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1 Department of Mathematical Science, City University London, Northampton Square, London,
EC1V 0HB, UK

2 Department of Mathematics and Statistics, The University of North Carolina at Greensboro,
Greensboro, NC 27402, USA

Abstract. We introduce a game theoretical model of stealing interactions. We model the
situation as an extensive form game when one individual may attempt to steal a valuable item
from another who may in turn defend it. The population is not homogeneous, but rather each
individual has a different Resource Holding Potential (RHP). We assume that RHP not only
influences the outcome of the potential aggressive contest (the individual with the larger RHP
is more likely to win), but that it also influences how an individual values a particular resource.
We investigate several valuation scenarios and study the prevalence of aggressive behaviour. We
conclude that the relationship between RHP and resource value is crucial, where some cases
lead to fights predominantly between pairs of strong individuals, and some between pairs of
weak individuals. Other cases lead to no fights with one individual conceding, and the order
of strategy selection is crucial, where the individual which picks its strategy first often has an
advantage.

Keywords and phrases: stealing, resource holding potential, game theory, Producer-
Scrounger game
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1. Introduction

Kleptoparasitism, the stealing or attempted stealing of resources (usually food), occurs in a variety of
contexts as animals compete for resources. One often associates stealing behaviour with seabirds and
their spectacular aerial contests for fish [26–28], but kleptoparasitism is a very common behaviour in
nature, and is practiced by a very diverse collection of species such as insects [21], fish [17] and mammals
[22]. A good review paper with nice classifications as well as numerous examples is [20]. The strategies
associated with stealing interactions can vary; for instance, in some interactions resources are promptly
forfeited while in others there are drawn out competitions as an individual defends its resources.

Typically when modelling kleptoparasitic interactions populations are assumed homogenous with every
individual being virtually the same, see for example [4, 6–8]. However, there is variation within real
populations and such a variation is usually modelled using the idea of Resource Holding Potential (RHP)
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Figure 1: Scheme and payoffs of the game.

[24], which can (for example) represent the size or any other measure of strength of the individual. RHP
is typically used in hierarchy formation models (see for example [3, 8, 15, 23]).

The paper [16] and references therein investigated the effect of variation in resource value on fighting
behaviour. That variation is often caused by the size of the food item or the time a food owner has
already spent eating the food item (see [5] for the analysis of the latter case). In this paper we investigate
the situation in which the variation of the resource value is caused by differences between individuals
within the population.

RHP can influence the probability of an individual winning a potential contest and it can also influence
how an individual values a particular resource. An example of this behaviour is the case of the gardening
reef fish Western Buffalo Bream, Kyphosus cornelii (see for example [11, 18]). The RHP for the fish is
likely to be positively correlated with the size of its garden. The value of a food item for a fish whose
garden is large is presumably smaller than the value of the same food item for a fish whose garden is
small.

One way to model kleptoparasitic interactions is the so called producer-scrounger game developed
in [2]. A number of variants of this model have been developed to consider different circumstances
and assumptions (see for example [10, 13, 14, 30]). Here, we consider a scenario where one individual,
a producer, possesses a valuable resource when another individual, a scrounger, comes along and may
attempt to steal it.

2. The Model

We model the situation as a game in an extensive form as shown in Figure 1. One individual, a producer,
is in a possession of a resource of (intrinsic) value f . Another individual, a scrounger, subsequently
arrives and may attempt to steal it. If the scrounger makes such a stealing attempt, then the producer
can either give up the resource without any conflict or defend it. The conflict cost is c and the producer
wins the conflict (and can keep the resource) with probability a. The probability of winning depends on
the RHPs rp and rs, respectively, of the producer and scrounger. Following [15], we consider a =

rp
rp+rs

.

We also assume that an individual values the resource depending on its own RHP, so that the value
for an individual with RHP r is given by a resource valuation function v(r). The model parameters are
summarized in Table 1. The payoffs from different scenarios are shown in Figure 1.
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Table 1: Used symbols and parameters.

Symbol Meaning
rmax maximal RHP of an individual
rs ∈ (0, rmax] RHP of the scrounger
rp ∈ (0, rmax] RHP of the producer
a =

rp

rp+rs
Probability that the producer wins a conflict

f ∈ (0,∞) Intrinsic value of the resource
c ∈ (0,∞) Cost of a conflict
v(r) Value of a resource for an individual with RHP r;

we will consider functions of the form v(r) = frx.
x Tuning parameter for the function v(r).

2.1. The resource valuation function

In order to allow for different resource valuation functions but keeping the situation simple at the same
time, we consider a family of functions v(r) = frx for varying x. When x = 0, we have v(r) = f ,
representing the situation where all individuals value the resource equally. For x < 0, individuals with
small RHP value the same resource more than individuals with larger RHP, an example of which is the
Western Buffalo Bream mentioned in the Introduction. For x > 0, individuals with small RHP value the
resource less than individuals with larger RHP. This might occur if the resource is a territory which helps
to acquire food or mates, but needs to be defended for a long period, where stronger individuals have
more chance of carrying out such a defence successfully.

3. Analysis

We will analyze the game using backward induction. Assume that the scrounger attempts to steal. The
producer has to decide whether to defend or not. If it does not defend, the payoff will be 0. If it defends,
it results in a fight which is lost with probability 1 − a. Hence if the producer defends, the expected
payoff when defending is −c+ av(rp). Consequently, the producer should defend if

0 < −c+ av(rp) (3.1)

which is equivalent to

c <
rp

rs + rp
v(rp). (3.2)

Now, we will investigate the options for the scrounger. If the scrounger does not attempt to steal, the
payoff will be 0. If (3.2) does not hold, then the producer will not defend against a stealing attempt and
thus the scrounger should attempt to steal to get a payoff v(rs) > 0. If (3.2) holds, then the producer
will defend against the stealing attempt. Hence, if the scrounger attacks, it will lose with probability a

(and get a payoff −c) and win with probability 1 − a (and get a payoff v(rs) − c). The expected payoff
is thus (1− a)v(rs)− c. Hence, the scrounger should attack if

(1− a)v(rs)− c > 0 (3.3)

which is equivalent to
rs

rp + rs
v(rs) > c. (3.4)

There are thus three distinct behavioural patterns as presented in Table 2.
In order to plot the patterns in the (rs, rp) plane, we can work with the inequalities further to obtain

that the scrounger attempts to steal and the producer does not defend if

rs > rp

(

v(rp)

c
− 1

)

; (3.5)
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Table 2: Summary of the results

Condition Behaviour
rs

rp + rs
v(rs) < c <

rp
rp + rs

v(rp) The scrounger does not attempt to steal.

rp
rs + rp

v(rp) < c The scrounger attempts to steal,

and the producer does not defend.

c < min

{

rp
rs + rp

v(rp),
rs

rp + rs
v(rs)

}

The scrounger attempts to steal,

and the producer defends.

the scrounger does not attempt to steal if

rs < rp

(

v(rp)

c
− 1

)

, and (3.6)

rp > rs

(

v(rs)

c
− 1

)

; (3.7)

and finally the scrounger attempts to steal and the producer defends if

rs < rp

(

v(rp)

c
− 1

)

, and (3.8)

rp < rs

(

v(rs)

c
− 1

)

. (3.9)

Note that when
v(rp)

c
≤ 1, (3.10)

then (3.5) holds while (3.6) and (3.8) do not, i.e. the scrounger attempts to steal and the producer does
not defend. This is caused by the cost of a fight being prohibitively large for the producer to fight, and
so as the producer will concede, the scrounger can safely attempt to steal.

4. Optimal strategies for different resource valuations

In this section, we will consider in detail the family of resource valuation functions v(r) = frx for different
x.

4.1. The symmetric valuation; the case x = 0

When x = 0, the resource valuation function is a constant function v(r) = f . From equations (3.5) -
(3.9) (see also Table 2) we get that there is no interaction (the scrounger does not attempt to steal) if
f
c
> 1 and

rp > rs

(

f

c
− 1

)

, and (4.1)

rp > rs

(

f

c
− 1

)

−1

. (4.2)

Similarly, the scrounger attempts to steal but the producer does not defend if

rs > rp

(

f

c
− 1

)

. (4.3)
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Figure 2: Behavioural outcomes of the game for v(r) = f . (a) 2 < f

c
, (b) 1 < f

c
< 2. The case f

c
< 1 is not

shown; in that case a scrounger attempts to steal and the producer does not defend for any pair of (rs, rp).

When f
c
≤ 1, the condition (4.3) is satisfied for any pair (rs, rp). When f

c
> 1, the condition (4.3) is

equivalent to

rp < rs

(

f

c
− 1

)

−1

. (4.4)

Finally, the scrounger attempts to steal and the producer defends if f
c
> 1,

rp < rs

(

f

c
− 1

)

, and (4.5)

rp > rs

(

f

c
− 1

)

−1

. (4.6)

We see that we have three possible scenarios, depending on the value of f
c
. When f

c
≤ 1, then the

scrounger attempts to steal but the producer does not defend. When 1 < f
c
< 2, then the scrounger

attempts to steal only when rp is not much larger than rs and in that case, the producer gives up. If rp
is too large, the scrounger does not attempt to steal. There is never a producer defending its resource.
When f

c
> 2, then all three behavioural patterns are possible with the producer giving up only if rp

is relatively small compared to rs, and the scrounger attempting to steal only if rp is not too large
(compared to rs). For a fixed rs, the producer gives up the resource if rp is small, defends it if rp is of
medium size and there is no interaction if rp is large. The scenarios are summarized in Figure 2.

4.2. The singular case x = −1

For v(r) = f
r
, the conditions for the scrounger not attempting to steal become

1

rp + rs
<

c

f
<

1

rp + rs
(4.7)

which can never be fulfilled. Hence, the scrounger will always attempt to steal. Also, the producer will
defend the resource if

rp <
f

c
− rs (4.8)

and will not defend it otherwise. The situation is illustrated on Figure 3.
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Scrounger attempts to steal

Producer does not defend

rp

rs

Producer defends

Scrounger attempts to steal

rmax

rmax

rp =
f
c
− rs

f
c

f
c

Figure 3: Behavioural outcomes of the game for v(r) = f/r. The scrounger always attempts to steal and if
f

c
> 2rmax, then the producer always defends.

As f
c
grows, the region of pairs (rs, rp) for which the producer defends grows as well. Specifically,

the producer defends for any rp ≤ rmax if rs ≤
f
c
− rmax. If f

c
> 2rmax, then the producer defends the

resource in all circumstances.

4.3. The case where −1 < x < 0

Here we take v(r) = frx for −1 < x < 0. The situation is shown in Figure 4. We see that the three
behavioural outcomes are always possible, regardless of the value of f

c
. Yet, the bigger f

c
, the bigger the

region when the scrounger attempts to steal and the producer defends. Note that unlike in the symmetric
case with x = 0, fights occur only for relatively small values of rs and rp and as soon as an RHP of any

(or both) of the two individuals is large enough (larger than
(

f
2c

)

−

1

x

), then the scrounger either does not

attempt to steal or the producer does not defend.

4.4. The case where x < −1

Here we take v(r) = frx for x < −1. The situation is shown in Figure 5. We see that the presence or
absence of the different behavioural outcomes depends on the value of f

c
. The bigger f

c
, the bigger the

region when the scrounger attempts to steal and the producer defends. If rmax <
(

f
2c

)

−

1

x

, then there is

always a conflict; but the conflict is present even for small values of f
c
.

Also note that (unlike in the case of −1 < x ≤ 0) here the scrounger does not steal when rs is large
and rp is small. This is a consequence of the fact that for such parameters, the value of the resource for
a scrounger is smaller than the cost of the conflict, but the value for the producer is larger than the cost
of conflict. Similarly, unlike before, the producer gives up whenever rp is large (because the value of the
resource is then much smaller than the cost of the conflict). This happens even in the case of small rs,
i.e. even when the producer is almost certain to win the conflict.

Note that unlike in the symmetric case x = 0, fights occur only for relatively small values of rs and rp
and as soon as an RHP of any (or both) of the two individuals is large enough, then the scrounger either
does not attempt to steal or the producer does not defend.
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Figure 4: Behavioural outcomes of the game for v(r) = frx, x ∈ (−1, 0).
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Figure 5: Behavioural outcomes of the game for v(r) = frx, x < −1.

4.5. The case where x > 0

Here we take v(r) = frx for x > 0. The situation is shown in Figure 6. We see that the presence of the

behavioural outcomes depends on the value of f
c
. If f

c
is small enough (precisely, if rmax <

(

f
c

)

−

1

x

), then

the producer never defends. If
(

f
c

)

−

1

x

< rmax <
(

f
2c

)

−

1

x

, then the scrounger does not attempt to steal

when rp is large enough, but there is still no conflict here. The conflict appears only when rmax >
(

f
2c

)

−

1

x

and the bigger f
c
, the bigger the region when conflict happens.
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Figure 6: Behavioural outcomes of the game for v(r) = frx, x > 0.

5. Discussion

In this paper we have developed a model of resource stealing behaviour, based upon the model developed
in [2]. In our model, there are differences between individuals in Resource Holding Potential (RHP) and
this affects not only their chances of winning any conflict, but also how much they value a particular
resource. We have found that there is a strong effect from the relationship between RHP and the value
of resources on how much and when aggressive behaviour occurs in the population. If weaker individuals
value a resource more highly (x < 0 in our model), then fights occur mainly between these weaker
individuals, and if stronger individuals value a resource more highly, then it is these individuals that
fight.

The clearest example of the former case is where individuals are competing for resources to survive,
where desperate individuals are prepared to fight and those that are well-fed are not. For example the
competitive behaviour of some birds will change with the season, and engage in stealing only when food
is rare in the winter, and not in the summer (e.g. Olrog’s gull, see [12]). Foraging models where the
value of the food item, and consequently the optimal choice of the forager, depend upon the state of the
individual in this way are discussed in detail in [19]. This variation can take other forms in addition to
how aggressive to be to conspecifics, such as the willingness to take more predation risks by being less
vigilant.

The competition for longer term advantages such as a position in a dominance hierarchy where dom-
inant individuals have most mating opportunities is an example of the latter case where resources are
more valuable to stronger animals. In these situations, dominant individuals fight for the top positions
in the hierarchy, as the difference between first and second can be large, but individuals lower down the
order often do not compete at all, as all lower positions are of similar value, and the probability of a
lowly ranked individual defeating a highly ranked one is small. The division of resources within such a
group is termed reproductive skew (the more the inequality, the higher the reproductive skew, [29]) and
the higher the skew, the greater the benefit in challenging ([25] consider this in ant colonies with multiple
queens). We should also note that psychological reasons often back up this situation, where the strong
that are used to winning are more likely to fight and win in the future (winner effects), and even more
significantly the weak that are used to losing are less likely to fight and more likely to lose any future
fights (loser effects, e.g. [15]).

Often in our game there is no contest, as either the second individual to arrive at the resource (the
scrounger) does not challenge, or, if it challenges, the first individual (the producer) concedes. Which
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of these occurs depends strongly on the parameters. In general the case where the producer concedes
is more common, and so the position of the scrounger being the first to choose its strategy yields it an
advantage. This may seem surprising, as the producer can choose its strategy based upon knowledge of
the scrounger strategy whereas the scrounger has no such knowledge, but in fact this has been observed
before in related models, such as in [9] or in the kleptoparasitism model of [4] and in evolutionary games
with sequential decisions more generally; see for example the game of brood care and desertion [19].

If the contests in the game were of different form, this could potentially lead to different results. We
have chosen the simplest model where the scrounger makes the initial decision and there is some response
by the producer. This is logical, for example, if the scrounger discovers the producer and can challenge
before the producer knows it is there. However, if the producer sees the scrounger approaching from
some distance and can take a defensive position associated with its strategy of choice, then it would be
more reasonable to assume the reverse order. As we have seen in the above, the order of the players in
a sequential game can make a real difference. Moreover real interactions would likely involve a sequence
of choices by the players, leading to more complex play. An alternative way of modelling such situations
using simple games would be to treat the contest as one involving simultaneous decisions (this was in
fact often the approach from the earlier producer-scrounger models, see for example [1]).

Finally we should briefly discuss the difference between the model used here, and the alternative models
of stealing behaviour, such as in [4]. These models assume a single indivisible resource, which cannot be
shared. Furthermore it takes time to find and handle and fights take time to complete (lost time being
the main cost of fighting, as opposed to energetic or injury costs). Thus choice of strategy directly affects
the opportunities available to individuals, so that the population level behaviour is more complicated;
for example an individual which always surrenders its resource will waste less time in fights, and will
be more likely to find a producer than one who always fights. Producer-scrounger models, including
the model in this paper, typically neglect such factors and involve instantaneous contests which result
in energetic cost. In addition, producer-scrounger models usually involve divisible resources which can
be shared (though this is not strictly necessary, and our sequential approach makes no use of this). In
particular the population complications are removed, and such models can focus on the individual contest
as an independent entity, which allows such contests to be more complicated and yet still mathematically
tractable. Note that this is realistic in cases of low population density when interactions are rare, but
less so in cases where interactions are very common.

Acknowledgements. The research was supported by an NSF grant DBI-0926288, Simons Foundation grant 245400
and UNCG Undergraduate Research Award in Mathematics and Statistics.
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