53 research outputs found

    State capture and institutional cascades : a case study of the Department of Water and Sanitation

    Get PDF
    Abstract: The South African state has been transformed since 1994, but not in the way that many people hoped or expected. In the 1990s and 2000s analyses—and protests-- focused on the incompetency, or ‘lack of capacity’, of the state, its skewed priorities toward elite interests and its failure to deliver services adequately or equitably. Events in the 2010s have shifted our purview to a more insidious reality: the transformation of the state through its capture. The devastating impact of state capture on its institutions is becoming increasingly visible. This article looks at how the first stage of state capture, or high level capture that corroded the ethos of governing, has cascaded through the Department of Water and Sanitation (DWS) through a second stage of capture. This stage undermines the operation of the DWS and its management and protection of water resources and provision of water services. Through an analysis of primary data including Parliamentary reports and information from access to information (PAIA) requests, three features of state capture in DWS are examined: securing control over the public service and weakening of controls, centralising control over institutions, and ‘shaking down’ regulation. Its aim is not to identify individuals involved and how they benefit, but to examine how these features have exacerbated the dysfunctionality of DWS that began in the 2000s. Finally it concludes by considering opportunities for systemic reform

    3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial

    Get PDF
    Background: Liraglutide 3·0 mg was shown to reduce bodyweight and improve glucose metabolism after the 56-week period of this trial, one of four trials in the SCALE programme. In the 3-year assessment of the SCALE Obesity and Prediabetes trial we aimed to evaluate the proportion of individuals with prediabetes who were diagnosed with type 2 diabetes. Methods: In this randomised, double-blind, placebo-controlled trial, adults with prediabetes and a body-mass index of at least 30 kg/m2, or at least 27 kg/m2 with comorbidities, were randomised 2:1, using a telephone or web-based system, to once-daily subcutaneous liraglutide 3·0 mg or matched placebo, as an adjunct to a reduced-calorie diet and increased physical activity. Time to diabetes onset by 160 weeks was the primary outcome, evaluated in all randomised treated individuals with at least one post-baseline assessment. The trial was conducted at 191 clinical research sites in 27 countries and is registered with ClinicalTrials.gov, number NCT01272219. Findings: The study ran between June 1, 2011, and March 2, 2015. We randomly assigned 2254 patients to receive liraglutide (n=1505) or placebo (n=749). 1128 (50%) participants completed the study up to week 160, after withdrawal of 714 (47%) participants in the liraglutide group and 412 (55%) participants in the placebo group. By week 160, 26 (2%) of 1472 individuals in the liraglutide group versus 46 (6%) of 738 in the placebo group were diagnosed with diabetes while on treatment. The mean time from randomisation to diagnosis was 99 (SD 47) weeks for the 26 individuals in the liraglutide group versus 87 (47) weeks for the 46 individuals in the placebo group. Taking the different diagnosis frequencies between the treatment groups into account, the time to onset of diabetes over 160 weeks among all randomised individuals was 2·7 times longer with liraglutide than with placebo (95% CI 1·9 to 3·9, p<0·0001), corresponding with a hazard ratio of 0·21 (95% CI 0·13–0·34). Liraglutide induced greater weight loss than placebo at week 160 (–6·1 [SD 7·3] vs −1·9% [6·3]; estimated treatment difference −4·3%, 95% CI −4·9 to −3·7, p<0·0001). Serious adverse events were reported by 227 (15%) of 1501 randomised treated individuals in the liraglutide group versus 96 (13%) of 747 individuals in the placebo group. Interpretation: In this trial, we provide results for 3 years of treatment, with the limitation that withdrawn individuals were not followed up after discontinuation. Liraglutide 3·0 mg might provide health benefits in terms of reduced risk of diabetes in individuals with obesity and prediabetes. Funding: Novo Nordisk, Denmark

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Emerging infectious diseases and biological invasions: a call for a One Health collaboration in science and management

    No full text
    The study and management of emerging infectious diseases (EIDs) and of biological invasions both address the ecology of human-associated biological phenomena in a rapidly changing world. However, the two fields work mostly in parallel rather than in concert. This review explores how the general phenomenon of an organism rapidly increasing in range or abundance is caused, highlights the similarities and differences between research on EIDs and invasions, and discusses shared management insights and approaches. EIDs can arise by: (i) crossing geographical barriers due to human-mediated dispersal, (ii) crossing compatibility barriers due to evolution, and (iii) lifting of environmental barriers due to environmental change. All these processes can be implicated in biological invasions, but only the first defines them. Research on EIDs is embedded within the One Health concept—the notion that human, animal and ecosystem health are interrelated and that holistic approaches encompassing all three components are needed to respond to threats to human well-being. We argue that for sustainable development, biological invasions should be explicitly considered within One Health. Management goals for the fields are the same, and direct collaborations between invasion scientists, disease ecologists and epidemiologists on modelling, risk assessment, monitoring and management would be mutually beneficial

    Emerging infectious diseases and biological invasions: a call for a One Health collaboration in science and management

    Get PDF
    The study and management of emerging infectious diseases (EIDs) and of biological invasions both address the ecology of human-associated biological phenomena in a rapidly changing world. However, the two fields work mostly in parallel rather than in concert. This review explores how the general phenomenon of an organism rapidly increasing in range or abundance is caused, highlights the similarities and differences between research on EIDs and invasions, and discusses shared management insights and approaches. EIDs can arise by: (i) crossing geographical barriers due to human-mediated dispersal, (ii) crossing compatibility barriers due to evolution, and (iii) lifting of environmental barriers due to environmental change. All these processes can be implicated in biological invasions, but only the first defines them. Research on EIDs is embedded within the One Health concept—the notion that human, animal and ecosystem health are interrelated and that holistic approaches encompassing all three components are needed to respond to threats to human well-being. We argue that for sustainable development, biological invasions should be explicitly considered within One Health. Management goals for the fields are the same, and direct collaborations between invasion scientists, disease ecologists and epidemiologists on modelling, risk assessment, monitoring and management would be mutually beneficial

    Emerging infectious diseases and biological invasions: a call for a One Health collaboration in science and management

    Get PDF
    The study and management of emerging infectious diseases (EIDs) and of biological invasions both address the ecology of human-associated biological phenomena in a rapidly changing world. However, the two fields work mostly in parallel rather than in concert. This review explores how the general phenomenon of an organism rapidly increasing in range or abundance is caused, highlights the similarities and differences between research on EIDs and invasions, and discusses shared management insights and approaches. EIDs can arise by: (i) crossing geographical barriers due to human-mediated dispersal, (ii) crossing compatibility barriers due to evolution, and (iii) lifting of environmental barriers due to environmental change. All these processes can be implicated in biological invasions, but only the first defines them. Research on EIDs is embedded within the One Health concept—the notion that human, animal and ecosystem health are interrelated and that holistic approaches encompassing all three components are needed to respond to threats to human well-being. We argue that for sustainable development, biological invasions should be explicitly considered within One Health. Management goals for the fields are the same, and direct collaborations between invasion scientists, disease ecologists and epidemiologists on modelling, risk assessment, monitoring and management would be mutually beneficial

    Emerging infectious diseases and biological invasions: a call for a One Health collaboration in science and management

    Get PDF
    The study and management of emerging infectious diseases (EIDs) and of biological invasions both address the ecology of human-associated biological phenomena in a rapidly changing world. However, the two fields work mostly in parallel rather than in concert. This review explores how the general phenomenon of an organism rapidly increasing in range or abundance is caused, highlights the similarities and differences between research on EIDs and invasions, and discusses shared management insights and approaches. EIDs can arise by: (i) crossing geographical barriers due to human-mediated dispersal, (ii) crossing compatibility barriers due to evolution, and (iii) lifting of environmental barriers due to environmental change. All these processes can be implicated in biological invasions, but only the first defines them. Research on EIDs is embedded within the One Health concept—the notion that human, animal and ecosystem health are interrelated and that holistic approaches encompassing all three components are needed to respond to threats to human well-being. We argue that for sustainable development, biological invasions should be explicitly considered within One Health. Management goals for the fields are the same, and direct collaborations between invasion scientists, disease ecologists and epidemiologists on modelling, risk assessment, monitoring and management would be mutually beneficial
    corecore