160 research outputs found

    Methane Fermentation of Organic Waste with Different C/N Ratios

    Get PDF
    Poster Session

    Musical combinatorics, tonnetz, and the CubeHarmonic

    Get PDF
    In this paper, we give an overview of some applications of combinatorics and permutations in music through the centuries. The concepts of permutation and tonnetz (spatial representation of voice leading and modulation) can be joined together in a physical device, the CubeHarmonic, a musical version of the Rubik’s cube. We finally describe a prototype of the CubeHarmonic that uses the magnetic tracking technology developed at the Tohoku University

    Cubeharmonic: A New Interface From A Magnetic 3D Motion Tracking System To Music Performance

    Get PDF
    We developed a new musical interface, CubeHarmonic, with the magnetic 3D motion tracking system IM3D. This system precisely tracks positions of tiny, wireless, battery-less, and identifiable markers (LC coils) in real time. The CubeHarmonic is a musical application of the Rubik’s cube, with notes on each little piece. Scrambling the cube, we get different chords and chord sequences. Positions of the pieces which contain LC coils are detected through IM3D, and transmitted to the computer to recognize the status of the Rubik’s cube, that plays sounds. The central position of the cube is also measured by the LC coils located into the corners of Rubik’s cube, and, depending on the position, we can manipulate overall loudness and pitch changes, as in theremin playing. This new instrument, whose first idea comes from mathematical theory of music, can be used as a teaching tool both for math (group theory) and music (music theory, mathematical music theory), as well as a composition device, a new instrument for avant-garde performances, and a recreational tool

    Superior Durability of Dissimilar Material Joint between Steel and Thermoplastic Resin with Roughened Electrodeposited Nickel Interlayer

    Get PDF
    The durability of the dissimilar material joint between a steel coated with a roughened nickel plating-film and a thermoplastic resin is assessed. The roughened nickel film is fabricated by electrodeposition using carbon nanotubes (CNTs) as the roughening agent and a polyphenylenesulfide (PPS) resin as the thermoplastic resin. The plated steel and PPS resin are joined by injection molding without adhesive. The bonding strength is determined by a tensile lap shear strength test during the durability tests that includes a high-temperature and high-humidity test (85 +/- 2 degrees C, 85 +/- 2% relative humidity; 0-2000 h) and a thermal shock test (-50 degrees C-150 degrees C; 0-1000 cycles). During the high-temperature and high-humidity test, the bonding samples maintain their initial bonding strength (>40 MPa) even after 2000 h. By contrast, during the thermal shock test, although the bonding strength gradually decreases with increasing number of cycles, it remains above 20 MPa even after 1000 cycles. The mechanism of the deterioration of the bonding strength during the thermal shock test is analyzed in detail. The present joining method, which uses a roughened plating film as an interlayer, offers a way to achieve not only high initial bonding strength but also bonding durability for dissimilar material joining between steels and resins.ArticleADVANCED ENGINEERING MATERIALS. 22(12):2000739 (2020)journal articl

    The absence of SOX2 in the anterior foregut alters the esophagus into trachea and bronchi in both epithelial and mesenchymal components

    Get PDF
    In the anterior foregut (AFG) of mouse embryos, the transcription factor SOX2 is expressed in the epithelia of the esophagus and proximal branches of respiratory organs comprising the trachea and bronchi, whereas NKX2.1 is expressed only in the epithelia of respiratory organs. Previous studies using hypomorphic Sox2 alleles have indicated that reduced SOX2 expression causes the esophageal epithelium to display some respiratory organ characteristics. In the present study, we produced mouse embryos with AFG-specific SOX2 deficiency. In the absence of SOX2 expression, a single NKX2.1-expressing epithelial tube connected the pharynx and the stomach, and a pair of bronchi developed in the middle of the tube. Expression patterns of NKX2.1 and SOX9 revealed that the anterior and posterior halves of SOX2-deficient AFG epithelial tubes assumed the characteristics of the trachea and bronchus, respectively. In addition, we found that mesenchymal tissues surrounding the SOX2-deficient NKX2.1-expressing epithelial tube changed to those surrounding the trachea and bronchi in the anterior and posterior halves, as indicated by the arrangement of smooth muscle cells and SOX9-expressing cells and by the expression of Wnt4 (esophagus specific), Tbx4 (respiratory organ specific), and Hoxb6 (distal bronchus specific). The impact of mesenchyme-derived signaling on the early stage of AFG epithelial specification has been indicated. Our study demonstrated an opposite trend where epithelial tissue specification causes concordant changes in mesenchymal tissues, indicating a reciprocity of epithelial-mesenchymal interactions

    Self-Assembly of Elastin–Mimetic Double Hydrophobic Polypeptides

    Get PDF
    We have constructed a novel class of “double-hydrophobic” block polypeptides based on the hydrophobic domains found in native elastin, an extracellular matrix protein responsible for the elasticity and resilience of tissues. The block polypeptides comprise proline-rich poly(VPGXG) and glycine-rich poly(VGGVG), both of which dehydrate at higher temperature but form distinct secondary structures, β-turn and β-sheet respectively. In water at 45 °C, the block polypeptides initially assemble into nanoparticles rich in β-turn structures, which further connect into long (>10 μm), beaded nanofibers along with the increase in the β-sheet content. The nanofibers obtained are well-dispersed in water, and show thermoresponsive properties. Polypeptides comprising each block component assemble into different morphologies, showing that the conjugation of poly(VPGXG) and poly(VGGVG) plays a role for beaded fiber formation. These results may provide innovative ideas for designing peptide-based materials but also opportunities for developing novel materials useful for tissue engineering and drug delivery systems

    Musical combinatorics, tonnetz, and the CubeHarmonic

    Get PDF
    In this paper, we give an overview of some applications of combinatorics and permutations in music through the centuries. The concepts of permutation and tonnetz (spatial representation of voice leading and modulation) can be joined together in a physical device, the CubeHarmonic, a musical version of the Rubik's cube. We finally describe a prototype of the CubeHarmonic that uses the magnetic tracking technology developed at the Tohoku University

    Seed-coat protective neolignans are produced by the dirigent protein AtDP1 and the laccase AtLAC5 in Arabidopsis

    Get PDF
    種子を保護するネオリグナンの生合成機構を解明 --新たな薬効成分の創出に期待--. 京都大学プレスリリース. 2020-12-03.Lignans/neolignans are generally synthesized from coniferyl alcohol (CA) in the cinnamate/monolignol pathway by oxidation to generate the corresponding radicals with subsequent stereoselective dimerization aided by dirigent proteins (DIRs). Genes encoding oxidases and DIRs for neolignan biosynthesis have not been identified previously. In Arabidopsis thaliana, the DIR AtDP1/AtDIR12 plays an essential role in the 8-O-4′ coupling in neolignan biosynthesis by unequivocal structural determination of the compound missing in the atdp1 mutant as a sinapoylcholine (SC)-conjugated neolignan, erythro-3-{4-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-hydroxymethylethoxy]-3, 5-dimethoxyphenyl}acryloylcholine. Phylogenetic analyses showed that AtDP1/AtDIR12 belongs to the DIR-a subfamily composed of DIRs for 8-8′ coupling of monolignol radicals. AtDP1/AtDIR12 is specifically expressed in outer integument 1 cells in developing seeds. As a putative oxidase for neolignan biosynthesis, we focused on AtLAC5, a laccase gene coexpressed with AtDP1/AtDIR12. In lac5 mutants, the abundance of feruloylcholine (FC)-conjugated neolignans decreased to a level comparable to those in the atdp1 mutant. In addition, SC/FC-conjugated neolignans were missing in the seeds of mutants defective in SCT/SCPL19, an enzyme that synthesizes SC. These results strongly suggest that AtDP1/AtDIR12 and AtLAC5 are involved in neolignan biosynthesis via SC/FC. A tetrazolium penetration assay showed that seed coat permeability increased in atdp1 mutants, suggesting a protective role of neolignans in A. thaliana seeds

    Different prognostic outcomes in two cases of FDG-PET/CT-Positive and -negative cardiac angiosarcoma

    Get PDF
    Cardiac angiosarcoma is a rare malignant tumor with a poor prognosis, characterized by the high uptake of 18F-fluorodeoxyglucose (FDG). This case report presents two cases of cardiac angiosarcoma with a marked difference in FDG uptake and prognosis.Case Summary:Case 1: A 40-year-old male presented with syncope. Ultrasound echocardiography demonstrated a cardiac tumor with a high uptake of 18F-FDG (maximum standardized uptake value=9.2). The patient underwent heart catheterization and tumor biopsy. The pathological result was high-grade angiosarcoma, and the MIB-1(Ki-67) proliferation index was approximately 20%. Systemic chemotherapy was administered; however, the patient died 2 years and 5 months after disease onset.Case 2: A 65-year-old female had a right atrial tumor incidentally diagnosed during routine ultrasound echocardiography. The tumor exhibited a low uptake of 18F-FDG (maximum standardized uptake value=1.8). Open heart surgery was performed, and the tumor was completely resected. Histological analysis revealed low-grade angiosarcoma, and the MIB-1(Ki-67) proliferation index was less than 5%. The patient was followed-up and had not relapsed 2 years after surgery.Conclusion: 18F-FDG uptake may reflect pathological tumor grade and prognosis in cardiac angiosarcoma
    corecore