1,110 research outputs found

    Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit

    Full text link
    Squeezing of quantum fluctuations by means of entanglement is a well recognized goal in the field of quantum information science and precision measurements. In particular, squeezing the fluctuations via entanglement between two-level atoms can improve the precision of sensing, clocks, metrology, and spectroscopy. Here, we demonstrate 3.4 dB of metrologically relevant squeezing and entanglement for ~ 10^5 cold cesium atoms via a quantum nondemolition (QND) measurement on the atom clock levels. We show that there is an optimal degree of decoherence induced by the quantum measurement which maximizes the generated entanglement. A two-color QND scheme used in this paper is shown to have a number of advantages for entanglement generation as compared to a single color QND measurement.Comment: 6 pages+suppl, PNAS forma

    S(k) for Haldane Gap Antiferromagnets: Large-scale Numerical Results vs. Field Theory and Experiment

    Full text link
    The structure function, S(k), for the s=1, Haldane gap antiferromagnetic chain, is measured accurately using the recent density matrix renormalization group method, with chain-length 100. Excellent agreement with the nonlinear σ\sigma model prediction is obtained, both at kπk\approx \pi where a single magnon process dominates and at k0k\approx 0 where a two magnon process dominates. We repeat our calculation with crystal field anisotropy chosen to model NENP, obtaining good agreement with both field theory predictions and recent experiments. Correlation lengths, gaps and velocities are determined for both polarizations.Comment: 11 pages, 3 postscript figures included, REVTEX 3.0, UBCTP-93-02

    On the Coexistence of Diagonal and off-Diagonal Long-Range Order, a Monte Carlo Study

    Full text link
    The zero temperature properties of interacting 2 dimensional lattice bosons are investigated. We present Monte Carlo data for soft-core bosons that demonstrate the existence of a phase in which crystalline long-range order and off-diagonal long-range order (superfluidity) coexist. We comment on the difference between hard and soft-core bosons and compare our data to mean-field results that predict a larger coexistence region. Furthermore, we determine the critical exponents for the various phase transitions.Comment: 7 pages and 8 figures appended in postscript, KA-TFP-93-0

    Adaptation of photosystem II to high and low light in wild-type and triazine-resistant Canola plants: analysis by a fluorescence induction algorithm

    Get PDF
    Plants of wild-type and triazine-resistant Canola (Brassica napus L.) were exposed to very high light intensities and after 1 day placed on a laboratory table at low light to recover, to study the kinetics of variable fluorescence after light, and after dark-adaptation. This cycle was repeated several times. The fast OJIP fluorescence rise curve was measured immediately after light exposure and after recovery during 1 day in laboratory room light. A fluorescence induction algorithm has been used for resolution and analysis of these curves. This algorithm includes photochemical and photo-electrochemical quenching release components and a photo-electrical dependent IP-component. The analysis revealed a substantial suppression of the photo-electrochemical component (even complete in the resistant biotype), a partial suppression of the photochemical component and a decrease in the fluorescence parameter Fo after high light. These effects were recovered after 1 day in the indoor light

    Equal Time Correlations in Haldane Gap Antiferromagnets

    Full text link
    The S=1S=1 antiferromagnetic Heisenberg chain both with and without single ion anisotropy is studied. Using the recently proposed density matrix renormalization group technique we calculate the energy gaps as well as several different correlation functions. The two gaps, Δ,Δ\Delta_{||}, \Delta_\perp, along with associated correlation lengths and velocities are determined. The numerical results are shown to be in good agreement with theoretical predictions derived from the nonlinear sigma model and a free boson model. We also study the S=1/2S=1/2 excitations that occur at the ends of open chains; in particular we study the behavior associated with open boundary conditions, using a model of S=1/2S=1/2 spins coupled to the free bosons.Comment: 32 pages, uufiles encoded REVTEX 3.0, 19 postscript figures included, UBCTP-93-02

    Hordeum vulgare differentiates its response to beneficial bacteria

    Get PDF
    Background In nature, beneficial bacteria triggering induced systemic resistance (ISR) may protect plants from potential diseases, reducing yield losses caused by diverse pathogens. However, little is known about how the host plant initially responds to different beneficial bacteria. To reveal the impact of different bacteria on barley (Hordeum vulgare), bacterial colonization patterns, gene expression, and composition of seed endophytes were explored. Results This study used the soil-borne Ensifer meliloti, as well as Pantoea sp. and Pseudomonas sp. isolated from barley seeds, individually. The results demonstrated that those bacteria persisted in the rhizosphere but with different colonization patterns. Although root-leaf translocation was not observed, all three bacteria induced systemic resistance (ISR) against foliar fungal pathogens. Transcriptome analysis revealed that ion- and stress-related genes were regulated in plants that first encountered bacteria. Iron homeostasis and heat stress responses were involved in the response to E. meliloti and Pantoea sp., even if the iron content was not altered. Heat shock protein-encoding genes responded to inoculation with Pantoea sp. and Pseudomonas sp. Furthermore, bacterial inoculation affected the composition of seed endophytes. Investigation of the following generation indicated that the enhanced resistance was not heritable. Conclusions Here, using barley as a model, we highlighted different responses to three different beneficial bacteria as well as the influence of soil-borne Ensifer meliloti on the seed microbiome. In total, these results can help to understand the interaction between ISR-triggering bacteria and a crop plant, which is essential for the application of biological agents in sustainable agriculture

    Magnetoresistance of a 2-dimensional electron gas in a random magnetic field

    Full text link
    We report magnetoresistance measurements on a two-dimensional electron gas (2DEG) made from a high mobility GaAs/AlGaAs heterostructure, where the externally applied magnetic field was expelled from regions of the semiconductor by means of superconducting lead grains randomly distributed on the surface of the sample. A theoretical explanation in excellent agreement with the experiment is given within the framework of the semiclassical Boltzmann equation.Comment: REVTEX 3.0, 11 pages, 3 Postscript figures appended. The manuscript can also be obtained from our World Wide Web server: http://roemer.fys.ku.dk/randmag.ht
    corecore