9,676 research outputs found

    Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction

    Full text link
    A Planck-scale minimal observable length appears in many approaches to quantum gravity. It is sometimes argued that this minimal length might conflict with Lorentz invariance, because a boosted observer could see the minimal length further Lorentz contracted. We show that this is not the case within loop quantum gravity. In loop quantum gravity the minimal length (more precisely, minimal area) does not appear as a fixed property of geometry, but rather as the minimal (nonzero) eigenvalue of a quantum observable. The boosted observer can see the same observable spectrum, with the same minimal area. What changes continuously in the boost transformation is not the value of the minimal length: it is the probability distribution of seeing one or the other of the discrete eigenvalues of the area. We discuss several difficulties associated with boosts and area measurement in quantum gravity. We compute the transformation of the area operator under a local boost, propose an explicit expression for the generator of local boosts and give the conditions under which its action is unitary.Comment: 12 pages, 3 figure

    The century of the incomplete revolution: searching for general relativistic quantum field theory

    Get PDF
    In fundamental physics, this has been the century of quantum mechanics and general relativity. It has also been the century of the long search for a conceptual framework capable of embracing the astonishing features of the world that have been revealed by these two ``first pieces of a conceptual revolution''. I discuss the general requirements on the mathematics and some specific developments towards the construction of such a framework. Examples of covariant constructions of (simple) generally relativistic quantum field theories have been obtained as topological quantum field theories, in nonperturbative zero-dimensional string theory and its higher dimensional generalizations, and as spin foam models. A canonical construction of a general relativistic quantum field theory is provided by loop quantum gravity. Remarkably, all these diverse approaches have turn out to be related, suggesting an intriguing general picture of general relativistic quantum physics.Comment: To appear in the Journal of Mathematical Physics 2000 Special Issu

    Graviton propagator from background-independent quantum gravity

    Full text link
    We study the graviton propagator in euclidean loop quantum gravity, using the spinfoam formalism. We use boundary-amplitude and group-field-theory techniques, and compute one component of the propagator to first order, under a number of approximations, obtaining the correct spacetime dependence. In the large distance limit, the only term of the vertex amplitude that contributes is the exponential of the Regge action: the other terms, that have raised doubts on the physical viability of the model, are suppressed by the phase of the vacuum state, which is determined by the extrinsic geometry of the boundary.Comment: 6 pages. Substantially revised second version. Improved boundary state ansat

    Quantum Loop Representation for Fermions coupled to Einstein-Maxwell field

    Get PDF
    Quantization of the system comprising gravitational, fermionic and electromagnetic fields is developed in the loop representation. As a result we obtain a natural unified quantum theory. Gravitational field is treated in the framework of Ashtekar formalism; fermions are described by two Grassmann-valued fields. We define a CC^{*}-algebra of configurational variables whose generators are associated with oriented loops and curves; ``open'' states -- curves -- are necessary to embrace the fermionic degrees of freedom. Quantum representation space is constructed as a space of cylindrical functionals on the spectrum of this CC^{*}-algebra. Choosing the basis of ``loop'' states we describe the representation space as the space of oriented loops and curves; then configurational and momentum loop variables become in this basis the operators of creation and annihilation of loops and curves. The important difference of the representation constructed from the loop representation of pure gravity is that the momentum loop operators act in our case simply by joining loops in the only compatible with their orientaiton way, while in the case of pure gravity this action is more complicated.Comment: 28 pages, REVTeX 3.0, 15 uuencoded ps-figures. The construction of the representation has been changed so that the representation space became irreducible. One part is removed because it developed into a separate paper; some corrections adde

    Compatibility of radial, Lorenz and harmonic gauges

    Full text link
    We observe that the radial gauge can be consistently imposed \emph{together} with the Lorenz gauge in Maxwell theory, and with the harmonic traceless gauge in linearized general relativity. This simple observation has relevance for some recent developments in quantum gravity where the radial gauge is implicitly utilized.Comment: 9 pages, minor changes in the bibliograph

    The complete LQG propagator: II. Asymptotic behavior of the vertex

    Full text link
    In a previous article we have show that there are difficulties in obtaining the correct graviton propagator from the loop-quantum-gravity dynamics defined by the Barrett-Crane vertex amplitude. Here we show that a vertex amplitude that depends nontrivially on the intertwiners can yield the correct propagator. We give an explicit example of asymptotic behavior of a vertex amplitude that gives the correct full graviton propagator in the large distance limit.Comment: 16 page

    A simple background-independent hamiltonian quantum model

    Full text link
    We study formulation and probabilistic interpretation of a simple general-relativistic hamiltonian quantum system. The system has no unitary evolution in background time. The quantum theory yields transition probabilities between measurable quantities (partial observables). These converge to the classical predictions in the 0\hbar\to 0 limit. Our main tool is the kernel of the projector on the solutions of Wheeler-deWitt equation, which we analyze in detail. It is a real quantity, which can be seen as a propagator that propagates "forward" as well as "backward" in a local parameter time. Individual quantum states, on the other hand, may contain only "forward propagating" components. The analysis sheds some light on the interpretation of background independent transition amplitudes in quantum gravity

    Physical effects of the Immirzi parameter

    Full text link
    The Immirzi parameter is a constant appearing in the general relativity action used as a starting point for the loop quantization of gravity. The parameter is commonly believed not to show up in the equations of motion, because it appears in front of a term in the action that vanishes on shell. We show that in the presence of fermions, instead, the Immirzi term in the action does not vanish on shell, and the Immirzi parameter does appear in the equations of motion. It determines the coupling constant of a four-fermion interaction. Therefore the Immirzi parameter leads to effects that are observable in principle, even independently from nonperturbative quantum gravity.Comment: 3 pages. Substantial revision from the first versio

    Loop Quantum Cosmology in Bianchi Type I Models: Analytical Investigation

    Full text link
    The comprehensive formulation for loop quantum cosmology in the spatially flat, isotropic model was recently constructed. In this paper, the methods are extended to the anisotropic Bianchi I cosmology. Both the precursor and the improved strategies are applied and the expected results are established: (i) the scalar field again serves as an internal clock and is treated as emergent time; (ii) the total Hamiltonian constraint is derived by imposing the fundamental discreteness and gives the evolution as a difference equation; and (iii) the physical Hilbert space, Dirac observables and semi-classical states are constructed rigorously. It is also shown that the state in the kinematical Hilbert space associated with the classical singularity is decoupled in the difference evolution equation, indicating that the big bounce may take place when any of the area scales undergoes the vanishing behavior. The investigation affirms the robustness of the framework used in the isotropic model by enlarging its domain of validity and provides foundations to conduct the detailed numerical analysis.Comment: 53 pages, 2 figures; more typos corrected; HyperTeX enable
    corecore