1,451 research outputs found
Modelling Canopy Flows over Complex Terrain
Recent studies of flow over forested hills have been motivated by a number of important applications including understanding CO22 and other gaseous fluxes over forests in complex terrain, predicting wind damage to trees, and modelling wind energy potential at forested sites. Current modelling studies have focussed almost exclusively on highly idealized, and usually fully forested, hills. Here, we present model results for a site on the Isle of Arran, Scotland with complex terrain and heterogeneous forest canopy. The model uses an explicit representation of the canopy and a 1.5-order turbulence closure for flow within and above the canopy. The validity of the closure scheme is assessed using turbulence data from a field experiment before comparing predictions of the full model with field observations. For near-neutral stability, the results compare well with the observations, showing that such a relatively simple canopy model can accurately reproduce the flow patterns observed over complex terrain and realistic, variable forest cover, while at the same time remaining computationally feasible for real case studies. The model allows closer examination of the flow separation observed over complex forested terrain. Comparisons with model simulations using a roughness length parametrization show significant differences, particularly with respect to flow separation, highlighting the need to explicitly model the forest canopy if detailed predictions of near-surface flow around forests are required
Vacuum Alignment in SUSY A4 Models
In this note we discuss the vacuum alignment in supersymmetric models with
spontaneously broken flavour symmetries in the presence of soft supersymmetry
(SUSY) breaking terms. We show that the inclusion of soft SUSY breaking terms
can give rise to non-vanishing vacuum expectation values (VEVs) for the
auxiliary components of the flavon fields. These non-zero VEVs can have an
important impact on the phenomenology of this class of models, since they can
induce an additional flavour violating contribution to the sfermion soft mass
matrix of right-left (RL) type. We carry out an explicit computation in a class
of SUSY A4 models predicting tri-bimaximal mixing in the lepton sector. The
flavour symmetry breaking sector is described in terms of flavon and driving
supermultiplets. We find non-vanishing VEVs for the auxiliary components of the
flavon fields and for the scalar components of the driving fields which are of
order m_{SUSY} x and m_{SUSY}, respectively. Thereby, m_{SUSY} is the
generic soft SUSY breaking scale which is expected to be around 1 TeV and
is the VEV of scalar components of the flavon fields. Another effect of these
VEVs can be the generation of a mu term.Comment: 23 pages; added a new section on the relation to Supergravity;
version accepted for publication in JHE
Beyond MFV in family symmetry theories of fermion masses
Minimal Flavour Violation (MFV) postulates that the only source of flavour
changing neutral currents and CP violation, as in the Standard Model, is the
CKM matrix. However it does not address the origin of fermion masses and mixing
and models that do usually have a structure that goes well beyond the MFV
framework. In this paper we compare the MFV predictions with those obtained in
models based on spontaneously broken (horizontal) family symmetries, both
Abelian and non-Abelian. The generic suppression of flavour changing processes
in these models turns out to be weaker than in the MFV hypothesis. Despite
this, in the supersymmetric case, the suppression may still be consistent with
a solution to the hierarchy problem, with masses of superpartners below 1 TeV.
A comparison of FCNC and CP violation in processes involving a variety of
different family quantum numbers should be able to distinguish between various
family symmetry models and models satisfying the MFV hypothesis.Comment: 34 pages, no figure
Bridging flavour violation and leptogenesis in SU(3) family models
We reconsider basic, in the sense of minimal field content, Pati-Salam x
SU(3) family models which make use of the Type I see-saw mechanism to reproduce
the observed mixing and mass spectrum in the neutrino sector. The goal of this
is to achieve the observed baryon asymmetry through the thermal decay of the
lightest right-handed neutrino and at the same time to be consistent with the
expected experimental lepton flavour violation sensitivity. This kind of models
have been previously considered but it was not possible to achieve a
compatibility among all of the ingredients mentioned above. We describe then
how different SU(3) messengers, the heavy fields that decouple and produce the
right form of the Yukawa couplings together with the scalars breaking the SU(3)
symmetry, can lead to different Yukawa couplings. This in turn implies
different consequences for flavour violation couplings and conditions for
realizing the right amount of baryon asymmetry through the decay of the
lightest right-handed neutrino. Also a highlight of the present work is a new
fit of the Yukawa textures traditionally embedded in SU(3) family models.Comment: 26 pages, 5 figures, Some typos correcte
Ultraviolet Completion of Flavour Models
Effective Flavour Models do not address questions related to the nature of
the fundamental renormalisable theory at high energies. We study the
ultraviolet completion of Flavour Models, which in general has the advantage of
improving the predictivity of the effective models. In order to illustrate the
important features we provide minimal completions for two known A4 models. We
discuss the phenomenological implications of the explicit completions, such as
lepton flavour violating contributions that arise through the exchange of
messenger fields.Comment: 18 pages, 8 figure
The stransverse mass, MT2, in special cases
This document describes some special cases in which the stransverse mass,
MT2, may be calculated by non-iterative algorithms. The most notable special
case is that in which the visible particles and the hypothesised invisible
particles are massless -- a situation relevant to its current usage in the
Large Hadron Collider as a discovery variable, and a situation for which no
analytic answer was previously known. We also derive an expression for MT2 in
another set of new (though arguably less interesting) special cases in which
the missing transverse momentum must point parallel or anti parallel to the
visible momentum sum. In addition, we find new derivations for already known
MT2 solutions in a manner that maintains manifest contralinear boost invariance
throughout, providing new insights into old results. Along the way, we stumble
across some unexpected results and make conjectures relating to geometric forms
of M_eff and H_T and their relationship to MT2.Comment: 11 pages, no figures. v2 corrects minor typos. v3 corrects an
incorrect statement in footnote 8 and inserts a missing term in eq (3.9). v4
and v5 correct minor typos spotted by reader
A precision study of the fine tuning in the DiracNMSSM
Recently the DiracNMSSM has been proposed as a possible solution to reduce
the fine tuning in supersymmetry. We determine the degree of fine tuning needed
in the DiracNMSSM with and without non-universal gaugino masses and compare it
with the fine tuning in the GNMSSM. To apply reasonable cuts on the allowed
parameter regions we perform a precise calculation of the Higgs mass. In
addition, we include the limits from direct SUSY searches and dark matter
abundance. We find that both models are comparable in terms of fine tuning,
with the minimal fine tuning in the GNMSSM slightly smaller.Comment: 20 pages + appendices, 10 figure
The generalised NMSSM at one loop: fine tuning and phenomenology
We determine the degree of fine tuning needed in a generalised version of the
NMSSM that follows from an underlying Z4 or Z8 R symmetry. We find that it is
significantly less than is found in the MSSM or NMSSM and extends the range of
Higgs mass that have acceptable fine tuning up to Higgs masses of mh ~ 130 GeV.
For universal boundary conditions analogous to the CMSSM the phenomenology is
rather MSSM like with the singlet states typically rather heavy. For more
general boundary conditions the singlet states can be light, leading to
interesting signatures at the LHC and direct detection experiments.Comment: 20 pages, 9 figures, matches published versio
The Messenger Sector of SUSY Flavour Models and Radiative Breaking of Flavour Universality
The flavour messenger sectors and their impact on the soft SUSY breaking
terms are investigated in SUSY flavour models. In the case when the flavour
scale M is below the SUSY breaking mediation scale M_S, the universality of
soft terms, even if assumed at M_S, is radiatively broken. We estimate this
effect in a broad class of models. In the CKM basis that effect gives flavour
off-diagonal soft masses comparable to the tree-level estimate based on the
flavour symmetry.Comment: 24 pages, 3 figures. v3: minor changes in the text, typos corrected,
version accepted for publication in JHE
Effects of Supersymmetric Threshold Corrections on High-Scale Flavor Textures
Integration of superpartners out of the spectrum induces potentially large
contributions to Yukawa couplings. These corrections, the supersymmetric
threshold corrections, therefore influence the CKM matrix prediction in a
non-trivial way. We study effects of threshold corrections on high-scale flavor
structures specified at the gauge coupling unification scale in supersymmetry.
In our analysis, we first consider high-scale Yukawa textures which qualify
phenomenologically viable at tree level, and find that they get completely
disqualified after incorporating the threshold corrections. Next, we consider
Yukawa couplings, such as those with five texture zeroes, which are incapable
of explaining flavor-changing proceses. Incorporation of threshold corrections,
however, makes them phenomenologically viable textures. Therefore,
supersymmetric threshold corrections are found to leave observable impact on
Yukawa couplings of quarks, and any confrontation of high-scale textures with
experiments at the weak scale must take into account such corrections.Comment: 25 pages, submitted to JHE
- …