20 research outputs found

    An analysis of the fixation probability of a mutant on special classes of non-directed graphs

    Get PDF
    There is a growing interest in the study of evolutionary dynamics on populations with some non-homogeneous structure. In this paper we follow the model of Lieberman et al. (Lieberman et al. 2005 Nature 433, 312–316) of evolutionary dynamics on a graph. We investigate the case of non-directed equally weighted graphs and find solutions for the fixation probability of a single mutant in two classes of simple graphs. We further demonstrate that finding similar solutions on graphs outside these classes is far more complex. Finally, we investigate our chosen classes numerically and discuss a number of features of the graphs; for example, we find the fixation probabilities for different initial starting positions and observe that average fixation probabilities are always increased for advantageous mutants as compared with those of unstructured populations

    Evolutionary Dynamics on Small-Order Graphs

    Get PDF
    Abstract. We study the stochastic birth-death model for structured finite populations popularized by Lieberman et al. [Lieberman, E., Hauert, C., Nowak, M.A., 2005. Evolutionary dynamics on graphs. Nature 433, 312-316]. We consider all possible connected undirected graphs of orders three through eight. For each graph, using the Monte Carlo Markov Chain simulations, we determine the fixation probability of a mutant introduced at every possible vertex. We show that the fixation probability depends on the vertex and on the graph. A randomly placed mutant has the highest chances of fixation in a star graph, closely followed by star-like graphs. The fixation probability was lowest for regular and almost regular graphs. We also find that within a fixed graph, the fixation probability of a mutant has a negative correlation with the degree of the starting vertex. 1

    Kleptoparasitic Interactions under Asymmetric Resource Valuation

    Get PDF
    We introduce a game theoretical model of stealing interactions. We model the situation as an extensive form game when one individual may attempt to steal a valuable item from another who may in turn defend it. The population is not homogeneous, but rather each individual has a different Resource Holding Potential (RHP). We assume that RHP not only influences the outcome of the potential aggressive contest (the individual with the larger RHP is more likely to win), but that it also influences how an individual values a particular resource. We investigate several valuation scenarios and study the prevalence of aggressive behaviour. We conclude that the relationship between RHP and resource value is crucial, where some cases lead to fights predominantly between pairs of strong individuals, and some between pairs of weak individuals. Other cases lead to no fights with one individual conceding, and the order of strategy selection is crucial, where the individual which picks its strategy first often has an advantage

    Approximating Fixation Probabilities in the Generalized Moran Process

    Get PDF
    We consider the Moran process, as generalized by Lieberman, Hauert and Nowak (Nature, 433:312--316, 2005). A population resides on the vertices of a finite, connected, undirected graph and, at each time step, an individual is chosen at random with probability proportional to its assigned 'fitness' value. It reproduces, placing a copy of itself on a neighbouring vertex chosen uniformly at random, replacing the individual that was there. The initial population consists of a single mutant of fitness r>0r>0 placed uniformly at random, with every other vertex occupied by an individual of fitness 1. The main quantities of interest are the probabilities that the descendants of the initial mutant come to occupy the whole graph (fixation) and that they die out (extinction); almost surely, these are the only possibilities. In general, exact computation of these quantities by standard Markov chain techniques requires solving a system of linear equations of size exponential in the order of the graph so is not feasible. We show that, with high probability, the number of steps needed to reach fixation or extinction is bounded by a polynomial in the number of vertices in the graph. This bound allows us to construct fully polynomial randomized approximation schemes (FPRAS) for the probability of fixation (when r≥1r\geq 1) and of extinction (for all r>0r>0).Comment: updated to the final version, which appeared in Algorithmic
    corecore