1,169 research outputs found
Comprehensive study of ULF upstream waves observed in the topside ionosphere by CHAMP and on the ground
Based on magnetic field measurements from the satellite CHAMP, a detailed picture could be obtained of the upstream wave (UW) distribution in the topside ionosphere. The low, near-polar orbit of CHAMP, covering all local times, allows the global distribution of this type of pulsation to be revealed. The observations from space are compared to recordings of the ground-based MM100 meridional array covering the latitude range 66° to 42° in magnetic coordinates. UWs show up very clearly in the compressional component of the satellite magnetic field data, whereas on the ground, their signature is found in the H component, but it is mixed with oscillations from field line resonant pulsations. Here we first introduce a procedure for an automated detection of UW signatures, both in ground and space data. Then a statistical analysis is presented of UW pulsations recorded during a 132-day period, centred on the autumn 2001 equinox. Observations in the top-side ionosphere reveal a clear latitudinal distribution of the amplitudes. Largest signals are observed at the equator. Minima show up at about 40° latitude. The coherence between ground and satellite wave signatures is high over wide latitude and longitude ranges. We make suggestions about the entry mechanism of UWs from the foreshock region into the magnetosphere. The clear UW signature in satellite recordings between −60° and 60° latitude allows for detailed investigations of the dependence on solar wind conditions. We test the control of solar wind speed, interplanetary magnetic field strength and cone angle on UWs. For the first time, it is possible to derive details of the Doppler-shift effect by modifying the UW frequency from direct observations. The results reconcile foreshock wave generation predictions with near-Earth observations
ClassCut for Unsupervised Class Segmentation
Abstract. We propose a novel method for unsupervised class segmentation on a set of images. It alternates between segmenting object instances and learning a class model. The method is based on a segmentation energy defined over all images at the same time, which can be optimized efficiently by techniques used before in interactive segmentation. Over iterations, our method progressively learns a class model by integrating observations over all images. In addition to appearance, this model captures the location and shape of the class with respect to an automatically determined coordinate frame common across images. This frame allows us to build stronger shape and location models, similar to those used in object class detection. Our method is inspired by interactive segmentation methods [1], but it is fully automatic and learns models characteristic for the object class rather than specific to one particular object/image. We experimentally demonstrate on the Caltech4, Caltech101, and Weizmann horses datasets that our method (a) transfers class knowledge across images and this improves results compared to segmenting every image independently; (b) outperforms Grabcut [1] for the task of unsupervised segmentation; (c) offers competitive performance compared to the state-of-the-art in unsupervised segmentation and in particular it outperforms the topic model [2].
Charge-imbalance effects in intrinsic Josephson systems
We report on two types of experiments with intrinsic Josephson systems made
from layered superconductors which show clear evidence of nonequilibrium
effects: 1. In 2-point measurements of IV-curves in the presence of high-
frequency radiation a shift of the voltage of Shapiro steps from the canonical
value hf/(2e) has been observed. 2. In the IV-curves of double-mesa structures
an influence of the current through one mesa on the voltage measured on the
other mesa is detected. Both effects can be explained by charge-imbalance on
the superconducting layers produced by the quasi-particle current, and can be
described successfully by a recently developed theory of nonequilibrium effects
in intrinsic Josephson systems.Comment: 8pages, 9figures, submitted to Phys. Rev.
Nonequilibrium effects due to charge fluctuations in intrinsic Josephson systems
Nonequilibrium effects in layered superconductors forming a stack of
intrinsic Josephson junctions are investigated. We discuss two basic
nonequilibrium effects caused by charge fluctuations on the superconducting
layers: a) the shift of the chemical potential of the condensate and b) charge
imbalance of quasi-particles, and study their influence on IV-curves and the
position of Shapiro steps.Comment: 17 pages, 2 figures, revised version slightly shortene
PHF2 regulates homology-directed DNA repair by controlling the resection of DNA double strand breaks
Post-translational histone modifications and chromatin remodelling play a critical role controlling the integrity of the genome. Here, we identify histone lysine demethylase PHF2 as a novel regulator of the DNA damage response by regulating DNA damage-induced focus formation of 53BP1 and BRCA1, critical factors in the pathway choice for DNA double strand break repair. PHF2 knockdown leads to impaired BRCA1 focus formation and delays the resolution of 53BP1 foci. Moreover, irradiation-induced RPA phosphorylation and focus formation, as well as localization of CtIP, required for DNA end resection, to sites of DNA lesions are affected by depletion of PHF2. These results are indicative of a defective resection of double strand breaks and thereby an impaired homologous recombination upon PHF2 depletion. In accordance with these data, Rad51 focus formation and homology-directed double strand break repair is inhibited in cells depleted for PHF2. Importantly, we demonstrate that PHF2 knockdown decreases CtIP and BRCA1 protein and mRNA levels, an effect that is dependent on the demethylase activity of PHF2. Furthermore, PHF2-depleted cells display genome instability and are mildly sensitive to the inhibition of PARP. Together these results demonstrate that PHF2 promotes DNA repair by homologous recombination by controlling CtIP-dependent resection of double strand breaks.España Ministerio de Ciencia e Innovacion SAF2016-80626-REspaña, Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC) [PIFUN16/18
Voronoia: analyzing packing in protein structures
The packing of protein atoms is an indicator for their stability and functionality, and applied in determining thermostability, in protein design, ligand binding and to identify flexible regions in proteins. Here, we present Voronoia, a database of atomic-scale packing data for protein 3D structures. It is based on an improved Voronoi Cell algorithm using hyperboloid interfaces to construct atomic volumes, and to resolve solvent-accessible and -inaccessible regions of atoms. The database contains atomic volumes, local packing densities and interior cavities calculated for 61 318 biological units from the PDB. A report for each structure summarizes the packing by residue and atom types, and lists the environment of interior cavities. The packing data are compared to a nonredundant set of structures from SCOP superfamilies. Both packing densities and cavities can be visualized in the 3D structures by the Jmol plugin. Additionally, PDB files can be submitted to the Voronoia server for calculation. This service performs calculations for most full-atomic protein structures within a few minutes. For batch jobs, a standalone version of the program with an optional PyMOL plugin is available for download. The database can be freely accessed at: http://bioinformatics.charite.de/voronoia
Harnessing finance for a new era of decentralised electricity access: A review of private investment patterns and emerging business models
Achieving the Sustainable Development Goals (SDGs) requires ensuring universal energy access. Yet, governments of low-income countries face significant budget constraints for the capital-intensive infrastructure required to reach the hundreds of millions of households and businesses without grid electricity. In this context, private investors are the key actors capable of channelling such large capital requirements. Compared to the previous decades, the 2010s witnessed a growing mobilization of private funding in the off-grid electricity access sector, including some success stories. Nonetheless, with less than ten years left until the SDGs horizon, off-grid companies systematically struggle to ensure the financial sustainability of projects, as the industry still seeks to demonstrate its maturity and profitability. In this paper, we critically review the main business approaches adopted by private decentralised electricity access service providers. The aim of the analysis is to identify the main drivers of risk and failure which have been hindering sectoral investment. We then propose and discuss four potential game-changing factors that could foster the next generation of private investment in decentralised electricity solutions: (i) anchor-businesses-community (ABC) models; (ii) the design of integrated business models centred around income generation; (iii) the growing role for “local” financiers; (iv) the securitization of assets. Our paper targets private infrastructure developers and financiers aiming at fostering investment in financially sustainable decentralised electricity access projects
Physical and Biogeochemical Studies in the Subtropical and Tropical Atlantic
Maria S. Merian Cruise Report MSM18/L2
Cruise No. 18, Leg 2
May 11 – June 19, 2011
Mindelo (Cape Verde Islands) – Mindelo (Cape Verde Islands
Shape and structure of N=Z 64Ge; Electromagnetic transition rates from the application of the Recoil Distance Method to knock-out reaction
Transition rate measurements are reported for the first and the second 2+
states in N=Z 64Ge. The experimental results are in excellent agreement with
large-scale Shell Model calculations applying the recently developed GXPF1A
interactions. Theoretical analysis suggests that 64Ge is a collective
gamma-soft anharmonic vibrator. The measurement was done using the Recoil
Distance Method (RDM) and a unique combination of state-of-the-art instruments
at the National Superconducting Cyclotron Laboratory (NSCL). States of interest
were populated via an intermediate-energy single-neutron knock-out reaction.
RDM studies of knock-out and fragmentation reaction products hold the promise
of reaching far from stability and providing lifetime information for excited
states in a wide range of nuclei
- …