Squeezing of quantum fluctuations by means of entanglement is a well
recognized goal in the field of quantum information science and precision
measurements. In particular, squeezing the fluctuations via entanglement
between two-level atoms can improve the precision of sensing, clocks,
metrology, and spectroscopy. Here, we demonstrate 3.4 dB of metrologically
relevant squeezing and entanglement for ~ 10^5 cold cesium atoms via a quantum
nondemolition (QND) measurement on the atom clock levels. We show that there is
an optimal degree of decoherence induced by the quantum measurement which
maximizes the generated entanglement. A two-color QND scheme used in this paper
is shown to have a number of advantages for entanglement generation as compared
to a single color QND measurement.Comment: 6 pages+suppl, PNAS forma