750 research outputs found

    Virtual Black Holes

    Get PDF
    One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of S2×S2S^2\times S^2 and K3K3 bubbles. Comparison with the instantons for pair creation of black holes shows that the S2×S2S^2\times S^2 bubbles can be interpreted as closed loops of virtual black holes. It is shown that scattering in such topological fluctuations leads to loss of quantum coherence, or in other words, to a superscattering matrix $\$ that does not factorise into an SS matrix and its adjoint. This loss of quantum coherence is very small at low energies for everything except scalar fields, leading to the prediction that we may never observe the Higgs particle. Another possible observational consequence may be that the θ\theta angle of QCD is zero without having to invoke the problematical existence of a light axion. The picture of virtual black holes given here also suggests that macroscopic black holes will evaporate down to the Planck size and then disappear in the sea of virtual black holes.Comment: 24p, LaTeX, 3 postscript figures included with epsf sent in a seperate uuencoded fil

    Deep-water antipatharians: Proxies of environmental change

    Get PDF
    Deep-water (307–697 m) antipatharian (black coral) specimens were collected from the southeastern continental slope of the United States and the north-central Gulf of Mexico. The sclerochronology of the specimens indicates that skeletal growth takes place by formation of concentric coeval layers. We used 210Pb to estimate radial growth rate of two specimens, and to establish that they were several centuries old. Bands were delaminated in KOH and analyzed for carbon and nitrogen stable isotopes. Carbon values ranged from _16.4‰ to _15.7‰; the oldest specimen displayed the largest range in values. Nitrogen values ranged from 7.7‰ to 8.6‰. Two specimens from the same location and depth had similar 15N signatures, indicating good reproducibility between specimens

    Gravity Dual of Gauge Theory on S^2 x S^1 x R

    Full text link
    We (numerically) construct new static, asymptotically AdS solutions where the conformal infinity is the product of time and S^2 x S^1. There always exist a family of solutions in which the S^1 is not contractible and, for small S^1, there are two additional families of solutions in which the S^1 smoothly pinches off. This shows that (when fermions are antiperiodic around the S^1) there is a quantum phase transition in the gauge theory as one decreases the radius of the S^1 relative to the S^2. We also compare the masses of our solutions and argue that the one with lowest mass should minimize the energy among all solutions with conformal boundary S^2 x S^1 x R. This provides a new positive energy conjecture for asymptotically locally AdS metrics. A simple analytic continuation produces AdS black holes with topology S^2 x S^1.Comment: 17 pages, 4 figures, v2: minor changes, added reference

    Insights into methane dynamics from analysis of authigenic carbonates and chemosynthetic mussels at newly-discovered Atlantic Margin seeps

    Get PDF
    The recent discovery of active methane venting along the US northern and mid-Atlantic margin represents a new source of global methane not previously accounted for in carbon budgets from this region. However, uncertainty remains as to the origin and history of methane seepage along this tectonically inactive passive margin. Here we present the first isotopic analyses of authigenic carbonates and methanotrophic deep-sea mussels, Bathymodiolus sp., and the first direct constraints on the timing of past methane emission, based on samples collected at the upper slope Baltimore Canyon (∼385 m water depth) and deepwater Norfolk (∼1600 m) seep fields within the area of newly-discovered venting. The authigenic carbonates at both sites were dominated by aragonite, with an average image signature of image, a value consistent with microbially driven anaerobic oxidation of methane-rich fluids occurring at or near the sediment–water interface. Authigenic carbonate U and Sr isotope data further support the inference of carbonate precipitation from seawater-derived fluids rather than from formation fluids from deep aquifers. Carbonate stable and radiocarbon (image and image) isotope values from living Bathymodiolus sp. specimens are lighter than those of seawater dissolved inorganic carbon, highlighting the influence of fossil carbon from methane on carbonate precipitation. U–Th dates on authigenic carbonates suggest seepage at Baltimore Canyon between image to image, and at the Norfolk seep field between image to image, providing constraint on the longevity of methane efflux at these sites. The age of the brecciated authigenic carbonates and the occurrence of pockmarks at the Baltimore Canyon upper slope could suggest a link between sediment delivery during Pleistocene sea-level lowstand, accumulation of pore fluid overpressure from sediment compaction, and release of overpressure through subsequent venting. Calculations show that the Baltimore Canyon site probably has not been within the gas hydrate stability zone (GHSZ) in the past 20 ka, meaning that in-situ release of methane from dissociating gas hydrate cannot be sustaining the seep. We cannot rule out updip migration of methane from dissociation of gas hydrate that occurs farther down the slope as a source of the venting at Baltimore Canyon, but consider that the history of rapid sediment accumulation and overpressure may play a more important role in methane emissions at this site

    Distributions and habitat associations of deep-water corals in Norfolk and Baltimore Canyons, Mid-Atlantic Bight, USA

    Get PDF
    A multi-disciplinary study of two major submarine canyons, Baltimore Canyon and Norfolk Canyon, off the US mid-Atlantic coast focused on the ecology and biology of canyon habitats, particularly those supporting deep-sea corals. Historical data on deep-sea corals from these canyons were sparse with less than 750 records for the mid-Atlantic region, with most being soft sediment species. This study substantially increased the number of deep-sea coral records for the target canyons and the region. Large gorgonians were the dominant structure-forming coral taxa on exposed hard substrates, but several species of scleractinians were also documented, including first observations of Lophelia pertusa in the mid-Atlantic Bight region. Coral distribution varied within and between the two canyons, with greater abundance of the octocoral Paragorgia arborea in Baltimore Canyon, and higher occurrence of stony corals in Norfolk Canyon; these observations reflect the differences in environmental conditions, particularly turbidity, between the canyons. Some species have a wide distribution (e.g., P. arborea, Primnoa resedaeformis, Anthothela grandiflora), while others are limited to certain habitat types and/or depth zones (e.g., Paramuricea placomus, L. pertusa, Solenosmilia variabilis). The distribution of a species is driven by a combination of factors, which include availability of appropriate physical structure and environmental conditions. Although the diversity of the structure-forming corals (gorgonians, branching scleractinians and large anemones) was low, many areas of both canyons supported high coral abundance and a diverse coral-associated community. The canyons provide suitable habitat for the development of deep-sea coral communities that is not readily available elsewhere on the sedimented shelf and slope of the Mid-Atlantic Bight

    Tachyon Condensation and Black Strings

    Full text link
    We show that under certain conditions, closed string tachyon condensation produces a topology changing transition from black strings to Kaluza-Klein "bubbles of nothing." This can occur when the curvature at the horizon is much smaller than the string scale, so the black string is far from the correspondence point when it would make a transition to an excited fundamental string. This provides a dramatic new endpoint to Hawking evaporation. A similar transition occurs for black p-branes, and can be viewed as a nonextremal version of a geometric transition. Applications to AdS black holes and the AdS soliton are also discussed.Comment: 23 pages, 1 figure, v2: references adde

    Solitons in Five Dimensional Minimal Supergravity: Local Charge, Exotic Ergoregions, and Violations of the BPS Bound

    Full text link
    We describe a number of striking features of a class of smooth solitons in gauged and ungauged minimal supergravity in five dimensions. The solitons are globally asymptotically flat or asymptotically AdS without any Kaluza-Klein directions but contain a minimal sphere formed when a cycle pinches off in the interior of the spacetime. The solutions carry a local magnetic charge and many have rather unusual ergosurfaces. Perhaps most strikingly, many of the solitons have more electric charge or, in the asymptotically AdS case, more electric charge and angular momentum than is allowed by the usual BPS bound. We comment on, but do not resolve, the new puzzle this raises for AdS/CFT.Comment: 60 pages, 12 figures, 3 table

    Duality between Electric and Magnetic Black Holes

    Get PDF
    A number of attempts have recently been made to extend the conjectured SS duality of Yang Mills theory to gravity. Central to these speculations has been the belief that electrically and magnetically charged black holes, the solitons of quantum gravity, have identical quantum properties. This is not obvious, because although duality is a symmetry of the classical equations of motion, it changes the sign of the Maxwell action. Nevertheless, we show that the chemical potential and charge projection that one has to introduce for electric but not magnetic black holes exactly compensate for the difference in action in the semi-classical approximation. In particular, we show that the pair production of electric black holes is not a runaway process, as one might think if one just went by the action of the relevant instanton. We also comment on the definition of the entropy in cosmological situations, and show that we need to be more careful when defining the entropy than we are in an asymptotically-flat case.Comment: 23 pages, revtex, no figures. Major revision: two sections on the electric Ernst solution adde

    A bayesian multilevel modeling approach for data query in wireless sensor networks

    Get PDF
    In power-limited Wireless Sensor Network (WSN), it is important to reduce the communication load in order to achieve energy savings. This paper applies a novel statistic method to estimate the parameters based on the realtime data measured by local sensors. Instead of transmitting large real-time data, we proposed to transmit the small amount of dynamic parameters by exploiting both temporal and spatial correlation within and between sensor clusters. The temporal correlation is built on the level-1 Bayesian model at each sensor to predict local readings. Each local sensor transmits their local parameters learned from historical measurement data to their cluster heads which account for the spatial correlation and summarize the regional parameters based on level-2 Bayesian model. Finally, the cluster heads transmit the regional parameters to the sink node. By utilizing this statistical method, the sink node can predict the sensor measurements within a specified period without directly communicating with local sensors. We show that this approach can dramatically reduce the amount of communication load in data query applications and achieve significant energy savings
    • …
    corecore