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Musical Combinatorics, Tonnetz, and the CubeHarmonic

Abstract: In this paper, we give an overview of some applications of combinatorics and 
permutations in music through the centuries. The concepts of permutation and tonnetz 
(spatial representation of voice leading and modulation) can be joined together in a 
physical device, the CubeHarmonic, a musical version of the Rubik’s cube. We finally 
describe a prototype of the CubeHarmonic that uses the magnetic tracking technology 
developed at the Tohoku University.
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1. Introduction

Given five different notes, how many „melodies“ can we compose with 
them? The answer comes from mathematics. There are 5! = 5*4*3*2*1 = 120 
different combinations of notes. Combinatorics (Hazewinkel, 2001) is a huge field of 
mathematical research, and its applications to music — to pitch, scales, combinations 
of several musical parameters — is another field of research. 

Combinatorics is the study of finite and countable discrete mathematical 
structures. Applications of combinatorics to music stretch back to ancient Greece and 
India and have several interesting details, but a thorough historical account is not within 
the scope of this article. Combinatorics is relevant for several fields of mathematics, 
physics, and science in general. As in an incomplete list, we may cite graph theory, finite 
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geometry, probability studies, combinatorics on words (Goldin-Meadow et al., 1995; 
Berstel and Karhumäki, 2003), statistics in physics, and genetics in biology (Hofacker 
et al., 1994). Let us consider some „real-world examples“ to understand the importance 
of combinatorics in music. While considering musical parameters such as pitch and 
pitch classes, combinatorics helps answering questions on transformational strategies, 
such as answering the question: How to list the number of variations with a limited set 
of elements? Frequencies in acoustics are continuous, even in Western music, which 
often involves a continuous variation of pitches, such as a violin glissando, or a voice 
portamento. However, considering also discrete pitch is a useful strategy for learning 
and researching in music theory. In particular, the notion of pitch class is relevant in 
contemporary music composition and research, in the context of a tempered system. As 
an example, the note A = 440 Hz, and its higher octave at 880 Hz enter in the same pitch 
class of „A“ that is, modulo one-octave shift.

Musical combinatorics is relevant in musical investigation, as some review 
articles describe (Nolan, 2000). In particular, during the scientific revolution of the 
seventeenth century, the ancient and classical music-mathematics relationship was 
highlighted (Nolan, 2000). The resources given by combinatorics studies do not involve 
only music: there are several applications in other arts. Furthermore, permutations were 
used in poetry, such as the combinatorial poems by Emmett Williams, and permutation 
strategies were employed by Italian futurist poet Tommaso Marinetti and by Austrian 
poet Gerhard Ruhm. In more recent times, we have the example of the French poet and 
writer Raymond Queneau, with „Cent milliards de poèmes“ (Queneau, 1961). In this 
book, there are ten papers, each of them divided into fourteen rows/strips. The reader 
can rotate the horizontal strips as they were separated pages, choosing each time a 
different version of the poem. Finally, there are also applications of combinatorics to 
visual art and dance. We can think of Robert Morris’ permutation and Deborah Hay’s 
choreography.

The applications to music are several and varied; we will see some of them in 
Section 2. Some examples, from the German tradition, are Musikalische Würfelspiele 
(musical dice game) by Ramon Llull (Zweig, 2014), with the known realizations 
by Haydn and Mozart. These games allow for a music composition from random 
combinations of some pre-composed material.

In a more mathematical detail, combinatorics deals with the vast field of group 
theory. A „group“ is a mathematical structure where the combination of two elements 
(of the group) gives a third element of the same group. Groups verify the properties of 
closure, associativity, identity, and invertibility (Rotman, 1991). In a permutation group, 
the elements are the permutations of a given set, and the operation is the composition 
of the permutations in the group. In music, a permutation group can be provided by the 
permutations of pitches, and the composition of their permutations. Let us consider the 
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inversion operation: inverting the place of two notes of a melody still gives a melody.
An exemplary device used to show group permutations in three dimensions is the Rubik’s 
cube, invented as a teaching tool by a professor, Ernö Rubik. One more example of how 
music and combinatorics can be „combined“ together, is given by the CubeHarmonic, a 
musical version of the Rubik’s cube. In this article, we would like to create new math-
music connections, creatively use a puzzle game, and, at the same time, connect two 
areas of music theory, combinatorics, and tonnetz.

In Section 2, we shortly review combinatorics in music. Then, in Section 3, we 
describe the concept of tonnetz, a visual-geometric representation of chord relationships 
and voice leading. We can join the two concepts, introducing combinatorics within a 
tonnetz, with the creation of a physical device that is the musical version of the Rubik’s 
cube, called CubeHarmonic (see Section 4). We illustrate the CubeHarmonic as a 
theoretical idea first, and as a working prototype in Section 4.

2. Ars Combinatoria

How many variations can we get by permuting some notes, and which among 
them are good to hear? How do you manipulate the given musical material so that all 
combinations are ‘right’? Music theory scholars and composers have been dealing with 
these questions for centuries. In his masterwork, Harmonie Universelle („Universal 
Harmony“ published in Paris in 1636), the music theorist Marin Mersenne, a French 
priest, theologist, and defender of Galileo Galilei during the affair with the Inquisition, 
discussed the rejection of some possibilities due to aesthetic reasons (Nolan, 2000). 
Mersenne tabled permutations of 22 notes in the second book of Harmonie Universelle 
(Christensen, 2006).
Combinatorics is mostly applied to music theory but has a lot to offer regarding concrete 
strategies for composition. Some examples of combinatorics applied to music include 
musical dice games. A musical dice game is a tool to compose music without any 
previous knowledge, using random combinations of pre-composed musical fragments. 
Despite the randomness, all output results are „pleasant“ to hear because the composer 
controls the initial choices. According to the scholar Lawrence Zbikowski, „In truth, 
chance played little part in the success of the music produced by such games. Instead, 
what was required of the compilers… [was] a little knowledge about how to put the 
game together and an understanding of the formal design of waltzes, etc. “(Zbikowski, 
2002).

Mozart developed a famous dice game. It comprises of a table with 12 rows 
and 8 columns. The (i, j)-number on the table represents a musical measure. Throwing 
two dice the first time and adding them up, we get a number, a value of ‘I’, that is, the 
row number. In fact, the number of rows is given by adding on the two dice. Thus, the 
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first measure will be the first (column j = 1) element in the i-th row. Throwing the dice 
again, we get the second number, and we take the element in the i’-th row of the 2nd 
column. So far, we got the first two measures of a new minuet. Keep going in the same 
manner and a sequence of 8 measures is obtained. If we have 16 columns on the table, 
we can compose a minuet of 16 measures. Summarizing, for each measure, we throw 
the dice, and we write down the corresponding musical measure. There are 118 possible 
combinations of eight measures each.
There are also examples of dice games composed by Haydn and Carl Philip Emmanuel 
Bach (Zweig, 2014), and the Athanasius Kircher’s composition machine based on a 
matrix (Kircher, 1650). In the work of the Austrian-German theorist (and composer-
violinist) Joseph Riepel, „Grundregeln zur Tonordnung insgemein“ (Basic Rules for 
Tonal Order) of 1755, combinatorial-like procedure is meant to „stimulate musical 
imagination and transmit knowledge and skill in [the] manipulation of musical material“ 
(Riepel, 1755; Nolan, 2000). In the same treatise, Riepel tabulates 120 permutations of 
five keys diatonically related to C (Christensen, 2006).

Let us make a short excursus on mathematics and combinatorics. Christensen 
(2006) cites several examples. We can refer to Printz (Phrynis Mytilenaeus oder 
Satirischer Componist, 1696), Heinichen (Der General-bass in der Composition, 1728), 
Mattheson (Der vollkommene Capellmeister, 1739), Kirnberger (Der allezeit fertige 
Menuetten- und Polonoisenkomponist, 1757), and Galeazzi (Ratner, 1970; Hook, 2007).
Another connection between mathematics and music — also relevant for musical 
combinatorics — deals with the concept of pitch class jointly with a branch of 
mathematics, the modulo arithmetic. In modulo arithmetic, after a specific value (the 
„module“), numbers „wrap around.“An example of this is the clock, with its 12-hour 
period. In music, an example of a module is the octave. Regarding pitch classes, we 
have „the same notes“ modulo one octave. Thinking in terms of chromatic scale, we 
have the notes „modulo 12.“ This choice is possible in equal temperament, where all 
the half-tones are equal, and all the octaves are equal. According to Nolan (Nolan, 
2009), modular arithmetic is about „the combined agency of modular arithmetic and 
equal temperament [that] enabled the formulation of theories of pitch structures based 
on algebraic methods and a recovery of pure speculation in music theory.“The French 
music theorist (according to Christensen (2006), „with an evident mathematical 
training“) Anatole Loquin investigated pitch classes and harmony, listing more than 
five hundred „harmonic effects“ of five pitch classes (Loquin, 1873). He represented 
module as a circle with 12 points, with each point representing a note on the chromatic 
scale. This circular representation is used today by mathematical music theorists. In 
this circular representation, a triad is represented by a triangle, and the transposition 
of a chord of a half-tone can be represented higher or lower by rotating the image 
accordingly.  



108

S T U D I J E  O  M U Z I Č K O J  U M E T N O S T I / S T U D I E S  O N  M U S I C

In more contemporary times, the contributions of Ernst Bacon and John Cage may 
be cited. Bacon deals with the extension of the traditional tonal language through 
the resources of new harmonies, combinatorics, and 12-pitch classes (Bacon, 1917). 
John Cage focuses on „the togetherness of differences,“ involving „differences in 
structure“ (Perloff and Junkerman, 1994). However, Cage is not referring to a precise 
mathematical concept of classification, privileging instead a more ‘poetical’ way 
to see „disorganization“ and to enjoy the different combinations of some existing 
material.

A more heavily-based mathematical study on music and combinatorics is the 
Redfield-Pólya Theorem (Redfield, 1927). Published by Redfield in 1927 first, and 
then by Pólya years later, it concerns the enumeration of discrete combinatorial objects 
depending on their „order.“ For example, depending on the number of nodes, we can 
enumerate how many graphs with that number of nodes there are. This theorem has 
been used to „enumerate musical objects,“ determining their equivalence classes — 
how many scales, chords… (Fripertinger, 1992). Musical applications of Pólya theorem 
appear in the works of both mathematicians and musicians (Jedrzejewski, 2006). A 
mathematically-detailed review of combinatorial techniques used by composers, music 
theorists, and mathematicians, is given by Hook (2007).

Finally, we can refer to algorithmic composition studies. The dice game 
suggests a sequence of pre-defined rules, and it constitutes a special example of 
algorithmic composition. See Nierhaus’s work (Nierhaus, 2009) for a more detailed 
overview of algorithmic music.

3. Tonnetz

Christensen (2006) defines a tonnetz as „a potent two-dimensional image 
composed of a grid or lattice of parallel horizontal and vertical lines and nodes.“ 
Tonnetz is a German word meaning „tone-network,“ and it was first described by 
Leonhard Euler (1739) to represent tonal space. The tonnetz was rediscovered in the 
nineteenth century by Ernst Naumann, Arthur van Oettingen, and Hugo Riemann 
(Riemann, 1992). The tonnetz is a visual method for representing chords and voice 
leading relationships in the plane. Modern examples of the tonnetz include three-
dimensional representation (Tymoczko, 2012), as well as animated renditions with 
movements in space and synchronized sounds (Baroin). David Lewin (1987) defines the 
tonnetz as a spatial metaphor for music theory. He describes intervals as displacements 
in the space of pitches (and pitch classes), before generalizing the concept of interval 
itself. Henry Klumpenhouer, a former student of David Lewin, defines transformations 
T (transposition) and I (inversion) to connect pitch classes. Given a graph, we can 
define other graphs with the same structure of transformations. In this case, we talk 
about isomorphic graphs, where the configuration of nodes-and-arrows is the same. 
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Networks with isomorphic graphs are called isographic (Klumpenhouwer, 1991).1 The 
definition of space (a locus, as a set of data) and the transformations on it are relevant 
also for group theory.  The tonnetz is also relevant in Tymoczko’s and Hook’s studies 
(Tymoczko, 2012; Hook, 2006).

Representations of tonnetz start with the plane but are not limited to it. We 
have several examples of different geometries, such as the torus and the Möbius strip 
(Mazzola et al., 2016). If the Möbius strip represents relationships between the notes 
of a given tonality, a connection between different Möbius strips through the common 
grades represents a modulation. This is an example of geometrical studies on Western 
music theory. Some scholars look at the possible physiological bases of these geometries, 
analyzing how listeners’ brain areas are activated (Janata et al., 2002). 

Finally, some musical MIDI instruments based on the tonnetz have been 
invented: this is the case of „HarmonicTable“(http://c-thru-music.com/cgi/index.cgi). 
Manipulations of the tonnetz in combinatorial terms might be suggested in the so-
called „slot-machine“ transformations, but, at the best of our knowledge, no physical 
realizations of these have been made. A „slot-machine“ transformation is a metaphor to 
indicate a permutation, more than a rotation, according to Alegant (2001), in a cross-
partition. The cross-partition is a way to arrange pitch classes with each column having 
numbers that represent the notes of a chord. It is often used in Schoenberg twelve-
tone music, as „a way to represent the pitch classes of an aggregate (or row) in a two-
dimensional rectangular design“ (Alegant and Mead, 2012). If we have the sequence:

0 3 6
1 4 7
2 5 8
and we permute the numbers in the first column, getting 1 2 0, the overall vertical 
content is the same, but the horizontal arrangement will change. The „harmonies“ are 
the same, while the „melodies“ change (Alegant and Mead, 2012):
1 3 6
2 4 7
0 5 8

The described process may remind us of a „slot-machine“ rotation of the first 
column, which explains the origin of the name. If we see the rows and columns above 
as elements within a tonnetz, we may imagine the slot-machine transformations as 
combinatorial transformations within the tonnetz. Such a combinatorial effect requires 
one more dimension than the two of the plane. In Section 4, we introduce a tridimensional 
model that combines the tonnetz, group theory, and musical combinatorics. 
1 Klumpenhouer networks, also known as K-nets, were developed well before the modern treatment of 
the Tonnetz in the music theory literature.
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4. Tonnetz and Ars Combinatoria: the idea of the CubeHarmonic

How can we „combine“ combinatorics and tonnetz? A possibility is the 
application of the Rubik’s cube to music. The Rubik’s cube is the object of scientific 
investigation, and it constitutes an example of group transformations (Frey and 
Singmaster, 1982). The 4x4x4 cube (the „Revenge“) is analyzed in recent mathematical 
works (Weed, 2016).

The first example of CubeHarmonic starts from the 4x4x4 Rubik’s Cube (see 
Figure 1). Let us consider a face of the cube. Each little square (facet) is a note. A 
column (a slice) is a chord of four notes, and the sequence of the four chords is a 
well-defined cadence. On each face of the cube, there is a different cadence: two from 
classical harmony, one from ancient music (Landino’s cadence), and two from jazz 
music. However, we may also consider each little square (facet) as a complete chord. 
With a 3x3x3 cube, we can consider sequences of three chords with 3-part harmony. 
With a 2x2x2 cube, we have either sequences of bichords, or complete chords that 
involve each entire face. For example, we can have C-major chord in a face, with the 
single facets playing C E G C. Scrambling the cube provokes a mixing of the chord 
sequences first, and later of chords themselves. The initial idea was about playing each 
slide at the time, that is to say, playing one chord after the other.

The CubeHarmonic was first thought by Maria Mannone in 2013 during her 
studies of music and combinatorics at IRCAM. The idea was first published under the 
name of CubHarmonic (Mazzola et al. 2016), then modified into CubeHarmonic. A 
more general version of the CubeHarmonic can include different timbres, complete 
chords for each facet, and also rhythms. While the scope of the Rubik’s cube is solving 
the scrambled cube, the scope of the CubeHarmonic is in the scrambling itself, enjoying 
the variety of the musical combinations produced.

Figure 1
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The very first prototype (developed by Mannone) used a giant cube with sound 
modules (of greeting cards) on each facet; see Figure 2 (left: the cube with big sound 
modules; right: a detail of a small sound module covered with paper). This allowed the 
playing of each facet separately, of each slice, and the selection of random melodies 
selecting different paths on the cube. However, there are still open problems, such as an 
adequate substitution of batteries, and the reduction of the size of the cube (depending 
on the minimal size of the loudspeaker and electric circuit on each facet).

Figure 2
A technical prototype has been recently developed in collaboration with the 

ICD team of the Tohoku University, headed by Prof. Yoshifumi Kitamura, see Figure 
3. The prototype uses a novel magnetic tracking technology (Huang et al., 2015, 2016). 
The system generates a magnetic field to drive multiple, tiny, and wireless LC coils and 
detects the resonant magnetic flux to compute their 3D location and rotation. When the 
LC coils are attached to a Rubik’s cube, the movements of the facets can be tracked in 
real-time. Thus, it is possible to visualize the Rubik’s cube in a virtual environment as 
well as to convert the facet combination into sounds. Instead of choosing which facet or 
which slide to play, it has been chosen to play all the notes at the same time. To avoid 
any chaotic effects, the variety of chords was limited first to two chords (a chord per 
each group of three faces, with several doublings), and then to three chords (a chord for 
each group of two facets). Moreover, to improve the idea of „motion“ and „twisting,“ 
different loudness levels, accordingly to the position of the facets, were set (with the 
simple choice of the horizontal distance concerning the screen). The farther the notes 
are from the screen, the louder they play. In this way, we can have a Doppler-like effect 
of „approaching“pieces of the cube during a 45-degree rotation forward of the right 
(or left) side. Even if we do not change the pitch but only the loudness of the notes 
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corresponding to the moved slice, we perceive a pitch change. The pieces play with 
different levels of „depth“ due to their different intensity: the closer pieces play louder, 
as well as the approaching pieces. In recent updates of this prototype, simultaneous 
playing of all faces can be substituted by a gradual transition from one slice to another 
according to twisting. IM3D technology has also enabled to map into sound the overall 
position of the cube within the horizontal plane: in this way, the user/performer can 
change overall pitch (obtaining glissando) and overall loudness, allowing expressive 
playing.

Figure 3

Independently from this work, a paper describing the Rubik’s cube in a musical 
setup recently appeared (Polfreman and Oliver, 2017). However, only one face per time 
is involved in the musical production, while the discussed prototypes use all faces.

Theoretical and practical applications of the CubeHarmonic will involve music 
pedagogy, math pedagogy, as well as musical creativity in the fields of composition and 
improvisation. For example, we can challenge composition students to compose a song 
based on a sequence of chords obtained by random rotations of the cube. Another use 
can involve music theory: if we set the chords on the cube to match specific sequences, 
students can play and investigate voice leading patterns. The study of the useful initial 
configuration of chords on the cube and of the minimum amount of rotations to create 
harmonic variety can be the topic of theoretical research and musical practice.      

Other applications may deal with the development of creativity in music, and 
the fruition of the Cube’s game by people with disabilities. Let us see some potential 
applications in more detail.
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Pedagogy of mathematics. Professor Rubik probably invented the 3x3x3 cube 
to teach group theory and transformations. With the CubeHarmonic, we add an auditory 
channel to the visual one, allowing for a better understanding, and a more enjoyable 
approach to mathematical topics through sound examples.
Pedagogy of music, especially music theory. The study of chords (at least 3-notes), 
bichords, chord sequences, consonances, and dissonances may profit from a tangible 
tool. Users may either play around with random combinations or try to get precise and 
pleasant chords out of the cub e. A great part of the outcome is „determined“ by 
the starting material (pitch, timbre) to associate with each little piece of the cube. Notes 
and chords can be carefully chosen to allow „pleasant combinations“ also if the cube is 
completely scrambled.

Pedagogy of math & music. Access to math & music topics usually requires 
a double training, which needs time. A game can help overcome this difficulty on the 
one side, and on the other, it can complete and accompany the theoretical and practical 
learning of students of both disciplines. A mathematical exercise can have a musical 
solution, or a sequence of mathematical passages can be compared step-by-step with 
musical transformations.

Research in music theory, in particular, musical combinatorics. There is a huge 
tradition in this field. A tangible device can embody years of abstract research, but 
allowing a more effective popularization of ideas. 

Research in musical perception and movement. The link between movements 
and sound is highlighted if we change musical parameters in real time with the twisting: 
for example, adjusting the loudness of a piece if it is moving toward or away from us. 
The association would be the most intuitive as possible, modeled upon simple principles 
of musical (and sound) perception. Moreover, playing with the CubeHarmonic would 
itself lead to new research. 

People with disabilities: 1. Visually-impaired people may enjoy the game if 
they can hear a note instead of seeing a color, for example. They can thus play the 
classic Rubik’s cube puzzle solving it through the use of sounds as a guide. 2. Physical 
therapy of the hands may also benefit from the sound channel to check if the movements 
are performed in the correct way.

Musical creativity and composition. Professional composers, amateurs, or even 
children can enjoy different musical combinations. The choice of different timbre (and 
even the addition of some rhythm), with the possibility of saving the sound produced, 
may constitute a source of material for composers.

No prior knowledge/practice of the solving techniques of the Rubik’s cube is 
required. The CubeHarmonic is mainly enjoyed while scrambling, not by solving it as 
a puzzle. 
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Fun! Rubik’s cube was conceived as a pedagogy tool, but it has become one 
of the most sold and loved toys. The reason is that it is fun. The musical version of the 
cube adds the layer of sounds, with some creative and entertainment applications we 
have briefly summarized.

5. Conclusion

To sum up, we made an overview of some applications of combinatorics in 
music, of the use of tonnetz graphical representations, and finally we introduced the 
CubeHarmonic, describing some current prototypes. The project of CubeHarmonic 
is very flexible, and there may be several potential applications. The starting point in 
the development of the CubeHarmonic was music theory and mathematical theory of 
music. It can help students, researchers, artists, and everybody to develop creativity and 
hopefully have fun. 
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Muzička kombinatorika, Tonnetz, i CubeHarmonic 

Apstrakt: U radu je dat pregled nekih primena kombinatorike i permutacije u muzici 
kroz vekove. Koncepti permutacije i Tonnetza (prostornog prikaza vođenja glasova i 
modulacije) mogu biti spojeni u jednu fizičku napravu – CubeHarmonic (harmonsku 
kocku), muzičku verziju Rubikove kocke. Konačno, opisujemo prototip CubeHarmonic 
u kome je korišćena tehnologija magnetskog praćenja, razvijena na Tohoku univerzitetu.

Kljlučne reči: grupna terapija, Rubikova kocka, praćenje pokreta


