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ABSTRACT Dengue is the most prevalent arboviral disease afflicting humans, and a
vaccine appears to be the most rational means of control. Dengue vaccine develop-
ment is in a critical phase, with the first vaccine licensed in some countries where
dengue is endemic but demonstrating insufficient efficacy in immunologically naive
populations. Since virus-neutralizing antibodies do not invariably correlate with vac-
cine efficacy, other markers that may predict protection, including cell-mediated im-
munity, are urgently needed. Previously, the Walter Reed Army Institute of Research
developed a monovalent purified inactivated virus (PIV) vaccine candidate against
dengue virus serotype 1 (DENV-1) adjuvanted with alum. The PIV vaccine was safe
and immunogenic in a phase I dose escalation trial in healthy, flavivirus-naive adults
in the United States. From that trial, peripheral blood mononuclear cells obtained at
various time points pre- and postvaccination were used to measure DENV-1-specific
T cell responses. After vaccination, a predominant CD4� T cell-mediated response to
peptide pools covering the DENV-1 structural proteins was observed. Over half (13/
20) of the subjects produced interleukin-2 (IL-2) in response to DENV peptides, and
the majority (17/20) demonstrated peptide-specific CD4� T cell proliferation. In addi-
tion, analysis of postvaccination cell culture supernatants demonstrated an in-
creased rate of production of cytokines, including gamma interferon (IFN-�), IL-5,
and granulocyte-macrophage colony-stimulating factor (GM-CSF). Overall, the vac-
cine was found to have elicited DENV-specific CD4� T cell responses as measured by
enzyme-linked immunosorbent spot (ELISpot), intracellular cytokine staining (ICS),
lymphocyte proliferation, and cytokine production assays. Thus, together with anti-
body readouts, the use of a multifaceted measurement of cell-mediated immune re-
sponses after vaccination is a useful strategy for more comprehensively characteriz-
ing immunity generated by dengue vaccines.

IMPORTANCE Dengue is a tropical disease transmitted by mosquitoes, and nearly
half of the world’s population lives in areas where individuals are at risk of infection.
Several vaccines for dengue are in development, including one which was recently
licensed in several countries, although its utility is limited to people who have al-
ready been infected with one of the four dengue viruses. One major hurdle to un-
derstanding whether a dengue vaccine will work for everyone— before exposure—is
the necessity of knowing which marker can be measured in the blood to signal that
the individual has protective immunity. This report describes an approach measuring
multiple different parts of immunity in order to characterize which signals one can-
didate vaccine imparted to a small number of human volunteers. This approach was
designed to be able to be applied to any dengue vaccine study so that the data can
be compared and used to inform future vaccine design and/or optimization strate-
gies.
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Dengue is a mosquito-borne disease caused by any of four genetically distinct types
of dengue virus (dengue virus serotype 1 [DENV-1] to DENV-4). At least one-third

of the world’s population lives in regions where dengue is endemic, making it the most
important arboviral disease globally (1). The virus continues to spread geographically,
and as the footprints of the four types increasingly overlap, the threat of severe disease
rises. It is estimated that at least 50 million cases of dengue fever occur annually,
including over 25,000 deaths due to dengue hemorrhagic fever and dengue shock
syndrome. A major risk factor for severe disease is the presence of serotype cross-
reactive but not cross-protective immunity after the initial or primary DENV infection,
which in some individuals leads to enhanced viral replication upon subsequent infec-
tion with a different (heterologous) serotype (2). In order to mitigate this risk, a safe and
effective DENV vaccine may need to confer protective immunity against all four virus
types after a single immunization. Although risk for severe disease is highest after
secondary DENV infection, it decreases dramatically for tertiary and quaternary dengue
infections (3, 4), a pattern that reinforces the need for a tetravalent dengue vaccine.
Simultaneous circulation of serologically distinct but antigenically cross-reactive
DENV-1 through DENV-4, coupled with immune enhancement of disease, presents a
unique problem for development of an efficacious vaccine. The prerequisite for a
dengue vaccine to generate multivalent protection is further complicated by the lack
of a precisely defined immunological correlate of protection. Hence, comprehensive
evaluation of immune responses generated by candidate dengue vaccines is essential.

Traditionally, flavivirus vaccine development relied on antibody-based assays to
demonstrate immunogenicity. For Japanese encephalitis virus, yellow fever virus, and
tick-borne encephalitis virus, the generation of neutralizing antibodies (NAbs) closely
correlates with vaccine efficacy (5–8). Many successful vaccines also generate strong
cell-mediated immunity (CMI) in addition to a broad array of antibody specificities and
functions (6, 9–11). Evidence suggests that the high efficacy and long-lived immunity
generated by vaccines such as vaccinia virus or YFV-17D are critically dependent upon
the strong CMI that is generated alongside potent humoral immunity (9–13). CMI
encompasses the responses of T and B cells, among other cell types, which are
influenced by the type of antigen introduced by a vaccine. For example, a live
attenuated virus vaccine typically engages both CD4� and CD8� T cells, whereas a
purified inactivated virus (PIV) vaccine predominantly generates a CD4� T cell response.
A variety of assays, including enzyme-linked immunosorbent spot (ELISpot), flow
cytometry-based intracellular cytokine staining (ICS), and lymphocyte proliferation
assays, have been employed in different vaccine clinical trials in order to evaluate CMI
responses (14–20). Each of these technologies has advantages and disadvantages
based on sample availability, information gained, scalability, cost, time requirements,
and other logistical restraints. As numerous candidate dengue vaccines enter clinical
development, it is important to develop a monitoring strategy that interrogates all
aspects of CMI in order to capture a comprehensive picture of vaccine-induced immu-
nity that can be used to compare data across various vaccine platforms.

Sanofi Pasteur used YFV-17D as the backbone for a chimeric dengue vaccine (CYD),
exchanging the YFV premembrane (prM) and envelope (E) genes for those from DENV-1
to DENV-4, and the resulting product, Dengvaxia, has been licensed for use in several
countries where dengue is endemic (21, 22). However, this vaccine appears poorly
effective at protecting against disease in dengue-naive individuals, and furthermore,
the risk for severe disease resulting from natural DENV infections several years after
vaccination appears to be increased (23, 24). Surprisingly, the presence of high NAb
titers, the presumed strongest correlate with immunity, did not in this case correlate
with protection from infection or disease, suggesting that other immunological markers
may be equally if not even more important (23, 24).

With the goal of making a tetravalent PIV vaccine formulation, the Walter Reed Army
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Institute of Research first developed a monovalent PIV vaccine against DENV-1 as a
proof of concept. This vaccine was tested in a phase I dose escalation trial in which 20
healthy, flavivirus-naive adults were immunized in a two-dose (month 0 and month 1)
regimen (25). Vaccine-induced antibody responses were examined with regard to
binding, neutralization capacity, and avidity in that study. This study sought to char-
acterize the CMI response to the PIV-1 vaccine. Peripheral blood mononuclear cells
(PBMC) prepared from whole-blood samples collected at various time points pre- and
postvaccination were used to measure vaccine-induced DENV-specific T cell responses.
Here, we report results from multiple assay platforms, including gamma interferon
(IFN-�) and interleukin-2 (IL-2) ELISpot assays, multiplexed enzyme-linked immunosor-
bent assays (ELISA; Luminex), ICS assays, and flow cytometry-based proliferation assays.
The results demonstrate that DENV PIV-1-induced CD4� T responses were detectable in
most subjects and that the profile of these cells was consistent with a helper T cell
phenotype.

RESULTS

Twenty healthy, flavivirus-naive adults were vaccinated on day 0 and then boosted
on day 28 with a PIV vaccine against DENV serotype 1 (DENV PIV-1). Subjects were
stratified into two groups of 10 subjects, each receiving either 2.5 �g/0.5 ml (low-
dose group) or 5.0 �g/0.5 ml (high-dose group) of alum-absorbed DENV PIV-1.
Comparable NAb responses were generated in the high-dose and low-dose groups,
and the responses peaked at day 56 (25). We hypothesized that for an inactivated
vaccine, the T cell response would be mediated primarily by CD4� T cells, as opposed
to CD8� T cells. To investigate this, we first screened the vaccinees using ELISpot assays
that detected secretion of IFN-� or IL-2 in response to overnight stimulation with
peptide pools specific for the DENV-1 envelope (E-1) and capsid/premembrane (CM-1)
proteins. At day 56 (28 days after dose 2), the IL-2 responses detected were of both
greater frequency and greater magnitude than the IFN-� responses (Table 1; see also
Fig. 1). The results showed median IL-2 postvaccination responses of 54 and 38
spot-forming cells (SFC)/106 PBMC for the CM-1 and E-1 peptide pools, respectively. The
frequencies of IL-2 responders after vaccination were 55% for the CM-1 peptide pool
and 45% for the E-1 peptide pool (65% to either peptide pool), whereas the corre-
sponding response rates for IFN-� were 25% for the CM-1 peptide pool and 30% for the
E-1 peptide pool (30% to either peptide pool). Responses were similar between the two
vaccine dosage groups, with no significant differences in response rate or magnitude
(see Fig. S1 in the supplemental material).

We next performed a flow cytometry-based intracellular cytokine staining (ICS)
assay, which permitted the assessment of a broader number of functions as well as of
the multifunctionality of responses at the individual T cell level. We measured degran-
ulation (CD107a expression), T helper function (CD40L, also known as CD154), and
cytokine production (IFN-�, IL-2, tumor necrosis factor alpha [TNF-�], and MIP-1�) in
response to DENV-1 peptide stimulation in PBMC collected at day 0 (prevaccination)

TABLE 1 IL-2 and IFN-� ELISpot responses and rates of responses to PIV-1 vaccination

Study day

IL-2 IFN-�

Antigen
No. (%) of
respondersa

Median no. of
SFC/106 PBMC Antigen

No. (%) of
respondersa

Median no. of
SFC/106 PBMC

0 (prevaccination) CM-1 0/20 (0) 3 CM-1 1/20 (5) 0
E-1 0/20 (0) 0 E-1 2/20 (10) 1
Any 0/20 (0) Any 2/20 (10)

56 (postvaccination) CM-1 11/20 (55); P � 0.0001 54 CM-1 5/20 (25); NS 21
E-1 9/20 (45); P � 0.0012 38 E-1 6/20 (30); NS 24
Any 13/20 (65); P � 0.0001 Any 6/20 (30); NS

aA responder was defined as a subject with an antigen-stimulated response that was �3� higher than that seen with the respective negative (no stimulation) control
and �50 SFC/106 PBMC. Where indicated, P values represent results from Fisher’s exact tests comparing the number of responders to the number seen under the
same stimulation conditions between day 0 and day 56; NS, not significant.

T Cell Response to DENV-1 PIV Vaccination
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and day 56 (28 days after dose 2). Compared to day 0, the PIV-1 vaccine induced
multifunctional CD4� T cell responses at day 56 to peptides representing DENV
structural proteins E-1 and CM-1 (Fig. 2; see also Table 2). The functional subsets that
expanded in response to peptide stimulation were, at a minimum, IL-2� TNF-�� doubly
positive but also included cells that coexpressed IFN-� and CD154 (Fig. 2; see also
Fig. S2). Vaccination did not appear to induce NS1-specific responses (Fig. S3), nor did
it induce any measurable DENV-specific CD8� T cell response (Fig. S3). No differences
between the low-dose and high-dose groups were observed (Fig. S3). These data
corroborated the ELISpot data wherein IL-2 was more readily detectable than IFN-�.

Lymphocyte proliferation is a sensitive and informative surrogate measure of mem-
ory T cell differentiation. A flow cytometry-based dye dilution proliferation assay was
used to determine the precursor frequency of antigen-specific T cells generated by
vaccination with PIV-1. Panel A of Fig. 3 shows an example of antigen-specific CD4� T
cell proliferation of day 0 versus day 56 PBMC for one subject in response to CM-1 and
E-1 peptide pools. For the group of 20 subjects as a whole, high response rates and
statistically significant increases in precursor frequencies of antigen-specific CD4� T
cells were observed in PBMC from day 56 in comparison with day 0 PBMC (Fig. 3B; see
also Table 3). Robust responses to both antigens (CM-1 and E-1) were detected, and no
significant difference was observed between the high-dose and low-dose groups
(Fig. S4). A time course analysis of the T cell proliferative response was performed using

FIG 1 Vaccination with PIV-1 induces higher numbers of circulating IL-2- and IFN-�-producing T cells. (A
and B) IL-2 (A) and IFN-� (B) ELISpot assays were performed using PBMC collected prevaccination (Day
0) and 56 days after vaccination with the DENV-1 vaccine candidate, PIV-1 (Day 56). Box-and-whiskers
plots (median plus interquartile range) show responses of PBMC from all 20 study subjects to CM-1 and
E-1 peptide pools. Wilcoxon signed-rank tests were performed comparing pre- and postvaccination
responses; P values of less than 0.05 were considered significant. SFC, spot-forming cells; NS, not
significant.
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PBMC from 10 subjects (Fig. 3C). Strong CD4� T cell proliferative responses to CM-1 and
E-1 antigens were detected as early as 14 days after the first dose of vaccine in 1/10 and
2/10 subjects, respectively, and increased after the second (boost) dose in 9/10 sub-
jects. The median CD4� T cell precursor frequency peaked at day 42 for both antigens
(CM-1 � 0.30% and E-1 � 0.22%) and showed only a slight diminution by day 90
(CM-1 � 0.18% and E-1 � 0.14%). There was no significant difference between the
median responses at day 42 and day 56, indicating that day 56 was an appropriate time
point for this and other assays of T cell responses. These data are consistent with the
ELISpot and ICS assays, which demonstrated low but readily detectable levels of
IL-2-producing cells that would therefore be capable of supporting T cell proliferation.
Of particular note, the peptide pool representing the CM proteins was recognized at
least as frequently as the E protein-derived peptide pool. This observation is consistent
with both the ELISpot and ICS data as well.

Culture supernatants from the proliferation assay were harvested 7 days after stim-
ulation and tested for cytokine secretion by multiplexed ELISA. In unstimulated cul-

FIG 2 CD4� T cells generated in response to PIV-1 vaccination predominantly express IL-2 and TNF-�. Flow cytometry-based ICS assays revealed a
multifunctional CD4� T cell response to CM-1 and E-1 peptide pools 56 days after vaccination with PIV-1. (A) Flow cytometric plots were gated on live, singlet,
CD3� CD4� CD8� CD14� CD19� lymphocytes from a representative subject, with IL-2� TNF-�� doubly positive cells highlighted in orange and all IFN-�� singly
positive cells overlaid in blue. (B) Spice analysis of median responses among selected subjects (n � 3; only samples demonstrating a response to either peptide
pool of at least two functions, 2� the respective no-stimulation control, and at least 0.02%). The graphs show functional distributions of CD4� T cells after no
stimulation (negative control [NC]) or stimulation with the CM-1 or E-1 peptide pools at day 56. DENV-specific stimulation revealed subpopulations of IL-2- and
TNF-�-producing CD4� T cells (highlighted with red triangles) which were not present in, or were expanded with respect to, the unstimulated (NC) population.
(C) Frequencies of CD4� T cells that expressed at least IL-2 and TNF-� in response to CM-1 (n � 16) and E-1 (n � 17) peptide pools are shown prevaccination
and 56 days postvaccination with PIV-1. Percentages shown had the respective NC response subtracted from the data. Wilcoxon signed-rank tests were
performed comparing pre- and postvaccination responses; P values of less than 0.05 were considered significant. NS, not significant.

T Cell Response to DENV-1 PIV Vaccination
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tures, numerous cytokines, chemokines, and growth factors were produced constitu-
tively in response to vaccination, some with peaks that were more distinct and higher
at day 35 (7 days postboost) than at day 7, although this was not supported statistically
(Fig. S5). At day 56, less IL-2 was detected in the culture supernatants stimulated by
DENV peptide pools than in unstimulated culture supernatants (Fig. 4A), likely because
IL-2 is consumed by proliferating cells. The levels of IFN-� produced in response to
CM-1 and E-1 peptide pools at day 56 were higher than those seen in unstimulated
cultures (Fig. 4B). DENV-specific IL-5 (Fig. 4C) and granulocyte-macrophage colony-
stimulating factor (GM-CSF) (Fig. 4D) were also expressed at significantly high levels at
day 56, indicative of antigen-specific T helper function supporting NAb production.

To determine whether CMI responses correlated with NAb responses, we compared
both total DENV-specific IgG titers and 50% microneutralization (MN50) titers at day 56
(25) to corresponding DENV-specific CD4� T cell frequencies as determined by the
proliferation assay (Fig. 5). As would be predicted for T cell-dependent antigens, we saw
positive correlations between CD4� T cell precursor frequency and both total IgG and
NAb response magnitudes at day 56.

DISCUSSION

Dengue is a complicated disease in that pathogenesis appears to involve a complex
interaction of factors specific to the virus, the individual host, and the host immune
response to infection. Identifying the factors that directly influence clinical outcome has
proven challenging, and the factors appear to differ from person to person. While
numerous studies have assessed the role of CMI in natural infection, few have applied
comprehensive testing strategies for CMI in the context of vaccination. Vaccine trials
provide a controlled environment in which to study immunity generated to a specific
antigen at defined time points postexposure. Our laboratory has developed a suite of
standardized assays (including ELISpot, ICS, flow-based proliferation, and Luminex) for
assessment of CMI generated by candidate vaccines, which we applied here to expand
immunogenicity testing of the DENV PIV-1 vaccine.

We demonstrated that a two-dose regimen of PIV-1 elicited a detectable CD4� T cell
response in the majority of vaccine recipients by using different assay formats mea-
suring T cell function. We found IFN-�-producing CD4� T cells after vaccination, albeit
at low levels. IFN-� production has been linked to a positive clinical outcome for
dengue (26, 27), which is encouraging for this vaccine. Additionally, the induction of
IL-2-producing proliferative CD4� T cells by PIV-1 vaccination suggests the generation
of a T cell response that supports antibody production. The most sensitive of the assays
for detection of T cell responses to this vaccine was the proliferation assay. As the
magnitude of the T cell response is dependent on its ability to expand in response to
antigen, this assay reflects an important feature of vaccine-induced CMI (28–30). The

TABLE 2 Number of subjects with CD4� T cells expressing at least IL-2 and TNF-� as
determined by ICS assay in response to PIV-1 vaccination

Study day Antigen
No.(%) of
respondersa

Median
frequency (%)

0 (prevaccination) CM-1 0/16 (0) 0.00
E-1 0/17 (0) 0.00
Any 0/16 (0)b

56 (postvaccination) CM-1 6/16 (38); P � 0.0177 0.02
E-1 4/17 (24); NS 0.01
Any 6/16 (38); P � 0.0177b

aA responder was defined as a subject with an antigen-stimulated response that was �2� higher than that
seen with the respective negative (no stimulation) control and was �0.02% after subtraction of the
respective negative (no stimulation) control data. Where indicated, P values represent results from Fisher’s
exact tests comparing the number of responders to the number seen under the same stimulation
conditions between day 0 and day 56; NS, not significant.

bOnly subjects whose samples had sufficient numbers of cells to enable testing against both the CM-1 and
E-1 peptide pools were included in this analysis.
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use of carboxyfluorescein succinimidyl ester (CFSE) dye to track cells proliferating in
response to DENV peptides allowed us to take advantage of the multiparametric
capability of flow cytometry so that we could phenotype the responding cells and
calculate precursor frequencies, neither of which is possible with the more traditional
proliferation assays (28). Supernatants collected from these cultures prior to flow
cytometric analysis revealed IL-5, GM-CSF, and IFN-� upregulation as the result of
antigen-specific stimulation. The absence of IL-2 in culture supernatants likely reflects
its consumption by activated and proliferating CD4� T cells (31). The detection of both
TH1 and TH2 cytokines indicates that the alum-adjuvanted PIV-1 vaccine does not
appreciably bias the cytokine profile of the CD4� T cell response toward either
phenotype.

The ability of this vaccine to elicit CD4� T cells that secrete IL-2 and exhibit a high
proliferative capacity, coupled with the production of IL-5 and GM-CSF by proliferating
cells, is suggestive of antibody helper capacity (32). Importantly, there was a positive
correlation of both total binding antibody (IgG) and NAb titers with the CD4� precursor
frequency 28 days post dose 2. These observations are in agreement with prior studies
of CMI generated by other inactivated vaccine products such as the seasonal influenza

FIG 3 PIV-1 vaccination induced DENV-specific CD4� T cell proliferation. (A) Representative flow cytometric plots show the CD4� T cell proliferative response
to CM-1 and E-1 peptide pools prevaccination (Day 0) and at 56 days postvaccination. Frequencies in red are back-calculated precursor frequencies (refer to
Materials and Methods). (B) Precursor frequency analysis of all 20 subjects showed significant CD4� T cell proliferation responses to CM-1 and E-1 peptide pools
56 days postvaccination with PIV-1. Wilcoxon signed-rank tests were performed comparing day 0 and day 56 responses to the CM-1 and E-1 peptide pools,
respectively; P values of less than 0.05 were considered significant. NS, not significant. (C and D) A kinetic analysis of PBMC from a subset of subjects (n � 10)
demonstrated CD4� T cell proliferation in response to CM-1 (C) and E-1 (D) peptide pools throughout the postvaccination period. Gray lines represent individual
subjects; the red line indicates the median response. Arrows indicate the days of vaccination (days 0 and 28).

T Cell Response to DENV-1 PIV Vaccination
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vaccine. Inactivated influenza vaccine titers have been shown to be positively corre-
lated with measurable CD4� T cell parameters, including in vivo expansion of CD4� T
cells proximal to vaccination (33), increases in abundances of both total and antigen-
specific CD4� T cells with a follicular helper-like phenotype (CXCR5�/ICOS�/IL-21�) (34,
35), and the maintenance of long-term influenza virus strain cross-reactive T cell
responses following repeated vaccinations (36, 37). Studies performed with other
nonreplicating vaccine products, such as recombinant proteins and virus-like particles
(VLPs), have demonstrated the presence of de novo-generated CD4� T helper responses
that correlate directly with enhanced antibody titers and vaccine performance (38–44).
As expected, no appreciable CD8� T cell response was detected after DENV PIV-1
vaccination. Vaccine-elicited CD8� T cell responses have particular requirements for
priming, such as proinflammatory conditions that are provided only in the context of
viral vector replication (45–47), the presence of viral nucleic acids (48, 49), or specific
adjuvants (50). These data therefore suggest that the T cell response induced by PIV-1
vaccination is limited to antigen-specific CD4� T helper cells which support the
production of anti-DENV antibodies.

TABLE 3 CD4� T cell proliferation responses and rates of response to PIV-1 vaccination

Study day Antigen
No.(%) of
respondersa

Median precursor
frequency

0 (prevaccination) CM-1 1/20 (5) 0.02%
E-1 3/20 (15) 0.01%
Any 3/20 (15)

56 (postvaccination) CM-1 16/20 (80); P � 0.0001 0.25%
E-1 13/20 (65); P � 0.0031 0.20%
Any 17/20 (85); P � 0.0001

aA responder was defined as a subject with an antigen-stimulated precursor frequency that was �2� higher
than the respective negative (no stimulation) control AND �0.1%. Where indicated, P values represent
results from Fisher’s exact tests comparing the number of responders to the number seen under the same
stimulation conditions between day 0 and day 56.

FIG 4 Cytokine analysis of cell culture supernatants indicates induction of CD4� T helper cells after PIV-1
vaccination. Cell culture supernatants from the peptide pool-stimulated proliferation cultures (Fig. 3)
were harvested after 7 days and tested using a 30-plex Luminex-based kit for the presence of various
cytokines, chemokines, and growth factors. IL-2 (A), IFN-� (B), IL-5 (C), and GM-CSF (D) were all produced
by PBMC (n � 10) in response to CM-1 and E-1 peptide pools at day 56. Wilcoxon signed-rank tests were
performed comparing NC and CM-1 or E-1 responses; P values of less than 0.05 were considered
significant. NC, negative (no stimulation) control; NS, not significant.
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While the data presented here suggest that PIV-1 vaccination induces a T cell
response that is similar to that induced by other vaccines known to confer protection,
whether the PIV-1 product, or its tetravalent counterpart (51), is efficacious for pre-
venting dengue is unknown. Previous studies in nonhuman primates demonstrated
that tetravalent PIV vaccination followed by live DENV challenge resulted in most
animals developing breakthrough RNAemia (52). In that same study, individual animals
showed higher viremia than unvaccinated controls as well as differences from the
unvaccinated controls in cytokine responses; the low number of animals with enhanced
viremia prevented statistically significant conclusions, but in light of the Dengvaxia
experience, this finding is of potential concern. It is worth noting that no CMI studies
were performed in that study and that the role of CMI in the dengue nonhuman
primate model in general is unclear. CD8� T cell-mediated protection has been
demonstrated in mouse models of DENV infection (53–56), and correlative evidence in
humans also supports a likely protective role for CD8� T cells, or for functional subsets
thereof (27, 57). The lack of CD8� T cell responses induced by the PIV-1 vaccine, while
such responses are anticipated given its antigenic nature, may therefore be cause for
concern. Given the similar absence of DENV-specific CD8� T cell responses generated
after immunization with Dengvaxia (58), which incorporates a yellow fever virus
backbone, researchers in the dengue field may need to consider the possibility that
vaccines which do not incorporate antigens capable of inducing a robust T cell
response are missing a critical component for generating protective immunity. Thus,
future studies of this—and other—vaccines should ideally include a comprehensive
analysis of multiple components of immunity, including T cell responses. Subsequent
efficacy and/or virus challenge studies will then be needed to link the characterized
responses to clinical outcome data.

In summary, using a comprehensive suite of assays, we detected low-level T cell
responses induced by a DENV monovalent PIV vaccine. These were dominated by

FIG 5 Frequencies of DENV-specific CD4� T cells correlate with circulating antibody responses post-
vaccination. CD4� T cell precursor frequencies for CM-1 and E-1 peptide pools were added and
compared to (A) total DENV-1-specific IgG titers or (B) DENV-1 neutralizing antibody titers for all 20
subjects at day 56 postvaccination. Spearman correlation analyses were performed, with P values of less
than 0.05 considered significant (indicating a correlation).
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IL-2-producing, proliferating, multifunctional CD4� T cells, which was expected due to
the inactivated nature of the vaccine antigen. Such a response is consistent with
induction of an antigen-specific T helper population that provided support for the
development of neutralizing antibodies in these subjects. Future immunogenicity
studies in the context of clinical trials of tetravalent PIV formulations will need to
determine the serotype-specific valency of the response as well as exploit in-depth
phenotyping techniques to explore the relationship between the CD4� T cell response
and the magnitude and durability of the antibody response.

MATERIALS AND METHODS
Clinical trial design. The samples used in this study were collected during clinical trial WRAIR

protocol 1856 [“A Phase 1 Trial of the Walter Reed Army Institute of Research (WRAIR) Dengue Serotype
1 Purified Inactivated Virus Vaccine (DENV-1 PIV) in Flavivirus Antibody Naïve Adults”], the details of
which were previously reported (25). Briefly, 2.5 �g/0.5 ml (low dose) or 5 �g/0.5 ml (high dose) purified
inactivated DENV-1 Nauru/West Pac/1974 adsorbed to alum was used to immunize 20 subjects (10 per
group) during a two-dose vaccination regimen (days 0 and 28). Blood draws were performed prevacci-
nation (day 0) and on days 7, 14, 28, 35, 42, 56, and 90 postvaccination. PBMC were isolated from whole
blood collected in cell preparation tubes containing sodium citrate (BD Biosciences). The cells were
placed in fetal bovine serum containing 10% dimethyl sulfoxide (DMSO) and cryopreserved in vapor-
phase liquid nitrogen until use. The protocol was approved by the institutional review board, U.S. Army
Human Subjects Research Review Board, Office of the Surgeon General. All subjects gave written
informed consent in accordance with the Declaration of Helsinki.

Peptides. Pools of 12mer to 20mer peptides with 10 to 12 amino acids of overlap and corresponding
to the full-length envelope (E) and nonstructural 1 (NS1) proteins of DENV-1 Nauru/West Pac/1974 were
obtained from BEI Resources. Peptide pools (16mers with 11 amino acids of overlap) covering both the
capsid (C) and precursor membrane (M) proteins of DENV-1 were purchased from JPT Peptide Technol-
ogies. Peptide pools corresponding to the hexon protein of adenovirus serotype 5 (AdHex) and the pp65
protein of human cytomegalovirus (HCMV) were also purchased from JPT Peptide Technologies and used
as controls. Peptide pool stocks were reconstituted in 100% DMSO at a concentration of 200 �g/ml/
peptide and stored at – 80°C.

T cell ELISpot assay. Cryopreserved PBMC were thawed and placed in RPMI 1640 medium supple-
mented with 10% heat-inactivated normal human serum (NHS; catalog no. 100-318; Gemini Bio-Products),
L-glutamine, penicillin, and streptomycin. After an overnight rest at 37°C, the PBMC were washed, resus-
pended in serum-free medium (X-Vivo 15; Lonza), and 1 � 105 to 2 � 105 cells were plated per well of a
96-well plate (Millipore; catalog no. MAIPSWU) coated with anti-IFN-� or anti-IL-2 antibodies as instructed in
the respective ELISpot kit manuals (3420-2HW-Plus and 3440-2HW-Plus; Mabtech Inc.). Peptide pools were
added to the cells to reach a final concentration of 1 �g/ml/peptide prior to incubation at 37°C overnight. The
negative control was serum-free medium containing 0.5% DMSO. Positive controls included staphylococcal
enterotoxin B (SEB) and 1 �g/ml/peptide of the AdHex or HCMV peptide pools. The ELISpot plates were
developed the next day using 3,3=,5,5=-tetramethylbenzidine (TMB) substrate and read using a CTL Immu-
noSpot plate reader (Cellular Technology Limited).

Intracellular cytokine staining (ICS) assay. Cryopreserved PBMC were thawed and placed in RPMI
1640 medium supplemented with 10% fetal bovine serum, L-glutamine, penicillin, and streptomycin
(“R10”). Approximately 1 � 106 PBMC were plated per well of a 96-well plate in a total volume of 200 �l
R10 along with anti-CD28, anti-CD49d, and fluorescein isothiocyanate (FITC)-conjugated anti-CD107a
antibodies (BD Biosciences) and 1 �g/ml/peptide of the relevant peptide pool. R10 containing 0.5%
DMSO was used as a negative control. Positive controls included 50 ng/ml phorbol 12-myristate
13-acetate (PMA) plus 1 �g/ml ionomycin and 1 �g/ml/peptide AdHex. Cells were incubated at 37°C for
1 h prior to addition of brefeldin A and monensin (BD Biosciences) and then left to continue incubating
overnight. The next day, cells were washed and stained with LIVE/DEAD Aqua (Invitrogen, Life Technol-
ogies) followed by the surface antibodies Brilliant Violet 785-conjugated anti-CD3 (BV785-CD3), BV605-
CD4, BV650-CD8 (BioLegend), Alexa 700-CD14, and Alexa 700-CD19 (BD Biosciences). After fixation in 4%
formaldehyde, cells were permeabilized and stained with the antibodies eFluor450 –IFN-�, phycoerythrin
(PE)–Cy7–TNF-�, PE–MIP-1�, allophycocyanin (APC)–IL-2, and PE-Cy5-CD154 (BD Biosciences). Data were
collected using a BD LSRFortessa flow cytometer (BD Biosciences) and analyzed using FlowJo Version 7
software (FlowJo, LLC).

CFSE-based proliferation assay. Cryopreserved PBMC were thawed and rested overnight in RPMI
1640 –10% NHS. Cells were then washed in Hanks’ balanced salt solution (HBSS) and labeled with 5 �m
carboxyfluorescein succinimidyl ester (CFSE)–HBSS at room temperature for 10 min. After addition of an
equal volume of 100% NHS for 5 min, the labeled cells were washed and plated (1 � 106 per well) in RPMI
1640 –10% NHS with 1 �g/ml/peptide of the DENV-1 CM or E peptide pool. The negative control was
RPMI 1640 –10% NHS plus 0.5% DMSO, and the positive control was 1 �g/ml each of anti-CD3 and
anti-CD28 antibodies. Cells were cultured at 37°C for 7 days, and the supernatants were saved for
cytokine analysis (with storage at – 80°C). Then, cells were washed and stained with LIVE/DEAD Aqua as
well as BV785-CD3, BV605-CD4, BV650-CD8, and Alexa 700-CD19. After fixation in 4% formaldehyde,
samples were run on a BD LSRFortessa flow cytometer and data analyzed with FlowJo software.
Responses to anti-CD3/28 stimulation were used to model the different generations of proliferating cells,
and the resultant generational gates were used to define the different generations of cells present in the
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DENV-specific proliferation data from the same sample to calculate CM- or E-specific T cell precursor
frequencies. Precursor frequencies were calculated as described previously (28–30). This assay was
performed on a subset of 10 subjects, including 6 from the low-dose group and 4 from the high-dose
group, based on sample availability.

Luminex assay. Supernatants collected from the CFSE assay cultures were thawed and tested using
a human cytokine 30-plex panel kit (catalog no. LHC6003M; Invitrogen Inc.) according to the manufac-
turer’s instructions, resulting in quantification of the presence of the following molecules: epidermal
growth factor (EGF), eotaxin, fibroblast growth factor (FGF; basic), granulocyte colony-stimulating factor
(G-CSF), GM-CSF, hepatocyte growth factor (HGF), IFN-�, IFN-�, IL-1 receptor antagonist (IL-1RA), IL-1�,
IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12 (p40/p70), IL-13, IL-15, IL-17, IP-10, monocyte chemoat-
tractant protein 1 (MCP-1), MIG, MIP-1�, MIP-1�, RANTES, TNF-�, and vascular endothelial growth factor
(VEGF). The culture supernatants were plated undiluted in 96-well MultiScreen HTS filter plates (catalog
no. MSBVS1210; EMD Millipore Corp.) containing the 30-plex antibody-coated beads and incubated at
room temperature on a shaker platform (MixMate; Eppendorf) at 550 rpm for 2 h. The plates were washed
using a MultiSreen HTS vacuum manifold (Millipore). The analyte-bound beads were tagged with the
biotin-conjugated antibodies included in the kit, washed, and visualized with streptavidin-conjugated PE.
The data were acquired on a Luminex 200 instrument (Luminex Corp.) with Luminex 100 Integrated
System 2.3 software (Luminex Corp.). Protein standards were provided in the kit, and standard curves
were generated with eight standard dilutions (undiluted, 1:3, 1:9, 1:27, 1:81, 1:243, 1:729, 1:2,187) using
a five-parameter logistic curve fit and 1/y2 weighted function. The data were then exported and further
analyzed using Microsoft Excel and GraphPad Prism software packages. This assay was performed on a
subset of the samples collected from the CFSE cultures; n � 10 at study days 0 and 56 and n � 4 (2 each
from the low-dose and high-dose groups) at all other time points.

Statistics. All statistical analysis was performed using GraphPad Prism 6, FlowJo 7.0, and Microsoft
Excel 2007 software packages. Nonparametric tests were used as the default to compare effects
(frequencies of responsive cells or concentrations of cytokine/chemokine produced) between different
test and control groups. Where appropriate, corrections for multiple comparisons were made. Fisher’s
exact test was used for determination of statistical significance in contingency-table-based data (number
of responders to a given stimulation condition).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, TIF file, 1.1 MB.
FIG S2, TIF file, 0.8 MB.
FIG S3, TIF file, 0.8 MB.
FIG S4, TIF file, 0.1 MB.
FIG S5, TIF file, 0.6 MB.
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