10 research outputs found

    ASSESSMENT OF CROP YIELDS IN MODERN AGRICULTURE ON THE BASIS OF GIS-TECHNOLOGIES - Langfasssung

    Get PDF
    The uneven distribution of natural properties- for example, soil quality, topography, microclimate - on the territory of any size determined a different degree of their suitability for growing different groups of crops. Information-analytical system of ensuring agricultural technologies was developed on the base of several GIS and models of crop yield. The system included creation of maps of potential yield (function of the natural factors) and possible (function of the real level of the field fertility) yield of various crops. These dates were received in the field experiments with fertilizers and in available modern bases of agro-chemical, landscape, climatic parameters

    Effective organic matter stock management in agricultural practices: modeling and observation - Langfassung

    Get PDF
    RothC soil carbon dynamic model was used for simulation SOC stocks in 6 Russian long-term fertilization experiments for estimation which agricultural practices lead to soil C accumulation. For all the treatments tested above ground NPP input is sufficient for maintaining constant SOM stocks and additional C gain

    Von J. v. Liebig bis E. A. Mitscherlich. Die Grundlage ressourceneffizienter Pflanzenernährung - Langfassung

    Get PDF
    We share the visions of the originator of the modern soil science VV Dokuchaev and the great innovators of agrochemistry J v. Liebig, EA Mitscherlich, DN Pryanishnikov, UU Uspanov and others. Their visions were to eliminate hunger and poverty of the population by stable crop yields based on innovative site-adapted soil management and farming

    Climate change as the driving force behind the intensification of agricultural land use

    Get PDF
    Climate change in Europe will lead to new precipitation patterns over the coming years and the annual temperature will increase significantly. These changes in climate variables and the resulting effects on agricultural productivity must be differentiated regionally. Plant production depends on sufficient rainfall in summer and, in some regions, on the amount of rainfall in winter. In Central Europe, the amount of precipitation in summer will decrease in the coming decades due to climate change, while in some regions, the amount of winter precipitation will increase significantly. Agricultural production is likely to suffer severely as a result of rising summer temperatures and low water retention capacities in the soil. The effects of reduced summer precipitation and increased air temperatures are partially offset by the expected increased CO2 concentration. Therefore, the effects that changed climatic conditions have on crop production are sometimes less drastic in terms of crop yields. The greatest impact of climate change on land use is expected from increasing evapotranspiration and lower amounts of precipitation in the production of leachate. In addition to the expected mean changes, the occurrence of extreme weather conditions is key. Periods of drought in the growing season and heavy flooding as a result of extreme rainfall are to be expected. However, these events are very difficult or even impossible to predict. In addition to the effects that climate change will have on regional crop production, global changes will have a strong impact on world markets for agricultural products. Another consequence of climate change and population growth is a higher demand for agricultural products on world markets. This will lead to dramatic local land use changes and an intensification of agriculture that will transform existing crop production systems. The intensification caused by rising land and lease prices will primarily affect the maximization of the use of fertilizers and pesticides

    Bewertung landwirtschaftlicher Produktivitätspotentiale der globalen Landressource

    Get PDF
    Ziel unserer Arbeiten ist die Klassifikation und funktionelle Bewertung von Agrarstandorten nach einheitlichen Kriterien. Solche Informationen könnten für die überregional vergleichende Bewertung und standortgerechte nachhaltige agrarische Nutzung von Böden hilfreich sein. Wir untersuchten mehr als 100 repräsentative Böden auf Versuchsstandorten in bedeutenden Agrarregionen der Welt. Das sind Europa, Nordchina, die Prärieregionen Nordamerikas, sowie die Steppen Westsibiriens und Kasachstans. Die Böden wurden nach der World Reference Base for Soil Resources (WRB 2006) klassifiziert und mittels Müncheberger Soil Quality Rating (M-SQR) funktionell bewertet. Das indikatorbasierte M-SQR erwies sich als praktikabel und führte zu plausiblen Wertezahlen der Bodengüte. Die Bewertungskennziffern des M-SQR können je nach Landnutzungsintensität und Anpassungsgüte der Indikatoren etwa 50-80 % der Ertragsvariabilität von Getreide erklä¬ren. Es wird geschlußfolgert, daß das M-SQR für die skalenübergreifende Abschätzung von landwirtschaftlichen Produktivitätspotentialen, also als Basiswerkzeug für ein globales Bodenmonitoring, geeignet ist. Das M-SQR erweitert Bodenklassifikationssysteme wie die WRB 2006 um den Aspekt der Bodenfunktionalität

    Bodenhydrologische Untersuchungen in verschiedenen Skalen für eine nachhaltige Landwirtschaft (Langfassung)

    Get PDF
    Eine umfassende Analyse von interaktiven Prozessen zwischen Boden, Wasser, Pflanze, Tiere und Atmosphäre für eine nachhaltige Landwirtschaft erfordert Kenntnisse von hydrologischen Parametern und Prozessen in unterschiedlichen Skalen. Methoden und Ergebnisse aus bodenhydrologischen Studien in Nordostdeutschland werden vorgestellt. Die Untersuchungen erfolgten im Labor, Lysimeter, Feld und Einzugsgebiet

    Optimizing Agricultural Landscapes: Measures Towards Prosperity and Sustainability

    No full text
    Due to the multiplicity of challenges facing all societies at the beginning of the twenty-first century, agricultural systems and rural landscapes are under pressure. Solutions for their optimization towards sustainability at high productivity are required. We address the majority of current agricultural systems and discuss approaches for assessing their sustainability. Life cycle analyses and footprint methods have experienced much progress but require further qualification. Some alternative farming systems such as organic agriculture, agroecology, regenerative agriculture, ecological intensification, and sustainable intensification, which are based on landscape approaches and direct farmer?consumer interactions have potential for significant improve ments towards the sustainability of global agriculture and need further attention and promotion in research and practice. Technology-driven smart farming technologies can be implemented in all these kinds of farming systems. A key to preventing the degradation of agricultural landscapes andimproving ecology and economics lies in their better structural development and design, adapted to geosystem settings, legacies of local cultural history and opportunities presented by urban?rural interactions. For achieving better landscape design, it is worth thinking about reforming and strengthening land consolidation as a planned participatory process involving the rural community. Further, scientifically sound and policy relevant rules and steering instruments have to be developed for the design and cultural evolution of rural landscapes. The European Union (EU) and other wealthy economic zones, federations, countries, and regions have developed funding systems for agriculture. The Common Agricultural Policy (CAP) of the EU is a powerful tool promoting both the possession and ownership of agricultural land (pillar I, main pillar) and rural development (pillarII). This system should be better balanced by shifting towards pillar II to promote further ecosystem services in agricultural regions. Novel solutions should be aimed at for maintaining landscape diversity and heritage, developing local food cultures and agritourism, and strengthening rural communities and their societal image. Transdisciplinary international model projects are useful contributions to making innovations operable.Fil: Mueller, Lothar. Leibniz Centre For Agricultural Landscape Research; AlemaniaFil: Eulenstein, Frank. Leibniz Centre For Agricultural Landscape Research; AlemaniaFil: Mirschel, Wilfried. Leibniz Centre For Agricultural Landscape Research; AlemaniaFil: Schindler, Uwe. Kuban State Agrarian University; RusiaFil: Sychev, Viktor G.. Institute For Agrochemistry; RusiaFil: Rukhovich, Olga V.. Institute For Agrochemistry; RusiaFil: Sheudzhen, Askhad K.. Kuban State Agrarian University; RusiaFil: Romanenkov, Vladimir. Institute For Agrochemistry; RusiaFil: Lukin, Sergey M.. All Russian Research Institute for Organic Fertiliser and Peat; RusiaFil: McKenzie, Blair M.. University Of Dundee; Reino UnidoFil: Jones, Michael. Norwegian University of Science and Technology; NoruegaFil: Dannowski, Ralf. Leibniz Centre For Agricultural Landscape Research; AlemaniaFil: Blum, Winfried E. H.. University Of Natural Resources And Life Sciences; AustriaFil: Salnjikov, Elmira. Soil Science Institute; SerbiaFil: Saparov, Abdulla. Research Centre For Ecology And Environment Of Central; KazajistánFil: Pachikin, Konstantin. Kazakh Research Institute Of Soil Science And Agrochemi; KazajistánFil: Hennings, Volker. No especifíca;Fil: Scherber, Christoph. Zoological Research Museum Alexander Koenig; AlemaniaFil: Hoffmann, Jörg. Institute For Strategies And Technology Assessment; AlemaniaFil: Antrop, Marc. University of Ghent; BélgicaFil: Garibaldi, Lucas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. - Universidad Nacional de Rio Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; ArgentinaFil: Gómez Carella, Dulce Sol. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. - Universidad Nacional de Rio Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; ArgentinaFil: Augstburger, Horacio. University of Bern; SuizaFil: Schwilch, Gudrun. Centre For Development And Environment; SuizaFil: Angelstam, Per. Swedish University Of Agricultural Sciences; SueciaFil: Manton, Michael. Vytautas Magnus University; LituaniaFil: Dronin, Nikolai M.. Moscow Lomonosov State University; Rusi

    Chapter I/2: INNOVATIONS AND KNOWLEDGE TRANSFER FOR ACHIEVINGLANDSCAPE SUSTAINABILITYГлава I/2: Инновации и передача знаний для достижения устойчивости ландшафтов

    No full text
    The need for soil tillage and its appropriate depth and procedures has been key questions of plant cropping and design of agricultural landscapes worldwide. We re-evaluated the largest series of international soil tillage trials, ever conducted. They were carried out on 50 locations in 8 countries of Eastern and Central Europe from 1955 to 1967. Framework conditions were Late-Holocene: Mechanized tillage and cropping technologies and organo-mineral fertilisers were available, whilst fungicides, herbicides, pesticides and hybrid seeds were little applied or not available during that time. Rotations were wide and balanced. These conditions come close to current organic farming systems. We analysed a multivariate set of more than 4,000 crop yield meta-data. Results revealed strong effects of soil fertility (as evaluated based on the Muencheberg Soil Quality Rating) and of organo-mineral fertilisation on crop yields, whilst soil tillage depth had lower and site-specific effects. Ploughing led to higher crop yields due to better suppression of weeds and mineralisation of plant nutrients. On humid sites in Europe without erosion risks, in a well structured agricultural landscape, the moldboard plough should be an inevitable part of productive and sustainable cropping systems.Необходимость обработки почвы, ее оптимальная глубина и приемы были ключевыми вопросами растениеводства и создания сельскохозяйственных ландшафтов во всем мире. Мы выполнили переоценку международной серии опытов по обработке почвы, крупнейшей из когда-либо проводившихся. Опыты были проведены в 50 географических точках в 8 странах Восточной и Центральной Европы с 1955 по 1967 гг. Рамочные условия – позднеголоценовые: использовались механизированные технологии обработки почвы и возделывания сельскохозяйственных культур, органические и минеральные удобрения, тогда как фунгициды, гербициды, пестициды и гибридные семена в то время применялись мало или отсутствовали. Севообороты включали широкий набор культур и были сбалансированными. Эти условия близки к современным системам органического сельского хозяйства. Мы проанализировали многомерный массив из более чем 4 тысяч метаданных, относящихся к урожайности сельскохозяйственных культур. Результаты выявили выраженные эффекты плодородия почвы (оцененного на основе Мюнхебергской системы рейтинга качества почвы), органических и минеральных удобрений на урожайность. Эффект глубины обработки почвы был ниже и зависел от местоположения. Вспашка повышала урожайность культур благодаря лучшему подавлению сорняков и минерализации питательных веществ в почве. В условиях влажного климата в Европе и отсутствия рисков эрозии, в хорошо структурированном сельскохозяйственном ландшафте, отвальный плуг должен быть необходимой частью продуктивных и устойчивых систем земледелия
    corecore