1,111 research outputs found

    Interactions of cosmological gravitational waves and magnetic fields

    Full text link
    The energy momentum tensor of a magnetic field always contains a spin-2 component in its anisotropic stress and therefore generates gravitational waves. It has been argued in the literature (Caprini & Durrer \cite{CD}) that this gravitational wave production can be very strong and that back-reaction cannot be neglected. On the other hand, a gravitational wave background does affect the evolution of magnetic fields. It has also been argued (Tsagas et al. \cite{Tsagas:2001ak},\cite{Tsagas:2005ki}) that this can lead to very strong amplification of a primordial magnetic field. In this paper we revisit these claims and study back reaction to second order.Comment: Added references, accepted for publication in PR

    Leveraging the Training Data Partitioning to Improve Events Characterization in Intrusion Detection Systems

    Get PDF
    The ever-increasing use of services based on computer networks, even in crucial areas unthinkable until a few years ago, has made the security of these networks a crucial element for anyone, also in consideration of the increasingly sophisticated techniques and strategies available to attackers. In this context, Intrusion Detection Systems (IDSs) play a primary role since they are responsible for analyzing and classifying each network activity as legitimate or illegitimate, allowing us to take the necessary countermeasures at the appropriate time. However, these systems are not infallible due to several reasons, the most important of which are the constant evolution of the attacks (e.g., zero-day attacks) and the problem that many of the attacks have behavior similar to those of legitimate activities, and therefore they are very hard to identify. This work relies on the hypothesis that the subdivision of the training data used for the IDS classification model definition into a certain number of partitions, in terms of events and features, can improve the characterization of the network events, improving the system performance. The non-overlapping data partitions train independent classification models, classifying the event according to a majority-voting rule. A series of experiments conducted on a benchmark real-world dataset support the initial hypothesis, showing a performance improvement with respect to a canonical training approach

    Influencing brain waves by evoked potentials as biometric approach: taking stock of the last six years of research

    Get PDF
    The scientific advances of recent years have made available to anyone affordable hardware devices capable of doing something unthinkable until a few years ago, the reading of brain waves. It means that through small wearable devices it is possible to perform an electroencephalography (EEG), albeit with less potential than those offered by high-cost professional devices. Such devices make it possible for researchers a huge number of experiments that were once impossible in many areas due to the high costs of the necessary hardware. Many studies in the literature explore the use of EEG data as a biometric approach for people identification, but, unfortunately, it presents problems mainly related to the difficulty of extracting unique and stable patterns from users, despite the adoption of sophisticated techniques. An approach to face this problem is based on the evoked potentials (EPs), external stimuli applied during the EEG reading, a noninvasive technique used for many years in clinical routine, in combination with other diagnostic tests, to evaluate the electrical activity related to some areas of the brain and spinal cord to diagnose neurological disorders. In consideration of the growing number of works in the literature that combine the EEG and EP approaches for biometric purposes, this work aims to evaluate the practical feasibility of such approaches as reliable biometric instruments for user identification by surveying the state of the art of the last 6 years, also providing an overview of the elements and concepts related to this research area

    A Region-based Training Data Segmentation Strategy to Credit Scoring

    Get PDF
    The rating of users requesting financial services is a growing task, especially in this historical period of the COVID-19 pandemic characterized by a dramatic increase in online activities, mainly related to e-commerce. This kind of assessment is a task manually performed in the past that today needs to be carried out by automatic credit scoring systems, due to the enormous number of requests to process. It follows that such systems play a crucial role for financial operators, as their effectiveness is directly related to gains and losses of money. Despite the huge investments in terms of financial and human resources devoted to the development of such systems, the state-of-the-art solutions are transversally affected by some well-known problems that make the development of credit scoring systems a challenging task, mainly related to the unbalance and heterogeneity of the involved data, problems to which it adds the scarcity of public datasets. The Region-based Training Data Segmentation (RTDS) strategy proposed in this work revolves around a divide-and-conquer approach, where the user classification depends on the results of several sub-classifications. In more detail, the training data is divided into regions that bound different users and features, which are used to train several classification models that will lead toward the final classification through a majority voting rule. Such a strategy relies on the consideration that the independent analysis of different users and features can lead to a more accurate classification than that offered by a single evaluation model trained on the entire dataset. The validation process carried out using three public real-world datasets with a different number of features. samples, and degree of data imbalance demonstrates the effectiveness of the proposed strategy. which outperforms the canonical training one in the context of all the datasets

    The IUCN green status of species: a call for Mediterranean botanists to contribute to this new ambitious effort

    Get PDF
    In the Mediterranean Basin, a critical focal point for the conservation of plant diversity, there has been a large increase in practical conservation actions for many plant species to prevent extinction and to improve their conservation status; quantifying the effectiveness of these initiatives in reversing species declines is urgently important. In 2021, the International Union for Conservation of Nature (IUCN) launched a new tool that allows the impact of conservation actions on plant species to be assessed. The Green Status of Species is a new set of metrics under the Red List of Threatened Species that assigns species to recovery categories, complementary to the classic extinction risk categories. Crucially, the Green Status of Species provides methods to evaluate the impact of past conservation, and the potential for future conservation impact, on species status and recovery in a standardized way. Considering the efforts made so far for the conservation of Mediterranean threatened plants, using the Green Status of Species would be highly useful to direct future conservation policies. We, therefore, encourage botanists and practitioners working on threatened plants in the Mediterranean area to use this new assessment tool to inform conservation and recovery programs

    A distal renal tubular acidosis showing hyperammonemia and hyperlactacidemia

    Get PDF
    Introduction: distal renal tubular acidosis (dRTA) presents itself with variable clinical manifestations and often with late expressions that impact on prognosis. Case report: A 45-day-old male infant was admitted with stopping growth, difficult feeding and vomiting after meals. Clinical tests and labs revealed a type 1 renal tubular acidosis, even if the first blood tests showed ammonium and lactate increase. We had to exclude metabolic diseases before having a certain diagnosis. Conclusions: blood and urine investigations and genetic tests are fundamental to formulate dRTA diagnosis and to plan follow-up, according to possible phenotypic expressions of recessive and dominant autosomal forms in patients with dRTA

    Shrub Cover and Soil Moisture Affect Taxus baccata L. Regeneration at Its Southern Range

    Get PDF
    The effect of key ecological and anthropic factors on the recruitment of the common yew (Taxus baccata L.) in Sardinia (Italy) has been analyzed. After bibliographic and cartographic research, followed by field surveys, we found 232 sites where yew grows in Sardinia (as opposed to 69 previously reported in the literature). Among them, we selected 40 sites, located in 14 different mountain chains, characterized by a number of individuals ranging from 11 to 836 adult yews with an average diameter at breast height (DBH) from 13 to 130 cm. By means of generalized linear modeling, we investigated and weighted the effect of ecological, structural, and anthropic factors on the amount of T. baccata recruitment. Our analyses showed that stand recruitment was positively correlated to shrub cover and soil moisture. In particular, shrub cover had a stronger effect, clearly showing that a thicker shrub layer, both bushy and/or spiny, corresponded to a higher number of yew seedlings and saplings. Secondarily, moister sites had a higher number of seedlings and saplings, showing that habitat suitability improved with higher humidity. On the contrary, recruitment was negatively correlated to browsing (both from livestock and wild animals). Our data confirm that the presence of a protective layer of shrubs is a crucial factor for seedling and sapling survival, mostly in relation to protection from summer drought and the browsing of large herbivores. Finally, guidelines for the conservation and restoration of T. baccata communities, referred to as the EU priority habitat 9580* (Mediterranean Taxus baccata woods), have been outlined

    A blockchain-based distributed paradigm to secure localization services

    Get PDF
    In recent decades, modern societies are experiencing an increasing adoption of interconnected smart devices. This revolution involves not only canonical devices such as smartphones and tablets, but also simple objects like light bulbs. Named the Internet of Things (IoT), this ever-growing scenario offers enormous opportunities in many areas of modern society, especially if joined by other emerging technologies such as, for example, the blockchain. Indeed, the latter allows users to certify transactions publicly, without relying on central authorities or intermediaries. This work aims to exploit the scenario above by proposing a novel blockchain-based distributed paradigm to secure localization services, here named the Internet of Entities (IoE). It represents a mechanism for the reliable localization of people and things, and it exploits the increasing number of existing wireless devices and blockchain-based distributed ledger technologies. Moreover, unlike most of the canonical localization approaches, it is strongly oriented towards the protection of the users’ privacy. Finally, its implementation requires minimal efforts since it employs the existing infrastructures and devices, thus giving life to a new and wide data environment, exploitable in many domains, such as e-health, smart cities, and smart mobility

    A new species of Aquilegia (Ranunculaceae) from Sardinia (Italy)

    Get PDF
    The new species Aquilegia cremnophila (Ranunculaceae) from the Italian island of Sardinia is here described and illustrated. It occurs in shady rocky crevices, near the upper parts of Mt. Corrasi (Supramontes Region), where it is a member of chasmophilous communities. This species is morphologically, phenologically, ecologically and genetically well differentiated from the other Sardinian taxa, showing some relationships mainly with A. nugorensis, an endemic species of Central-Eastern Sardinia. Its conservation status is examined. A key of all taxa present in Sardinia is also provided. © 2012 Magnolia Press.Peer Reviewe

    Impact of Horse Grazing on Floristic Diversity in Mediterranean Small Standing-Water Ecosystems (SWEs)

    Get PDF
    Small standing-Water Ecosystems (SWEs), despite their pivotal ecological role due to their participation in hydrogeological processes and their richness in biodiversity, seem to be often overlooked by the scientific community. In this study, the vascular plant diversity in some representative SWEs, that host a peculiar assemblage of plant and animal species, was investigated in relation to the disturbance effects of a wild horse population. A total of 50 plots, equally distributed in small and large SWEs, were surveyed and a level of disturbance was attributed to each plot. We found greater species richness in small and undisturbed SWEs, which suggests the negative impact of horse grazing on the richness of plant species in this type of habitat. Significant differences in plant assemblage were found according to the disturbance level, whereas, contrary to what was observed for species richness, no differences were detected based on their size. The diversity indices, used to evaluate the richness and diversity in these areas, recorded the highest values for small and undisturbed areas. This result highlights that the disturbance of the horse grazing plays a pivotal role in affecting the diversity and richness of species in the SWEs. These findings suggest that SWE systems should be analyzed considering these areas as unique in order to allow the conservation of the plant richness and biodiversity of the SWE systems in conjunction with the protection of horses
    • …
    corecore