODODO H+ - SIG (SHEAR) 51 (SHEAR)</pre>	X.18H+ - Q (MER		000000000
0. STAX: 0TH: N. S115) 0 0 1X X. THREGION .13.10X.33HSTRESSES AT THE INNER SURFACE 00000 H SIG (MERIDIONAL).10X.25H0 - SIG (CIRCUMFERENTIA00000 SIG (SHEAR) 1 SIG (SHEAR) 1 STAX: SIGFE: N) STAX: SIGFT: N: S130) 0.00. IX CRT Package (Cont)	(1H+, STAX, OFE, N)		670
70) 120) IX 125) 1.28x,7HREGION •13+10X+33HSTRESSES AT THE INNER SURFACE 00000 K.20H+ - SIG (MERIDIONAL)+10X+25H0 - SIG (CIRCUMFERENTIMO0000 K.20H+ - SIG (SHEAR)) (1H++ STAX+ SIGFE+ N) (1H++ STAX+ SIGFE+ N) (1H++ STAX+ SIGFT+ N) (1H++ STAX+ S	(1H0, STAX, 0TH, N, 511		0
1X X.7HREGION .13.10X.33HSTRESSES AT THE INNER SURFACE 00000 H+ - SIG (MERIDIONAL).10X.25H0 - SIG (CIRCUMFERENTIA00000 SIG (SHEAR)) SIG	6.7		069
IX X.7HREGION .13.10X.33HSTRESSES AT THE INNER SURFACE 00000 H+ - SIG (MERIDIONAL).10X.25H0 - SIG (CIRCUMFERENTIMO0000 SIG (SHEAR)) SIG			100
<pre>X.THREGION .13.10X.33HSTRESSES AT THE INNER SURFACE 00000 H+ - SIG (MERIDIONAL).10X.25H0 - SIG (CIRCUMFERENTIA00000 SIG (SHEAR)) SIG (SHEAR)) SIG (SHEAR)) SIG (SHEAR)) * STAX. SIGFT N) * STAX. SIGFT N. \$130) 1X IX</pre>		• :	011
(15X-2004 - SIG (MERIDIONAL).10X-25H0 - SIG (CIRCUMFERENTIA00000 (15X-2004 - SIG (MERIDIONAL).10X,25H0 - SIG (CIRCUMFERENTIA00000 15H ⁺ - SIG (SHEAR)) NEG (1H ⁺ STAX: SIGFE N) NEG (1H ⁺ STAX: SIGFT N: \$130) NEG (1H ⁺ STAX: SIGFT N: \$130) 16.135) IX 16.135) IX 16.140) CRT Package (Cont)			720
K.20H+ - SIG (MERIDIONAL).IOX.25H0 - SIG (CIRCUMFERENTIA00000 - SIG (SHEAR)) (IH+ STAX: SIGFE. N) (IH+ STAX: SIGFE. N) (IH+ STAX: SIGFE. N) (IH+ STAX: SIGFE. N) (IH+ STAX: SIGFT. N) (IH+ STAX: SIGF	Intereater integion +13+104+33MSTRESSES	THE INNER	06200000
- SIG (SHEAR)) (1)+• STAX: SIGFE• N) (1)+• STAX: SIGFT• N; S130) (1)+• STAX: SIGFT• N; S130) 0) 35) 1X 40) CRT Package (Cont)	JOHT - CIG (MEDIULUMA)), JOY, DENO		
(1H+• STAX• SIGFE• N) (1H•• STAX• SIGFT• N) (1H•• STAX• SIGFT• N• \$130) 70) 135) 1X 140) CRT Package (Cont)	- SIG (SHEAR) !		
(1H0. STAX. SIGTH. N) (1H*. STAX. SIGTT. N. \$130) 70) 135) 1X 140) CRT Package (Cont)	(IH4. STAX. STOFE. N)		
(1H*, STAX, SIGFT, N, \$130) 70) 135) 1X 140) CRT Package (Cont)	CIHO. STAX. SIGTH. NI	5° - 1994 L	084
70) 135) 1X 140) CRT Package (Cont)	(THE STAX SIGFT . N.		0-00-790
) 1X CRT Package (Cont)	101		
) 1X) CRT Package (Cont)			810
9 CRT Package (Cont)	-		82(
CRT Package (Cont)	[6+140)		830
	CRT Packag	(Cont)	

00	860 870	880 890	900 910	00	ç 0	ç
00840 850	800 800	80 80	6 6 0	00	50	6
000	000		0			
ы С Е	IT IA					
JRFA	EREN					
я 2	UMFI					
DUTE	CIRC					
Ŧ	ະຍ					
AT T	- 51					
ES	0H					
RESS	X+25					
HSTI	•10		45)			
(•33	VAL)	~ ~	2			
•101	010	z z	Z .			
• 13	ERI	SFE2	3FT2			
NOI	G IN		й •			
IREG	- S -	STAX STAX	TAX			
X•7+	- 918					
. 28	120	HT HT	HT O			
135 FORMAT (1H1,28X,7HREGION +13,10X,33HSTRESSES AT THE OUTER SURFACE 0000840 1861 1	140 FORMÁT (15X+20H+ - SIG (MERIDIONAL)+10X+25H0 - SIG (CIRCUMFERENTIADODOD860 1L)+10X+15H+ - SIG (SHEAR)) 870	145 CALL LINEG (1H+, STAX, SGFE2, N) Call Lineg (3H0, Stax, SGTH2, N)	CALL LINEG (1H*+) WRITE (16+70)	i ti	J	
TA	AT OX.			INT	Na	
5 FORMA	FORM		CALL		DETLON	END
35 ±	104	45		300 CONTINUE	2	
	-	-		ບ້	່ບ	

CRT Package (Cont)

PRECEDING PAGE SHARM BOLL PAGE

APPENDIX IIIB

PROGRAM NOMENCLATURE

In this section are listed all variables that are used in the FORTRAN IV program and their related definitions. The appropriate mathematical equivalents from Section 1.0. are included where applicable.

A 4-x-4 matrix, defined in Equation 66, Section 1. 12; constant Α in conics computation AO Reference length (L) а 4-x-4 matrix, used to preserve A matrix for meridional A2 station 2 $\cos^2\theta_1$, variable in conics computations A2COS $\sin^2\theta_1$, variable in conics computations A2SIN AA2 Constant in conics computation ACCOS Variable in parabola computation COS(APHI), see APHI ACOSP 4-x-4 matrix, used to preserve A matrix for bottom AI discontinuity point Used in computing X distance for general discrete points, AJI GEOM Used in computing X distance for general discrete points, AK GEOM Thermal expansion coefficient for N summations ALF α Thermal expansion coefficient data for material 1 ALF1

ALF2		Thermal expansion coefficient data for material 2
ALF3		Thermal expansion coefficient data for material 3
ALFA		DEL/DPREV
ALFA2		ALFA **2
ALFI		Inner coefficient of thermal expansion/layer
ALF¢		Outer coefficient of thermal expansion/layer
AM		Value of signed variable
AMB2		$A^2 - B^2$ constant in hyperbola co- outation
AMU		Sign control variable in conics
ANGSP		Angle span for sphere-toroid, GEOM
ANX		Angle between the generator and axis of revolution, cone-cylinder, GEOM
APB2		$A^2 + B^2$ constant in ellipse computation
APHI		GEOM parameter for computing X distance in sphere- toroid shape
ASI		4-x-4 matrix, used to preserve A matrix at top, for open shell or discontinuity
ASINP		SIN(APHI) see APHI
ASN		4-x-4 matrix, used to preserve A matrix at bottom, for open shell or discontinuity
ASSIN		$\sin^2 \theta_1$, variable in parabola computation
AXL		Axial surface length
B		
В	b	4-x-4 matrix, defined in Equation 66, Section 1.12; constant in conics

•

B2	4-x-4 matrix, used to preserve A matrix for station 2; also used in stresses
B2MSMS	Variable in hyperbola computation
BB2	B ²
BCD	Three title cards read in executive program
BCIB	Boundary condition indicator, bottom, $(i = N)$ SDA data
BCIBM	Boundary condition indicator, bottom, ($i = N$) GDA data
BCIT	Boundary condition indicator, top ($i = 1$) SDA
BCITP	Boundary condition indicator, top ($i = 1$) GDA
BCOSP	COS(PHI0), sphere-toroid, GEOM, see PHI0
BETA	Cylindrical coordinate variable describing conics
BETADP	Second derivative of BETA
BETAP	Derivative of BETA with respect to angular variable of BETA description
BI	4-x-4 matrix, used to preserve B matrix for bottom discontinuity
BJR	Index in conics when subdividing cylindrical coordinate range
BM	Value of signed variable
BMU	Sign control variable in conics
вфт4	4-x-1 matrix, used to preserve solutiors for bottom discontinuity point
BP b ¹	First derivative of the membrane stiffness
BPHI	GEOM parameter used in computing X distances for sphere-toroid
BQ	Same as B2, see COMMON region, INTLD

BS1	4-x-4 matrix, used to preserve B matrix at top, for open shell or discontinuity
BSINP	SIN(PHI0), see PHI0
BSN	4-x-4 matrix, used to preserve B matrix at bottom, open shell or discontinuity
BTA2	Variable in the conics option
BTAP2	Variable in the conics option
<u>c</u>	
С	4-x-4 matrix, defined in Equation 66, Section 1.12
C2	4-x-4 matrix, used to preserve C matrix for station 2
CHI	4-x-4 discontinuity matrix, Equation 57
CHII	4-x-4 discontinuity matrix, Equation 58
CHI2	4-x-4 discontinuity matrix, Equation 59
CI	4-x-4 matrix, used to preserve C matrix for bottom discontinuity
СфДІМА	Parabolic curve fitting subroutine (see page 178, Section 37.3)
COSFI	COS(ANX) used to compute WTH for cone-cylinder, GEOM
COSNT	$COS(\eta_{\theta})$ used in Fourier summing
CS1	4-x-4 matrix, used to preserve C matrix at top, for open shell or discontinuity
CSN	4-x-4 matrix, used to preserve C matrix at bottom, for open shell or discontinuity
D	
D d	Membrane stiffness (dimensionless in program), Equation 33
DA	General data area, read in executive program

DAL	Section properties data/region, read in DATLYR subroutine
DATLDS	Data loads subroutine sets PN, PFE, PTH, TBT, TTP (pressure and temperature loads)
DATLNK	Regional data read subroutine, sub-executive program for GEOM, DATLDS, DATLYR
DATLYR	Section properties subroutine
DDL	Used in GEOM (2040)
DECRD	Data read subroutine (see explanation page 79)
DEL A	Interval size between meridional stations
DEL2X	2. * DEL
DELSQ	DEL ** 2
DELTH	Circumferential increment for Fourier summing for loads
DENM	Denominator for computing GAMA in GEOM subroutine
DENMP	Denominator quantity for finite difference first derivatives in discrete points option
den¢m	Denominator for computing WFE in GEOM subroutine
DENOMP	Denominator for finite difference and derivatives in the discrete points option
DINTRP	Linear double interpolation subroutine
DIS1, 2, 3, 4	Discontinuity matrices formed at top discontinuity point in PANDX
DLD	Data area in DATLDS subroutine/region
DLR	Used in GEOM (2060); intermediate radial increment in d'screte point option
DLS	Used in GEOM (2062); intermediate arc length increment in discrete point option

•

DLT	Used in GEOM (2034); axial increment of input in discrete point option
DNA	Distance from neutral axis
DNA2	DNA for second surface where stresses are computed
DNAX	DNA at combined thickness and temperature stations
DP d ¹	Derivative of the bending stiffness
DPREV	DEL for previous region
E	
E	4-x-4 matrix (see Equation 41)
EO E _o	Reference Young's modulus (P/L ²)
E1	Modulus of elasticity for N summations
E2	El for second surface where stresses are computed
EC	4-x-l auxiliary storage matrix
ECX E _{cc}	Eccentricity of reference surface at discontinuity junction
EI	Inner modulus of elasticity/station/layer
EIFH	Thickness indicator + 1 = constant all stations in a layer, - 1 = discrete values given at THSTA
EJI	4-x-4 matrix, used to preserve J matrix for bottom discontinuity (Equation 51) B & R
EK d	Bending stiffness (dimensionless in program), Equation 34
EKK	Number of regions
ЕКТН	Fourier coefficient for bending distortion (Equation 24) B & R
ELAM2 λ^2	(H0/A0) ** 2
ELAY	Number of layers (six maximum)

ELD		4-x-1 matrix used at top discontinuity point
EM		Number of radii entered for discrete point geometry case
EMI	Ω	4-x-4 diagonal boundary force matrix (i = 1) (Equation 47)
EMIN	Ω	4-x-4 diagonal boundary force matrix ($i = N$) (Equation 47)
EM1X	Ω	EM1 when read as data in GDA area
EM2	н	4-x-4 matrix (Equation 50)
EM3	Λ	4-x-4 diagonal boundary displacement matrix (i = 1) (Equation 47)
EM3N	۸	4-x-4 diagonal boundary displacement matrix (i = N) (Equation 47)
EM3X		EM3 in GDA data area
EM4	J	4-x-4 boundary matrix (Equation 51)
EM5	£	4-x-1 boundary matrix (i = 1) (Equation 47)
EM5N	Ł	4-x-1 boundary matrix (i = N) (Equation 47)
EM5X		EM5 in GDA data area
EM6	f	4-x-l boundary matrix (Equation 51)
EMAT		Material indicator/layer (1, 2, or 3)
EMD	MD	Moment at bottom discontinuity point
EMFE	mę.	Bending moment per unit length, meridional direction
emfef	•	First derivative of EMFE
EMFT	^m ξθ	Bending moment, shear
emftf	•	First derivative of EMFT
EMK		Spring value-moment at location SPRL
EMNI		EM1N, when read as data in GDA area

EMN3	EM3N, when read as data in GDA area
EMN5	EM5N, when read as data in GDA area
EMT m _T	Temperature moment, Equation 36, Section 1.7
emth m _o	Bending moment per unit length, circumferential direction
EMTHP	First derivative of EMTH
EMTP	First derivative of EMT
EN N	Number of meridional points/region (150 maximum)
ENA 1	Number of thermal expansion coefficients given for first material (10 maximum)
ENA2	Number of thermal expansion coefficients given for second material (10 maximum)
ENA3	Number of thermal expansion coefficients given for third material (10 maximum)
ENE1	Number of Young's moduli given for first material (10 maximum)
ENE2	Number of Young's moduli given for second material (10 maximum)
ENE3	Number of Young's moduli given for unird material (10 maximum)
ENF n	Current Fourier component
ENFO	Initial Fourier component
ENFE t _ę	Fourier component for membrane force, meridional direction
ENFI	Subsequent Fourier components (10 maximum)
enfør	Fourier component print values (3 possible)
ENFT ^t §0	Fourier coefficient for membrane shear force

ENMAT	Number of materials (3 maximum)
enøgr	Number of gradient stations (10 maximum)
en φ t	Number of stations for temperatures given in TBOT and TTOP
елфтн	Number of stations for thicknesses given in TH (20 maximum)
ENT ^t T	Temperature load (nondimensional) Equation 35, Section 1.7
ENTERP	Single, linear interpolation subroutine
ENTH	Number of theta values to use in Fourier summing for loads, also Fourier coefficient for membrane force, circumferential direction
Еф	Outer modulus of elasticity/station/layer
EX	Constant data indicator. Use only when $SUM = 0$. 0. = no constants, - = all constants, + 1 = section properties and temperature loads constant, + 2 = symmetrical pressure loads, no temperature loads. SDA(1)
<u>F</u>	
F	4-x-4 matrix, see (Equation 41) B & R
FEFE ¢ _{\$}	Fourier coefficient for rotation, meridional
feth 🗛	Fourier coefficient for rotation, circumferential
FETHP	First derivative of FETH
FI	4-x-1 matrix, used to preserve f matrix (Equation 51, Section 1.12) for bottom discontinuity point
G	
G	4-x-1 matrix g in Equation 66, Section 1.12
G2	4-x-1 matrix, used to preserve g matrix for station 2, also used in stresses

GA		4-x-4 matrix, G in Equation 41, Section 1.8
GAM		Current GAMA value
GAM2		GAM ** 2
GAMA	Y	Geometry parameter at stations
GAMRX		Intermediate variable for sign check
GDA		Data area in GEOM subroutine/region
GECX		Eccentricity of reference surface at bottom discontinuity point
GEMK		Spring value - moment
сефм	ž	Geometry subroutine
сефмі		GMI in SDA region
GI		4-x-1 matrix, used to preserve g matrix (Equation 66, Section 1.12 for bottom discontinuity point
GMI		Geometry indicator. 1. = cone-cylinder, 2. = sphere- toroid, 3. = general discrete points
GPSI	ψ	Angle of inclination at discontinuity (degrees)
GQ		4-x-l matrix, used to preserve g matrix for station 2, see G2
GR		Values of gradients at GSTA stations and internal interfaces
GS1		4-x-1 matrix, used to preserve g matrix when $I = 1$ at open boundary or discontinuity
GSN		4-x-l matrix, used to preserve g matrix when I = N at open boundary or discontinuity
GSPRL		Location of spring (one per region)
GSTA		Temperature gradient stations (same for each interface)

GUK		Spring value - & direction
GVK		Spring value - 0 direction
GWK		Spring value - L direction
H		
HO	h _o	Reference thickness (inches)
ĤI		4-x-4 matrix, used to preserve H matrix (Equation 51, Section 1.7) for bottom discontinuity point
ī		
I	i	Index, meridional station counter
11		Index
12		Index discrete point option
IBCB		Fixed point value for BCIBM
IBCT		Fixed point value for BCITP
IBCX		Fixed point value, either IBCB or IBCT
IERR		Error indicator from matrix inversion subroutine
IFR		Counter, ENFOR subscript
IGM.		Fixed point value for GMI
ιGφ		Computed GO TO index in DATLDS, EFN 420. = 1, pressures, = 2, temperatures
п		DATLDS - subscript to send temperature values to TBT or TTP PIX - index and subscript for forming an array of station numbers; GEOM - Index, discrete point option
IJD		Index]
IJTD		discrete point option Index

•

IL	GEOM - DO index for EFN 80 DATLDS - TLOC subscript to pick up NDSTA for next ENF/load increment = 1
INA1, 2, 3	Fixed point form of ENA1, 2, 3
INC	Increment between temperature stations
INDC	Fixed point form of loads indicators
INE1, 2, 3	Fixed point form of ENE1, 2, 3
INTLD	Subroutine which computes deflections, internal loads and stresses
INV	Matrix inversion subroutine
IPRS	Fixed point form of PILD, the pressure indicator
IRGN	Region number in argument list of GEOM subroutine
ISDA	SDA location for storing pressures, incremented by PN dimension
ISEC	Region DO loop index in PANDX subroutine
ITB	TAB subscript for pressure tables, incremented by PNTB dimension
ITBT	Fixed point form of TIBT, bottom surface temperature indicator
ITTP	Fixed point form of TITP, top surface temperature indicator
IX	DATLDS - subscript used to store loads in SDA data area PIX - DO loop index for region counter
IXL	Path indicator in INTLD for second interface stress calculations
IXX	Fixed point form of material indicator/layer
IZ	Subscript for Z solution; used to step backwards through a region

Ţ	
J	DO loop index, DATLDS at EFN 440, etc.
JI	DO loop index, GEOM at EFN 78
JKL	THETA subscript in SUMS subroutine
JR	Index
JTD	Index discrete point option
JTDì	Index
K	
К	DO loop index, PANDX at EFN 265, etc.
K0	Subscript for separating stations and values in DATLDS tables
Kl	Current table location in loads table
K2	Upper limit of table values for present Fourier component of load
KK	SUMS - DO loop index, region counter; PIX - region number read from tape and INTLD - DO loop index, region counter; GEOM
KKE	Fixed point form of EKK, number of regions
KLM	Subscript for setting ENF to next ENFI value
KP1	DO loop limit in GEOM at EFN 78
KS	Number of temperature stations set in DATLDS at EFN 312
KTPR KTPW	Tape number 12 or 13 where SDA data is stored. On subsequent passes during Fourier summing the number are interchanged
КХ	Subscript of TAB used to pick up the number of stations in DATLDS

L	
L	DO loop index, PANDX at EFN 265, etc.
LO	Set at zero to permit zero subscripting of P, X, and Z matrices in PANDX and INTLD
Ll	Lower limit in DO loop for computing FETH in INTLD subroutine
LL	DO loop index, SUMS at EFN 520
LSP	Fixed point form of SPRL, spring location
M	
Μ	Fixed point form of EM, number of general discrete points in GEOM
MAD	Matrix addition subroutine
MLN	Index; discrete point option
ММ	DO loop upper level for discrete point geometry, GEOM at EFN 80
MM2	M-2
ММҮ	Matrix multiplication subroutine
MSP	Path indicator to skip stiffness calculations when there is no change from previous case
MSU	Matrix subtraction subroutine
MT	Fixed point form of the number of temperature stations, ENOT
МТН	Fixed point form of the number of thickness stations, ENOTH
N	
Ν	Fixed point form of EN, the number of meridional stations/region

NFE	Number of meridional stations for Fourier summing of the loads
NLAY	Fixed point form of ELAY, the number of layers/region
NLAYI	Number of interfaces, ELAY + 1.
NMAT	Fixed point form of ENMAT, the number of materials
NN	DO loop upper level for RHOX calculation in GEOM
NØGR	Fixed point form of ENOGR, number of gradient stations
NØSTA	Number of stations where loads are given
Nфтр	Tape number for Fourier components. 3 = several ENF's, 8 = one ENF value
NS	DO loop index, region number counter, DATLNK at EFN l
NSM	Index; discrete point option
NTH	Fixed point forms of ENTH, number of thetas to sum
NTPR)	Tape number 9 or 10 used during Fourier summing to
NTPW	store sums/region/theta
NX	Temporary save location when interchanging NTPR and NTPW
<u>¢</u>	
ф рехQ	Optional error exit subroutine. Used to take square root of the absolute value of a negative argument in GEOM
<u>P</u>	
P	Three-dimensional array (Equations 4, 4, 150) used to store the P matrices (Equation 74) at each meridional station/ region
P0	4-x-4 matrix for P at the (N - 1)st station of previous region
PANDX	Subroutine for generating the P and X matrices of Equation 74

PD	PD	Pressure at a point of discontinuity
PFE	Ρ _ξ	Fourier component for load in the meridional direction
PFET	В	Data table of PFE values, DLD data area
PFEX		Table location for PFE values for next Fourier component
PFLA	G	Print indicator
PHI0		Initial opening angle from vertical axis for sphere or toroid
PHIN		Final opening angle from vertical axis for sphere or toroid
PI		Determinant value, in argument list of INV subroutine
PILD		Pressure indicator for type of data in tables, see explanation of DLD data
PIX		CRT subroutine
PIXI		CRT indicator; plots curves when nonzero
РМ		COMMON location for preserving material properties data
PN	Р	Fourier component for load in the normal direction
PNTB	à	Data table of PN values, DLD data area
PNX		Table location for PN values for next Fourier component
рфі	¥	Poisson's ratio for the inner layer
рфіз		Poisson's ratio for the second stress layer
рфıs		Poisson's ratio/layer in DAL data area
рфіх		Temporary storage location for POI in INTLD at EFN 1002
PR¢		Intermediate variable for a sign check in GAMA computation of discrete point option
PSI	ψ	Discontinuity angle at the bottom of a region (degrees)
PSI0	Ψo	Angle at which load is applied at discontinuity point (degrees)

PSIM	4-x-1 matrix, moment at discontinuity point
FSIP	4-x-1 matrix, pressures at discontinuity point
PTH P ₀	Fourier component for load in the circumferential direction
PTHI	Path indicator for multiple case jobs
PTHTB	Data table of PTH values, DLD data area
PTHX	Table location for PTH values for next Fourier component
<u>Q</u>	
QFE Î _ţ	Transverse force per unit length in meridional direction
QTH $\hat{f}_{\pmb{ heta}}$	Transverse force per unit length in circumferential direction
<u>R</u>	
R r	Normal distance from shell to axis
RA1	Radius of cone or cylinder at station l
RC	Radius of curvature of sphere or toroid
RCRV	Interpolated station values of meridional radius of curvature
RCRZ	Interpolated station values of circumferential radius of curvature
RCURV	Input values of meridional radius of curvature
RCURZ	Input values of circumferential radius of curvature
RFF	Standard form coordinate of conics offset from axis of revolution
RHФ	Current RHOX value set for each station in PANDX
RHOP	First derivative of RHO
RHOX ^p	R/A0

RIPT	Discrete radii for general shell shape, GDA data area
RJ	Intermediate radii for better curve fitting of RIPT
RØFF	Offset distance of center of curvature from axis of revolution for toroids
RR	Intermediate radius designation at stations for smoothing in discrete points
RRJ	Intermediate radius designation for smoothing in discrete points
<u>s</u>	
S	Followed by a number indicates a scalar quantity which is used in several equations or is more efficiently defined out- side a DO loop. The name of the subroutine and nearest external formula number (EFN) is given except for those found in COMMON.
S1	COMMON, 1 POI DATLDS: 610, 700, 710
S2	COMMON, 1. + POI DATLDS: 405
S3	DATLNK: 20, 40, 305 DATLDS: 401 PANDX: 100, 410, 450, 900 INTLD: 490
S4	DATLNK: 20, 40 PANDX: 3, 50, 900 INTLD: 490
S5	DATLNK: 20, 50 DATLDS: 5, 622, 625 SUMS: 602 DATLYR: 335 INTLD: 490, 545 PANDX: 100, 410
S 6	DATLYR: 335 PANDX: 50 INTLD: 512, 545, 553, 572
S7	DATLYR: 335 PANDX: 50 INTLD: 548, 549
S8	DATLYR: 335 PANDX: 100, 410, 900 INTLD: 548, 549
S9	DATLYR: 347 PANDX: 100, 410 INTLD: 548, 549
S10	DATLYR: 305, 348 PANDX: 100, 410 INTLD: 548, 549
S11	DATLYR: 310, 348 PANDX: 100, 410 INTLD: 545, 575

- S12 DATLYR: 305, 347 PANDX: 430
- S13 DATLYR: 305, 348 PANDX: 430 INTLD: 552, 559
- S15 PANDX: 100, 140 INTLD: 548, 549
- S16 DATLYR: 348
- S17 DATLYR: 347
- S18 DATLYR: 348
- S20 INTLD: 490
- S21 INTLD: 553
- S22 INTLD: 553
- S91 DATLYR: 351
- S92 DATLYR: 351
- S93 DATLYR: 351
- S94 DATLYR: 351
- S101 DATLYR: 360
- **S102 DATLYR: 360**
- S103 DATLYR: 360
- S104 DATLYR: 360
- S105 DATLYR: 360
- S106 DATLYR: 360
- S107 DATLYR: 360
- S108 DATLYR: 360
- SARB Discrete point option in GEOM
- SDA Regional data area, all parameters used in PANDX, INTLD

SGFE2 ₅₂	Meridional stresses for chosen second layer
SGFT2 _{\$0} ?	Shear stresses for chosen second layer
SHTH2 ^J 02	Circumferential stresses for chosen surface
SIG0 ° ₀	Reference stress (psi)
SIGFE ^o ę	Meridional stresses for inner surface
SIGFT ^σ ξθ	Shear stresses for inner surface
SIGTH ^o o	Circumferential stresses for inner surface
SINFI	SIN (ANX), used to computed R in cone-cylinder, GEOM
SINNT	SIN (n _g), used in Fourier summing
SKIP	Path indicator, = 1. for fictitious discontinuity, PANDX
SL1	Path indicator, = 0. for printing when $SUM=0$.
SL2	Path indicator, = 0. after the first pass when summing
SPN0	Initial opening angle of conics (station 1)
SPNN	Terminal opening angle of conics (station n)
SPRL	Location of spring, SDA (3)
SQ3	Summing coefficient A0 * SIGO/E0
SQ4	Summing coefficient SIGO * H0 ** 3/A0
SQ6	Summing coefficient SIGO * H0
STA	DATLDS, stations at which loads are given in loads tables; DATLYR, combined TSTA and THSTA
STAP	Temporary array stations of apex interpolation in discrete point option
STAW	Temporary array stations of apex interpolation in discrete point option

STAX	Array of meridional stations, PIX
STC фмв	Subroutine to combine thickness and temperat re stations
STN	Temperature loads station numbers
STRI	Layer number for second stress print (other = inner surface)
STRIX	STRI in DAL data area
SUM	Indicator, nonzero for multiple Fourier components + = summing, with prints at ENFOR values - = discrete Fourier values, printed each time, no CRT
SUMN	Auxil'ary array for summing current Fourier components with previous sums
SUMS	Subroutine which sums Fourier components and prints results
SURB	Arc length in intermediate arc length computation in discrete point option
SURF	Arc length to station location
SURN	Arc length in intermediate arc length computation in conics option
<u>T</u>	
Т	Temperature change for N summations, SDA (1226)
T2	T for second surface where stresses are computed, SDA (2799)
TAB	Data tables for pressure and temperature loads
твфт	Loads table for the temperatures on the inner surface
твфтх	Table location for TBOT values for next Fourier component
TBT	Temperatures for inner surface at STN stations, DATLDS
ТЕМР	NFE-x-NTH loads array resulting from double interpolation of data

TH		Thicknesses at stations, layers
THETA	θ	Circumferential angles, ten maximum (degrees)
THETX		Circumferential angles for summing loads
THEX		Theta value read from tape, PIX
тнк		Thicknesses at combined stations (STA)/layer
THSTA		Station numbers at which thicknesses are given
TIBT		Temperature indicator, inner face (see explanation for DLD data)
TITP		Temperature indicator, outer race (see explanation for DLD data)
тіфс		Table locations, PFEX, PTHX, PNX, TBOTX, TTOPX
ТМР		Temperatures at combined stations (STA)/layer
TMPAI		Temperatures at which thermal expansion coefficients are given, material l
TMPA2		Temperatures at which thermal expansion coefficients are given, material 2
TMPA3		Temperatures at which thermal expansion coefficients are given, material 3
TMPEI		Temperatures at which Young's moduli are given, material l
TMPE2		Temperatures at which Young's moduli are given, material 2
TMPE3		Temperatures at which Young's moduli are given, material 3
TSTA		Station numbers at which temperatures are given
ттфр		Loads table for the temperatures on the outer surface
ттфрх		Table location for TTOP values for next Fourier component
TTP		Temperatures for outer surface at STN stations, DATLDS

T	(Array used as temporary storage in DATLYR
<u>U</u>		
UI	K	Spring value in the meridional direction
UI	p	First derivative of u deflection
US	5UM	Array which includes all Fourier sums
<u>v</u>		
VA	AL	Loads values picked up from data tables
VI	ĸ	Spring value in the circumferential direction
. VI	P	First derivative of the V deflections
VS	SUM	Array for summing V deflections
w		
W	F	Intermediate designation of meridional curvatures in discrete points option for smoothing
W	FE wg	Nondimensional curvature in the meridional direction
W	FEN	WFE at last point, previous region
W	FEP	First derivative of WFE
W	FP	Intermediate designation of meridional curvatures in the discrete point option
W	FW	Intermediate designation of meridional curvatures in the discrete point option
w	К	Spring value in the normal direction
w	P	First derivative of the W deflection
W	SUM	Array for summing W deflections
w	т	Intermediate designation of circumferential curvatures in discrete points for smoothing

WTH	ωθ	Current WTHD value
WTHD		Nondimensional curvature in the circumferential direction
<u>x</u>		
х		Two-dimensional array (Equations 4, 150) used to store the X matrices (Equation 74) at each meridional station/region
X0		4-x-1 matrix for X at the (N -1)st station of the previous region
XD		4-x-4 matrix used at top discontinuity point
XIPT		Discrete X distances, GEOM or arc lengths
ХJ		Intermediate X distances for better curve fitting of discrete points
XSI		X distance array used with R's to plot shell shape/region
<u>¥</u>		
YD		4-x-4 matrix used at top discontinuity point
YMI		Young's moduli data, entered for TMPE1 temperatures, first material
ҮМ2		Young's moduli data, entered for TMPE2 temperatures, second material
ҮМ3		Young's moduli data, entered for TMPE3 temperatures, third material
YMX		Constant Young's modulus when there are no temperature loads
<u>Z</u>		
Z		Two dimensional array (Equations 4, 150) of solutions (Equation 73)
Z 0		4-x-l matrix for Z at the (N -1)st station of the previous region

Z1M1	Solution matrix for fictitious point before station 1
ZETA	Intermediate cylindrical coordinates in conics option
ZNPI	Solution matrix for fictitious point after station N
ZTA	Station interpolated cylindrical coordinates in conics option

REFERENCES

- 1. Budiansky, B. and Radkowski, P.P. "Numerical Analysis of Unsymmetrical Bending of Shells of Revolution," <u>AIAA Journal</u>, Vol. 1, No. 8 (August 1963).
- Cappelli, A.P. and Verette, R.M. "An Improved Numerical Procedure for the Solution of Shell Problems," North American Aviation, Inc., S&ID, STR 141 (January 1966).
- 3. Verette, R.M. "On the Analysis of Branching in Shells of Revolution Loaded Arbitrarily," North American Aviation, Inc., S&ID, STR 136 (November 1965).
- 4. Sanders, J.L., Jr. "An Improved First-Approximation Theory for Thin Shells," NASA Rept. 24, (June 1959).
- 5. Budiansky, B. and Sanders, J.L., Jr. "On the Best First-Order Linear Shell Theory," <u>Progress in Applied Mechanics</u>, Macmillan Co., New York (1963).
- Potters, M. L. "A Matrix Method for the Solution of a Second Order Difference Equation in Two Variables," <u>Mathematisch Centuim</u>, Amsterdam, Holland, Report MR 19 (1955).
- 7. Sve, C. "Shell of Revolution Computer Program," North American Aviation, Inc., S&ID, STR 120 (September 1964).
- 8. Greenbaum, G. "Comments on Numerical Analysis of Unsymmetrical Bending of Shells of Revolution," <u>AIAA Journal</u>, Vol. 2, No. 2, (March i964).
- 9. Budiansky, B. and Radkowski P. "Reply by Authors to G. Greenbaum," AIAA Journal, Vol, 2, No. 2 (March 1964).