172 research outputs found
A jigsaw puzzle framework for homogenization of high porosity foams
An approach to homogenization of high porosity metallic foams is explored.
The emphasis is on the \Alporas{} foam and its representation by means of
two-dimensional wire-frame models. The guaranteed upper and lower bounds on the
effective properties are derived by the first-order homogenization with the
uniform and minimal kinematic boundary conditions at heart. This is combined
with the method of Wang tilings to generate sufficiently large material samples
along with their finite element discretization. The obtained results are
compared to experimental and numerical data available in literature and the
suitability of the two-dimensional setting itself is discussed.Comment: 11 pages, 7 figures, 3 table
Investigating the Potential of the Inter-IXP Multigraph for the Provisioning of Guaranteed End-to-End Services
In this work, we propose utilizing the rich connectivity between IXPs and
ISPs for inter-domain path stitching, supervised by centralized QoS brokers. In
this context, we highlight a novel abstraction of the Internet topology, i.e.,
the inter-IXP multigraph composed of IXPs and paths crossing the domains of
their shared member ISPs. This can potentially serve as a dense Internet-wide
substrate for provisioning guaranteed end-to-end (e2e) services with high path
diversity and global IPv4 address space reach. We thus map the IXP multigraph,
evaluate its potential, and introduce a rich algorithmic framework for path
stitching on such graph structures.Comment: Proceedings of ACM SIGMETRICS '15, pages 429-430, 1/1/2015. arXiv
admin note: text overlap with arXiv:1611.0264
Improved Bi-criteria Approximation for the All-or-Nothing Multicommodity Flow Problem in Arbitrary Networks
This paper addresses the following fundamental maximum throughput routing
problem: Given an arbitrary edge-capacitated -node directed network and a
set of commodities, with source-destination pairs and demands
, admit and route the largest possible number of commodities -- i.e.,
the maximum {\em throughput} -- to satisfy their demands. The main
contributions of this paper are two-fold: First, we present a bi-criteria
approximation algorithm for this all-or-nothing multicommodity flow (ANF)
problem. Our algorithm is the first to achieve a {\em constant approximation of
the maximum throughput} with an {\em edge capacity violation ratio that is at
most logarithmic in }, with high probability. Our approach is based on a
version of randomized rounding that keeps splittable flows, rather than
approximating those via a non-splittable path for each commodity: This allows
our approach to work for {\em arbitrary directed edge-capacitated graphs},
unlike most of the prior work on the ANF problem. Our algorithm also works if
we consider the weighted throughput, where the benefit gained by fully
satisfying the demand for commodity is determined by a given weight
. Second, we present a derandomization of our algorithm that maintains
the same approximation bounds, using novel pessimistic estimators for
Bernstein's inequality. In addition, we show how our framework can be adapted
to achieve a polylogarithmic fraction of the maximum throughput while
maintaining a constant edge capacity violation, if the network capacity is
large enough. One important aspect of our randomized and derandomized
algorithms is their {\em simplicity}, which lends to efficient implementations
in practice
Contact-free optical assessment of changes in the chest wall perfusion after coronary artery bypass grafting by imaging photoplethysmography
Imaging photoplethysmography (iPPG) is a contact-free monitoring of the cutaneous blood volume pulse by RGB (red-green-blue) cameras. It detects vital parameters from skin areas and is associated to cutaneous perfusion. This study investigated the use of iPPG to quantify changes in cutaneous perfusion after major surgery. Patients undergoing coronary artery bypass grafting (CABG) were scanned before surgery and in three follow-up measurements. Using an industrial-grade RGB camera and usual indoor lighting, a contact-free imaging plethysmogram from the chest was obtained. Changes of the iPPG signal strength were evaluated in view of both the operation itself as well as the unilateral preparation of the internal thoracic artery (ITA) for coronary artery grafting, which is the main blood source of the chest wall. iPPG signal strength globally decreased after surgery and recovered partially during the follow up measurements. The ITA preparation led to a deeper decrease and an attenuated recovery of the iPPG signal strength compared to the other side of the chest wall. These results comply with the expected changes of cutaneous perfusion after CABG using an ITA graft. iPPG can be used to assess cutaneous perfusion and its global changes after major surgery as well as its local changes after specific surgical procedures
Network service chaining with optimized network function embedding supporting service decompositions
Equivariant pretheories and invariants of torsors
In the present paper we introduce and study the notion of an equivariant
pretheory: basic examples include equivariant Chow groups, equivariant K-theory
and equivariant algebraic cobordism. To extend this set of examples we define
an equivariant (co)homology theory with coefficients in a Rost cycle module and
provide a version of Merkurjev's (equivariant K-theory) spectral sequence for
such a theory. As an application we generalize the theorem of
Karpenko-Merkurjev on G-torsors and rational cycles; to every G-torsor E and a
G-equivariant pretheory we associate a graded ring which serves as an invariant
of E. In the case of Chow groups this ring encodes the information concerning
the motivic J-invariant of E and in the case of Grothendieck's K_0 -- indexes
of the respective Tits algebras.Comment: 23 pages; this is an essentially extended version of the previous
preprint: the construction of an equivariant cycle (co)homology and the
spectral sequence (generalizing the long exact localization sequence) are
adde
Infrared Thermographic Imaging of Chest Wall Perfusion in Patients Undergoing Coronary Artery Bypass Grafting
Coronary artery disease represents a leading cause of death worldwide, to which the coronary artery bypass graft (CABG) is the main method of treatment in advanced multiple vessel disease. The use of the internal mammary artery (IMA) as a graft insures an improved long-term survival, but impairment of chest wall perfusion often leads to surgical site infection and increased morbidity and mortality. Infrared thermography (IRT) has established itself in the past decades as a non-invasive diagnostic technique. The applications vary from veterinary to human medicine and from head to toe. In this study we used IRT in 42 patients receiving CABG to determine the changes in skin surface temperature preoperatively, two hours, 24 h and 6 days after surgery. The results showed a significant and independent drop of surface temperature 2 h after surgery on the whole surface of the chest wall, as well as a further reduction on the left side after harvesting the IMA. The temperature returned to normal after 24 h and remained so after 6 days. The study has shown that IRT is sufficiently sensitive to demonstrate the known, subtle reduction in chest wall perfusion associated with IMA harvesting
- âŠ