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Abstract
Background: Manipulation of the liver during liver surgery results in pro-
found hepatocellular damage. Experimental data show that mobilization-
induced hepatocellular damage is related to hepatic inflammation. To date,
information on this link in humans is lacking. As it is possible to modulate
inflammation, it is clinically relevant to unravel this relationship. Aim: This
observational study aimed to establish the association between liver mobiliza-
tion and hepatic inflammation in humans. Methods: Consecutive patients
requiring mobilization of the right hemi-liver during liver surgery were stu-
died. Plasma samples and liver biopsies were collected prior to and directly
after mobilization and after transection of the liver. Hepatocellular damage
was assayed by liver fatty acid-binding protein (L-FABP) and aminotransfe-
rase levels. Hepatic inflammation was determined by (a) immunohistochem-
ical identification of myeloperoxidase (MPO) and CD68- positive cells and
(b) hepatic gene expression of inflammatory and cell adhesion molecules
(IL-1b, IL-6, IL-8, VCAM-1 and ICAM-1). Results: A total of 25 patients
were included. L-FABP levels increased significantly during mobilization
(301 ± 94 ng/ml to 1599 ± 362 ng/ml, P = 0.008), as did ALAT levels
(36 ± 5 IU/L to 167 ± 21 IU/L, P < 0.001). A significant increase in MPO
(P = 0.001) and CD68 (P = 0.002) positive cells was noticed in the liver after
mobilization. The number of MPO-positive cells correlated with the duration
of mobilization (Pearson correlation=0.505, P = 0.033). Hepatic gene
expression of pro-inflammatory cytokines IL-1b and IL-6, chemo-attractant
IL-8 and adhesion molecule ICAM-1 increased significantly during liver
manipulation. Conclusions: Liver mobilization is associated with hepatocel-
lular damage and liver inflammation, as shown by infiltration of inflamma-
tory cells and upregulation of genes involved in acute inflammation.

Surgical resection is the ultimate treatment for a variety
of benign and malignant liver tumours. During liver
surgery, there is a delicate balance between the
attempt to achieve surgery with curative intent and the
necessity to leave adequate remnant liver volume to
avoid post-resectional liver failure (PLF). Risk factors
for the development of PLF may either be surgery- or
patient-related (1).

With respect to surgery-related risk factors, excessive
intra-operative blood loss is associated with adverse
post-resectional outcomes (2). To limit blood loss du-
ring liver surgery, different surgical techniques have
been introduced. One of these techniques is mobiliza-
tion of the liver prior to transection. During mobiliza-
tion, the liver is forcefully manipulated to dissect its

ligaments and control direct venous branches to the
inferior caval vein. Recent data deliver convincing evi-
dence that mobilization of the liver in itself causes sub-
stantial hepatocellular injury (3–7). The highly sensitive
liver cell damage markers liver fatty acid-binding pro-
tein (L-FABP), arginase-1, glutathione-s-transferase-a
and cell-free circulating albumin-mRNA increased sig-
nificantly during mobilization of the liver and did not
increase thereafter during either inflow occlusion or
transection (3–7). Of important notice, manipulation-
induced liver cell damage negatively affected post-
operative outcomes in patients undergoing liver surgery
for hepatocellular carcinoma (7).

The pathogenesis of mobilization-induced liver da-
mage has been studied in detail in a murine model of
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liver transplantation (8–10). In short, mobilization of
the liver induced neuronal mediated disturbances in the
hepatic microcirculation leading to both liver cell da-
mage and hepatic inflammation. Activated Kupffer cells
seemed to play a central role as modulation of their
function largely prevented hepatocellular damage and
improved experimental outcome (11). In man, it has
been shown that systemic inflammation, reflected by
plasma interleukin-6 (IL-6) levels, followed liver mani-
pulation during surgery (3). However, the source of this
systemic inflammatory response is yet unidentified in
humans. Based on aforementioned experimental obser-
vations, hepatic inflammation might well be involved in
the cascade of manipulation-induced liver cell damage
and systemic inflammation.

Given the possibility to modulate the inflammatory
response, identificationof the linkbetweenmanipulation-
induced liver cell injury and inflammation in man could
identify novel therapeutic strategies for its prevention.
This study aimed to establish the association between liver
mobilization, hepatocellular damage and hepatic inflam-
mation inpatientsundergoing liver surgery.

Patients and methods

Patients

Consecutive patients scheduled to undergo liver surgery
requiring full mobilization of the right hemi-liver at
Maastricht University Medical Centre between October
2007 and June 2009 were included in this observational
study. Exclusion criteria were (a) the presence of cirrho-
sis of the liver confirmed by pre-operative liver biopsy,
(b) repeat liver surgery, (c) laparoscopic liver surgery,
(d) use of anti-inflammatory drugs, (e) presence of
renal failure (defined as serum creatinine > 137 lmol/L
in males and > 104 lmol/L in females (12)), (f) perfor-
mance of an extra-hepatic procedure, and (g) participa-
tion in another trial.

Resections were divided into major (� 3 Couinaud
segments) or minor (<3 Couinaud segments or non-
anatomical wedge resections) (13). All data were pro-
spectively entered in a database and the clinical course
of the participants was studied up until 90 days after
discharge. The incidence rate of the liver surgery specific
composite endpoint and its individual components
(ascites, bile leakage, intra-abdominal haemorrhage,
intra-abdominal abscess, PLF and operative mortality)
was calculated (14). This study was approved by the
Medical Ethics Committee of Maastricht University
Medical Centre and all participating individuals gave
written informed consent.

Surgical procedure

Patients routinely had two peripheral venous catheters
and indwelling catheters in a jugular vein and radial
artery. Immediately pre-operatively, all patients received

a single intravenous dose of 2200-mg amoxicillin/clavu-
lanic acid as antibiotic prophylaxis. Propofol and isoflu-
rane were used as anaesthetics. Surgical procedures were
commenced using a subcostal bilateral incision as
described earlier (5). An Omni-Flex General Retractor
System (Integra LifeSciences Corporation, Plainsboro,
NJ, USA) was used to improve exposure. After dissection
of the teres hepatis ligament, the procedure was conti-
nued with dissection of the falciform ligament and
further mobilization of the right hemi-liver from the pos-
terior abdominal wall. Thereafter, the liver was rotated
anteriorly and to the left to dissect direct venous branches
to the inferior caval vein. Full mobilization was reached
when the caval vein was dissected free of all its attach-
ments at the 12 o’clock anterior surface. Subsequently, an
intra-operative ultrasound was performed, which direc-
ted the surgical strategy. A Cavitron Ultrasonic Surgical
Aspirator (CUSA system 200 macrodissector, Cavitron
Surgical Systems, Stamford, CT, USA) and Argon beam
coagulation (Force GSU System, Valleylab, Boulder, CO,
USA) were used for liver transection. Inflow occlusion
was not routinely applied. If necessary, a complete or
selective Pringle manoeuvre (with 15-min or 30-min
ischaemic cycles) or ligation of the appropriate portal
pedicle vessels was applied (5). During transection, cen-
tral venous pressure was maintained below 5 mmHg.
Post-operative care was provided according to an
Enhanced Recovery After Liver Surgery programme (15).

Blood and tissue sampling

Before, during and after the operative procedure, arte-
rial blood was drawn from the radial artery catheter
according to a predetermined protocol at different time
points (Fig. 1). Blood samples were transferred to pre-
chilled EDTA tubes and subsequently centrifuged at 4°C
at 3500g for 15 min. Plasma was stored at �80°C until
batch analysis.

Liver wedge biopsies were taken using scissors at fixed
time points during the procedure from segment 5 of the
liver. The first liver wedge biopsy was obtained immedi-
ately after opening of the abdomen and before touching
or manipulating the intestines or liver, the second biopsy
was collected after full mobilization of the right hemi-
liver and before application of inflow occlusion or liver
transection, and the third after liver transection. Defined
0.5 9 0.5 cm fragments of liver tissue were cut, snap-
frozen in liquid nitrogen and stored at�80°C. Fragments
of the same size were immersed in Tissue-Tek optimal
cutting temperature compound (Sakura Finetek Europe,
Zoeterwoude, The Netherlands) and mounted on a piece
of cork before they were frozen in prechilled isopentane
on dry ice and stored at�80°C.

Hepatocellular damage

The extent of hepatocellular damage was assessed by
plasma concentrations of L-FABP and aminotransferases.
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L-FABP is a sensitive marker for the detection of liver cell
damage (16, 17). L-FABP levels were determined using a
commercially available ELISA (Hycult Biotechnology,
Uden, the Netherlands). According to the manufacturer’s
manual, L-FABP plasma levels in healthy individuals are
approximately 12 ng/ml. Alanine aminotransferase
(ALAT) levels were assayed by the clinical chemistry
laboratory of Maastricht University Medical Centre. The
upper limit of normal was 35 IU/L.

Immunohistochemistry of the liver

Tissue-Tek-embedded frozen liver biopsies were cut in
7-lm sections, fixed in acetone for 10 min and subse-
quently blocked for endogenous peroxidase activity by
incubation in 0.3% H2O2 in PBS. Primary antibodies
were applied for 1 h after blocking with 10% serum.
The following primary antibodies were used: (i) rabbit
anti-human myeloperoxidase (MPO) antiserum (dilu-
tion 1:1000; DakoCytomation) as marker for neu-
trophils and macrophages; (ii) anti-CD68 (clone Kp1,
dilution 1:400; Dako, Glostrup, Denmark) specific for
monocytes/macrophages; and (iii) anti-caspase-3-medi-
ated cleavage generated neo-epitope of cytokeratin 18
(M30, dilution 1:50; Roche, Mannheim, Germany) spe-
cific for hepatocyte apoptosis, as described previously
(18). Secondary antibodies consisted of horseradish
peroxidase-labelled goat anti-rabbit IgG (1:500; Jackson
immunoResearch, Suffolk, UK) for MPO staining. For
CD68 and M30 staining, biotinylated rabbit anti-
mouse IgG was applied as secondary antibody (1:300
and 1:500 dilution, respectively), and the StrepAB/HRP
complex (DakoCytomation) was used for signal
enhancement. Staining was visualized by DAB followed
by haematoxylin for nuclear counterstaining. The
stained slides were photographed at 2009 magnifica-
tion using a Nikon digital camera DXM1200 and
ACT-1 v2.63 software from Nikon Corporation. Cells
were counted in six randomly selected microscopical
views, and cell numbers were noted as cells/mm2 for
MPO and M30 staining and as 0–3 ordinal scale for
CD68 staining. The number of CD68-positive cells was
categorized as follows: 0 (none); 1 (few); 2 (moderate
numbers); 3 (many). In addition, the morphology of
CD68-positive cells was graded on a 1–3 scale as

follows: 1 (normal appearance); 2 (moderate enlarge-
ment); 3 (substantial enlargement).

Gene expression of inflammatory mediators in the liver

Expression of genes encoding for inflammatory media-
tors and cell adhesion molecules was determined in liver
biopsies taken at three time points during surgery
(Fig. 1). Genes of interest included interleukin 1 beta
(IL-1b) and interleukin 6 (IL-6), both pro-inflamma-
tory cytokines involved in macrophage activation, inter-
leukin 8 (IL-8), a chemokine involved in recruitment of
inflammatory cells, and vascular cell adhesion molecule
(VCAM-1) and intercellular adhesion molecule
(ICAM-1), important for adhesion and migration of
inflammatory cells.

Hepatic gene expression was assessed by real-time
quantitative polymerase chain reaction (PCR). Total
RNA was isolated from snap-frozen liver samples using
Tri-reagent (Sigma-Aldrich, St. Louis, USA). Reverse
transcription was performed using the iScript cDNA
synthesis kit (Bio-Rad, Hercules, USA). Real-time PCR
was performed on a Bio-Rad MyIQ using IQ SYBR
Green Supermix (Bio-rad, Hercules, USA). Primers for
target genes were developed using Primer Express ver-
sion 2.0 (Applied Biosystems, Foster City, USA).
Sequences of the applied PCR primers are listed in Sup-
plementary Material 1. To standardize for cDNA con-
centration in the samples, the housekeeping gene
cyclophylin A (peptidylprolyl isomerase A) was used.
For calculations of the initial amount of mRNA present
in the sample, the relative standard curve method was
used.

Statistical analysis

Data are given as mean and standard error of the mean
or median with range, depending on the nature of the
data. Differences in hepatocellular damage markers,
number of MPO and M30-positive cells, and hepatic
gene expression between the three time points during
liver surgery (before mobilization, after mobilization
and after transection) were calculated using the paired
sample t-test. For CD68 number and morphology, me-
dian values were compared using Wilcoxon’s signed

Samples:

Arterial sample

Liver biopsy        

Sample:

Arterial 
sample

Baseline
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mobilization
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mobilization
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transection 
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Fig. 1. Flowchart of blood and tissue collection. Legend: POD, post-operative day.
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rank test. In addition, correlations between duration of
mobilization, influx of inflammatory cells and hepatic
gene expression were calculated. A P-value < 0.05 was
considered statistically significant. Statistical analysis
was performed using the statistical package for the social
sciences 20 (SPSS Inc., Chicago, Illinois, USA).

Results

Patient flow

Between October 2007 and July 2009, one-hundred and
two patients were scheduled to undergo a partial hepatic
resection. Of these, 25 patients fulfilled the inclusion cri-
teria. Reasons for exclusion were as follows: presence of
underlying liver disease confirmed by pre-operative liver
biopsy (n = 4), repeat liver surgery (n = 6), laparo-
scopic liver surgery (n = 7), no informed consent
(n = 9), participation in another trial (n = 6), no liver
resection during surgery (n = 15), no formal mobiliza-
tion of right hemi-liver (n = 24), and performance of
an extra-hepatic procedure (n = 6).

Patient characteristics

Characteristics of the included patients are shown in
Table 1. Liver surgery was performed because of benign
hepatic disease in 1 and secondary hepatic malignancies
in 24 patients, consisting of colorectal liver metastases
in 23 and carcinoid metastases in 1 patient respectively.
Major liver resections were performed in 17 and minor
in 8 patients, with a median number of 4 resected seg-
ments (range 1–4). Mean operative time was
213 ± 11 min, of which 65 ± 5 min were used for
mobilization of the right hemi-liver and 94 ± 8 min for
transection of liver parenchyma. The extent of resection
did not influence the duration of liver mobilization
(70 ± 6 min for major resections versus 53 ± 8 min for
minor resections, P = 0.112). During transection, a
Pringle manoeuvre was applied in 15 patients (60%).
Mean cumulative ischaemia time in patients undergoing
transection with a complete Pringle manoeuvre was
55 ± 7 min. For patients with a selective Pringle
manoeuvre of the right hemi-liver, mean cumulative
ischaemia time was 30 ± 4 min.

The incidence of the liver surgery specific composite
endpoint was 16% (4 of 25 patients). The component
accounting for this incidence was bile leakage in all four
patients. The rates of PLF and operative mortality were
zero.

Liver cell damage markers increase significantly after liver
mobilization

To characterize liver cell damage secondary to liver
manipulation, L-FABP and ALAT levels were measured.
Mean arterial L-FABP levels increased significantly du-
ring mobilization of the right hemi-liver (from

301 ± 94 ng/ml to 1599 ± 362 ng/ml, P = 0.008),
and did not increase significantly thereafter (2791 ± 872
ng/ml, P = 0.696 vs after mobilization), as depicted in
Fig. 2A. ALAT concentration also increased significantly
during mobilization of the right hemi-liver (from
36 ± 5 IU/L to 167 ± 21 IU/L, P < 0.001) and further
increased during transection (408 ± 61 IU/L, P < 0.001
vs after mobilization, Fig. 2B). The increase in hepato-
cellular damage markers after mobilization did not
relate to the extent of hepatic resection or the duration
of mobilization (data not shown).

Liver mobilization results in hepatocyte apoptosis

Staining for M30 indicated that hepatocyte apoptosis
tended to increase after mobilization (P = 0.09) and
returned to baseline after transection (Fig. 3). There was
a significant correlation between the duration of mobili-
zation and the absolute increase in M30-positive cells
(Pearson correlation=0.507, P = 0.027).

Liver mobilization increases the number of hepatic
immune cells

To study mobilization-mediated inflammation, inflam-
matory cells were identified in liver biopsies at three
time points in 22 of the 25 included patients (88%) by
detection of MPO and CD68. Staining for MPO,

Table 1. Patient characteristics (n = 25)

Pre-operative characteristics
Age (years) 61 (2)
Sex (male) 17 (68%)
BMI (kg/m²) 26 (1)

Primary disease
Benign 1 (4%)
Malignant 24 (96%)

Pre-operative laboratory tests
ALAT (IU/L) 30 (4)
Bilirubin (total) (lmol/L) 13 (1)
Prothrombin time (sec) 11 (1)
Creatinine (lmol/L) 87 (3)

Operative variables
Type of resection
Right hepatectomy 12 (48%)
Trisectionectomy 4 (16%)
Segmentectomy 9 (36%)

Median number resected segments (range) 4 (1-4)
Duration of surgery (min) 213 (11)
Mobilization time (min) 65 (5)
Transection time (min) 94 (8)

Pringle manoeuvre 15 (60%)
Selective Pringle 7 (28%)
Complete Pringle 8 (32%)

Total blood loss (ml) 1002 (167)
Post-operative outcome
Liver surgery specific composite endpoint 4 (16%)

Numbers indicate mean (SEM) or absolute number (%) unless otherwise

indicated; ALAT, alanine aminotransferase; BMI, body mass index.
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a marker for neutrophils and macrophages, revealed a
significant increase in absolute number of MPO-stained
cells in liver tissue after mobilization (P = 0.001), which
did not rise significantly during transection (P = 0.08)
(Fig. 4A). There was a significant correlation between
the absolute increase in MPO-positive cells after mobili-
zation and the duration of mobilization (Pearson corre-
lation=0.505, P = 0.033).

Staining for CD68, a specific marker for macropha-
ges, showed a small but significant increase in CD68-
positive cells after mobilization (median score 2 [1–2.5]
before vs 2.5 [2–3] after mobilization, P = 0.002)
(Fig. 4B). These CD68-positive cells had a different
morphology, characterized by enlargement and roun-
ding after mobilization (median morphology score 1.5
[1–3] before vs 2 [1–3] after mobilization, P = 0.003)

(Fig. 4C), suggesting that these cells represented mono-
cytes that infiltrated the liver.

Liver mobilization induces hepatic expression of
inflammatory genes

Enhanced expression of genes of pro-inflammatory
cytokines, chemokines and adhesion molecules plays a
significant role in promoting immune cell infiltration.
In agreement with the histological findings, hepatic
mRNA levels of IL-1b, IL-6 and IL-8 (Fig. 5A–C) signi-
ficantly increased after mobilization compared with
baseline levels. Rise in expression ranged from 23-fold
for IL-1b, 65-fold for IL-8 and 137-fold for IL-6. The
expression of the chemokine IL-8 significantly corre-
lated with the absolute increase in MPO-positive cells
(Pearson correlation=0.516, P = 0.049). After transec-
tion, the mRNA levels of IL-1b, IL-6 and IL-8 further
increased (Fig. 5A–C).

The expression of the cell adhesion molecule
ICAM-1, but not VCAM-1, increased significantly after
mobilization (Fig. 5D–E). The increase in ICAM-1 gene
expression tended to correlate with the absolute increase
in MPO-positive cells (Pearson correlation=0.455,
P = 0.089).

Discussion

This study was designed to establish the association
among liver mobilization, hepatocellular damage and
hepatic inflammation during liver surgery in humans.
Our data corroborate earlier observations that liver
mobilization induces profound liver cell damage, as evi-
denced by an early and significant rise in the hepatocel-
lular damage markers L-FABP and ALAT. In addition,

ALAT during liver surgery

Baseline

Before mobilization

After mobilization

After transection

8 h after start operation

POD1
POD2

POD3

0

100

200

300

400

500

600

700

800

900

A
LA

T 
(1

03  I
U

/m
l)

*
*

L-FABP during liver surgery

Baseline

Before mobilization

After mobilization

After transection

8 h after start operation

POD1
POD2

POD3

0

1000

2000

3000

4000
(A) (B)

L-
FA

B
P 

(n
g/

m
l)

*

Fig. 2. A and B. Course of hepatocellular damage markers L-FABP and ALAT during and after liver surgery. (A) L-FABP levels increased signif-
icantly during mobilization of the liver. L-FABP levels peaked at the end of surgery and decreased thereafter (mean and SEM). (B) ALAT levels
increased during mobilization of the liver and continued to increase significantly thereafter, until reaching their peak at the first
post-operative day (mean and SEM). Legend: *indicates P < 0.05; L-FABP, liver fatty acid-binding protein; ALAT, alanine aminotransferase;
POD, post-operative day.
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we present novel, human data indicating that liver
mobilization is associated with liver cell apoptosis and
hepatic inflammation, as shown by an increase in MPO
and CD68-positive inflammatory cells and upregulation
of mRNA of pro-inflammatory cytokines in the liver.
The extent of apoptosis and increase in inflammatory
cells was significantly related to the duration of mobili-
zation.

Manipulation of the liver immediately led to hepato-
cellular damage. Levels of the damage markers L-FABP
and ALAT were significantly increased after mobilization
and there was a trend towards increased hepatocyte
apoptosis, evidenced by M30-positive hepatocytes. We
previously showed that the increase in systemic plasma
levels of L-FABP and ALAT after liver mobilization
solely resulted from hepatic release and not from the
hepatotoxic effects of anaesthesia or surgical trauma of
performing a laparotomy (3, 5). Interestingly, the course
of ALAT levels showed a different pattern compared
with L-FABP levels. ALAT levels peaked on the first
post-operative day, at the same time and in the same
range as reported by other groups (19, 20), whereas
L-FABP levels reached their maximum values at the end

of surgery and rapidly decreased thereafter. This might
be a reflection of the fact that L-FABP is a more direct
and sensitive marker for the detection of liver cell da-
mage as compared with ALAT, because of the small
molecular mass and short half-life of L-FABP (16, 17, 21).

Hepatic inflammation has previously been recognized
as an important element in the multifaceted process lea-
ding to manipulation-induced tissue injury in rodents
(8, 22). In man, however, the relationship among liver
manipulation, hepatocellular damage and hepatic
inflammation was unknown. Here, we provide the first
data in man showing that liver mobilization is accompa-
nied by hepatocyte apoptosis and influx of inflammatory
cells in hepatic tissue. Additional CD68 staining identi-
fied involvement of monocytes and macrophages. Our
group previously showed that macrophages such as
Kupffer cells are able to express MPO and speculated that
this might reflect their pro-inflammatory status (18, 23).
The present findings of enhanced hepatic expression of
the typical pro-inflammatory macrophage markers IL-1b
and IL-6 are in line with this hypothesis.

It might be clinically relevant to prevent mobiliza-
tion-induced liver cell damage, hepatocyte apoptosis
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and inflammation by either employment of alternative
surgical techniques or modulation of inflammation.
With respect to the latter, it remains unclear whether
the presence and activation of inflammatory cells se-
condary to liver manipulation is beneficial or not. In
general, unrestrained activation of inflammatory cells
following trauma is believed to exacerbate damage,
although initially intended to maintain homeostasis (24,
25). As human evidence on the clinical consequences of
mobilization-induced liver inflammation is lacking to
date, assumptions are solely based on results of animal
studies. In animal models of liver manipulation-induced
hepatocellular damage, the administration of gadoli-
nium chloride, a Kupffer cell toxicant or glycine, which
prevents Kupffer cell activation, led to decreased hepa-
tocellular damage and improved survival after liver

transplantation (8, 26). In other areas of research, mo-
dulation of inflammation secondary to manipulation
has proven to be beneficial in terms of clinical outcomes
in animals as well as humans (27–29). Intervention
studies with anti-inflammatory drugs, aiming at a mod-
ulation of monocyte influx or macrophage activity, may
be performed to elucidate whether a dampened inflam-
matory response would lead to less tissue injury and,
more importantly, improved clinical outcome in
patients undergoing liver surgery.

Alternative surgical techniques that require less mani-
pulation of the liver are already available, such as laparo-
scopic liver resection or liver resection using the anterior
approach (30, 31). Laparoscopy might be advantageous,
although several reports show an unfavourable effect of
the pneumoperitoneum on hepatic microcirculation (32,
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Fig. 5. A–E. Relative hepatic gene expression of inflammatory cytokines and cell adhesion molecules during liver surgery. (A–C) relative
expression of IL-1b, IL-6 and IL-8 significantly increased during liver surgery (mean and SEM). (D–E) relative expression of ICAM-1 increased,
whereas relative expression of VCAM-1 remained fairly constant (mean and SEM). Legend: IL, interleukin; VCAM, vascular cell adhesion
molecule; ICAM, intercellular adhesion molecule; * indicates P < 0.05.
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33). This is undesirable as animal study data suggest that
microcirculatory failure mediates manipulation-induced
liver cell damage (8). Liver resection using the anterior
approach involves initial completion of parenchymal
transection without mobilization of the right hemi-liver
(30, 34). Advantages include minimal interruption of
hepatic circulation during surgery, improved liver func-
tion and reduced risk of spilling viable cancer cells into
the circulation, at the cost of an enhanced risk of bleeding
(30). Indeed, Liu and coworkers showed reduced cell-free
circulating albumin-mRNA levels, as a marker of circula-
ting liver cells, and a lower incidence of PLF in patients
undergoing liver resection using the anterior approach
compared with the conventional approach (7). Compari-
son of hepatocellular damage, hepatic inflammation and
clinical outcomes between patients undergoing liver sur-
gery using the conventional approach vs the anterior
approach is warranted.

The trigger for immune activation in mobilization-
induced liver damage in man remains to be identified.
Oxidative stress-related danger signals, resulting from
microcirculatory failure, might well be involved as trig-
gers of local inflammation (11). Livers with reduced
anti-oxidant capacity and pre-existent microvascular
damage, such as livers suffering from chemotherapy-
associated hepatotoxicity, may therefore be at additional
risk (35, 36). Moreover, the relationship among mobili-
zation-induced hepatocellular damage, hepatic inflam-
mation and clinical outcome remains to be established
in a trial using larger patient groups (37).

Taken together, the results of this study provide evi-
dence of an association among liver mobilization, hepa-
tocellular damage and hepatic inflammation in man, in
line with previous results from animal studies. They form
the basis for the development of novel therapies to pre-
vent mobilization-induced damage early during liver
surgery, such as the administration of immune-modula-
ting drugs or adoption of alternative surgical techniques.
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