402 research outputs found

    Oral microbial communities in children, caregivers, and associations with salivary biomeasures and environmental tobacco smoke exposure

    Get PDF
    Human oral microbial communities are diverse, with implications for oral and systemic health. Oral microbial communities change over time; thus, it is important to understand how healthy versus dysbiotic oral microbiomes differ, especially within and between families. There is also a need to understand how the oral microbiome composition is changed within an individual including by factors such as environmental tobacco smoke (ETS) exposure, metabolic regulation, inflammation, and antioxidant potential. Using archived saliva samples collected from caregivers and children during a 90-month follow-up assessment in a longitudinal study of child development in the context of rural poverty, we used 16S rRNA gene sequencing to determine the salivary microbiome. A total of 724 saliva samples were available, 448 of which were from caregiver/child dyads, an additional 70 from children and 206 from adults. We compared children’s and caregivers’ oral microbiomes, performed “stomatotype” analyses, and examined microbial relations with concentrations of salivary markers associated with ETS exposure, metabolic regulation, inflammation, and antioxidant potential (i.e., salivary cotinine, adiponectin, C-reactive protein, and uric acid) assayed from the same biospecimens. Our results indicate that children and caregivers share much of their oral microbiome diversity, but there are distinct differences. Microbiomes from intrafamily individuals are more similar than microbiomes from nonfamily individuals, with child/caregiver dyad explaining 52% of overall microbial variation. Notably, children harbor fewer potential pathogens than caregivers, and participants’ microbiomes clustered into two groups, with major differences being driven by Streptococcus spp. Differences in salivary microbiome composition associated with ETS exposure, and taxa associated with salivary analytes representing potential associations between antioxidant potential, metabolic regulation, and the oral microbiome

    Cell-Mediated Immunity Generated in Response to a Purified Inactivated Vaccine for Dengue Virus Type 1

    Get PDF
    Dengue is the most prevalent arboviral disease afflicting humans, and a vaccine appears to be the most rational means of control. Dengue vaccine development is in a critical phase, with the first vaccine licensed in some countries where dengue is endemic but demonstrating insufficient efficacy in immunologically naive populations. Since virus-neutralizing antibodies do not invariably correlate with vaccine efficacy, other markers that may predict protection, including cell-mediated immunity, are urgently needed. Previously, the Walter Reed Army Institute of Research developed a monovalent purified inactivated virus (PIV) vaccine candidate against dengue virus serotype 1 (DENV-1) adjuvanted with alum. The PIV vaccine was safe and immunogenic in a phase I dose escalation trial in healthy, flavivirus-naive adults in the United States. From that trial, peripheral blood mononuclear cells obtained at various time points pre- and postvaccination were used to measure DENV-1-specific T cell responses. After vaccination, a predominant CD4+ T cell-mediated response to peptide pools covering the DENV-1 structural proteins was observed. Over half (13/20) of the subjects produced interleukin-2 (IL-2) in response to DENV peptides, and the majority (17/20) demonstrated peptide-specific CD4+ T cell proliferation. In addition, analysis of postvaccination cell culture supernatants demonstrated an increased rate of production of cytokines, including gamma interferon (IFN-γ), IL-5, and granulocyte-macrophage colony-stimulating factor (GM-CSF). Overall, the vaccine was found to have elicited DENV-specific CD4+ T cell responses as measured by enzyme-linked immunosorbent spot (ELISpot), intracellular cytokine staining (ICS), lymphocyte proliferation, and cytokine production assays. Thus, together with antibody readouts, the use of a multifaceted measurement of cell-mediated immune responses after vaccination is a useful strategy for more comprehensively characterizing immunity generated by dengue vaccines

    Effect of multi-planar CT image reformatting on surgeon diagnostic performance for localizing thoracolumbar disc extrusions in dogs

    Get PDF
    Accurate pre-operative localization and removal of disc material are important for minimizing morbidity in dogs with thoracolumbar disc extrusions. Computed tomography (CT) is an established technique for localizing disc extrusions in dogs, however the effect of multi-planar reformatting (MPR) on surgeon diagnostic performance has not been previously described. The purpose of this study was to test the effect of MPR CT on surgeon diagnostic accuracy, certainty and agreement for localizing thoracolumbar disc extrusions in dogs. Two veterinary surgeons and one veterinary neurologist who were unaware of surgical findings independently reviewed randomized sets of two-dimensional (2D) and MPR CT images from 111 dogs with confirmed thoracolumbar disc extrusions. For each set of images, readers recorded their localizations for extruded disc material and their diagnostic certainty. For MPR images, readers also recorded views they considered most helpful. Diagnostic accuracy estimates, mean diagnostic certainty scores and inter-observer agreement were compared using surgery as the gold standard. Frequencies were compared for MPR views rated most helpful. Diagnostic accuracy estimates were significantly greater for MPR vs. 2D CT images in one reader. Mean diagnostic certainty scores were significantly greater for MPR images in two readers. The change in agreement between 2D and MPR images differed from zero for all analyses (site, side, number affected) among all three readers. Multi-planar views rated most helpful with the highest frequency were oblique transverse and curved dorsal planar MPR views. Findings from this study indicate that multi-planar CT can improve surgeon diagnostic performance for localizing canine thoracolumbar disc extrusions

    Comparing Respondent-Driven Sampling and Targeted Sampling Methods of Recruiting Injection Drug Users in San Francisco

    Get PDF
    The objective of this article is to compare demographic characteristics, risk behaviors, and service utilization among injection drug users (IDUs) recruited from two separate studies in San Francisco in 2005, one which used targeted sampling (TS) and the other which used respondent-driven sampling (RDS). IDUs were recruited using TS (n = 651) and RDS (n = 534) and participated in quantitative interviews that included demographic characteristics, risk behaviors, and service utilization. Prevalence estimates and 95% confidence intervals (CIs) were calculated to assess whether there were differences in these variables by sampling method. There was overlap in 95% CIs for all demographic variables except African American race (TS: 45%, 53%; RDS: 29%, 44%). Maps showed that the proportion of IDUs distributed across zip codes were similar for the TS and RDS sample, with the exception of a single zip code that was more represented in the TS sample. This zip code includes an isolated, predominantly African American neighborhood where only the TS study had a field site. Risk behavior estimates were similar for both TS and RDS samples, although self-reported hepatitis C infection was lower in the RDS sample. In terms of service utilization, more IDUs in the RDS sample reported no recent use of drug treatment and syringe exchange program services. Our study suggests that perhaps a hybrid sampling plan is best suited for recruiting IDUs in San Francisco, whereby the more intensive ethnographic and secondary analysis components of TS would aid in the planning of seed placement and field locations for RDS
    corecore