
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

USGS Staff -- Published Research US Geological Survey

9-2006

Deep-water antipatharians: Proxies of
environmental change
B. Williams
—Department of Geological Sciences, williams.2789@osu.edu

M.J. Risk
McMaster University, Department of Geography and Earth Sciences

S.W. Ross
Centre for Marine Science, University of North Carolina at Wilmington

K.J. Sulak
Center for Aquatic Resource Studies, U.S. Geological Survey

Follow this and additional works at: http://digitalcommons.unl.edu/usgsstaffpub

Part of the Geology Commons, Oceanography and Atmospheric Sciences and Meteorology
Commons, Other Earth Sciences Commons, and the Other Environmental Sciences Commons

This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been
accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Williams, B.; Risk, M.J.; Ross, S.W.; and Sulak, K.J., "Deep-water antipatharians: Proxies of environmental change" (2006). USGS Staff
-- Published Research. 1057.
http://digitalcommons.unl.edu/usgsstaffpub/1057

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1057&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/usgsstaffpub?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1057&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/usgs?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1057&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/usgsstaffpub?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1057&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1057&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1057&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1057&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/166?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1057&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/173?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1057&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/usgsstaffpub/1057?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1057&utm_medium=PDF&utm_campaign=PDFCoverPages


� 2006 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org.
Geology; September 2006; v. 34; no. 9; p. 773–776; doi: 10.1130/G22685.1; 4 figures; 3 tables. 773

Deep-water antipatharians: Proxies of environmental change
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Figure 1. Location of antipatharian collection sites on southeastern
U.S. continental slope at Jacksonville lithoherms, Stetson Bank, and
Viosca Knoll.

ABSTRACT
Deep-water (307–697 m) antipatharian (black coral) speci-

mens were collected from the southeastern continental slope of the
United States and the north-central Gulf of Mexico. The sclero-
chronology of the specimens indicates that skeletal growth takes
place by formation of concentric coeval layers. We used 210Pb to
estimate radial growth rate of two specimens, and to establish that
they were several centuries old. Bands were delaminated in KOH
and analyzed for carbon and nitrogen stable isotopes. Carbon val-
ues ranged from �16.4‰ to �15.7‰; the oldest specimen dis-
played the largest range in values. Nitrogen values ranged from
7.7‰ to 8.6‰. Two specimens from the same location and depth
had similar 15N signatures, indicating good reproducibility between
specimens.

Keywords: corals, nitrogen, carbon, stable isotopes, 210Pb dating.

INTRODUCTION
Deep-water black corals (Antipatharia) have substantial potential

as proxy records of historical oceanographic and biogeochemical
changes (Grange and Goldberg, 1994). Their long life spans, wide geo-
graphic distribution, and large depth range (Grigg, 1965; van der Land
and Opresko, 2001) suggest that they may provide environmental in-
formation in geographic locations and for periods of time not available
from other sources.

The semirigid antipatharian skeleton is composed of chitin com-
plexed with proteins (Goldberg et al., 1994). Antipatharians feed on
particulate organic matter (POM) composed of detritus, marine snow,
and plankton in the water column (Grigg, 1965). The transfer of POM
from surface waters to the antipatharian organic skeleton indicates a
link between the isotopic composition of the skeleton and surface
oceanographic and biogeochemical processes affecting the constitution
of POM (Heikoop et al., 1998, 2002).

Studies of growth ring structure and formation in shallow-water
antipatharians suggest that the skeleton is formed of concentric coeval
rings such that the inner rings of a branch are the oldest and the outside
rings are the most recently formed (Goldberg, 1991; Grange, 1985a,
1985b; Grange and Goldberg, 1994). Similar growth in deep-water
specimens would allow us to develop radial growth chronologies of
the skeleton.

In this paper we document the sclerochronology of these deep-
water corals using 210Pb analysis. We test skeletal treatment with KOH
to delaminate bands and analyze skeletal stable isotopic composition
to obtain proxy records of environmental change.

Study Sites
Samples from three study sites were selected for analysis (Fig. 1).

The Jacksonville lithoherm (Paull et al., 2000) site is at �550–650 m

*Current addresses: Williams—Department of Geological Sciences, Ohio
State University, 125 South Oval Mall, Columbus, Ohio 43210; E-mail:
williams.2789@osu.edu. Ross—Currently assigned through Intergovernmental
Personnel Act to: U.S. Geological Survey, Center for Coastal and Watershed
Studies, 600 Fourth Street South, St. Petersburg, Florida 33701-4846.

depth on the Florida-Hatteras Slope �180 km off Jacksonville, Florida.
The Stetson Banks site is 380 km off Savannah, Georgia, at 650–
700 m depth. Both sites are influenced by the Gulf Stream (Paull et
al., 2000; Stetson et al., 1962). The third site was the Viosca Knoll
area in the north-central Gulf of Mexico, �100 km east of the Missis-
sippi River Delta, at 300–530 m depth (Schroeder, 2002).

METHODS
Sample Collection

Four antipatharian specimens (Fig. 2) were collected (Table 1)
using the Johnson Sea-Link submersible during two research cruises
in 2004, 9–15 June (continental slope; southeastern U.S.) and 31 July–
1 August (north-central Gulf of Mexico) (Fig. 1). Specimens were ten-
tatively identified as Leiopathes glaberrima (Esper) (� Antipathes gla-
berrima) based on branch pattern and size, although further taxonomic
validation is needed (D. Opresko, 2005, personal commun.). After col-
lection, cenosarc was picked off with forceps. The specimens were then
rinsed in seawater and air-dried on deck.

Imaging
In the laboratory, 1-cm-thick cross sections were cut from the base

of each specimen with a wafering blade attached to a Dremel Multipro
drill. Polished 30 �m and 100 �m cross sections were cut adjacent to
the thick sections. Digital photographs of the thin sections were taken
under compound microscope with a Leica DFC300 camera to examine
banding patterns. Small portions of the thick section were placed in
2 g of KOH in 50 mL of Milli-Q water for 4 h and band separation
was examined using a scanning electron microscope (SEM).

proyster2
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Figure 2. Video frame grab of black coral colony observed at 561 m
at Jacksonville lithoherm site.

TABLE 1. SPECIMEN COLLECTION LOCATION AND DIAMETER AT BASE

Specimen Location Lat/Long
(�N/�W)

Dive # Depth
(m)

Diameter
(mm)*

A8601 Jacksonville Lithoherm 30�30.1�, 79�39.2� 4684 593 14.0
A8401 Jacksonville Lithoherm 30�30.8�, 79�39.7� 4684 561 8.3
A9902 Stetson Banks 31�50.7�, 77�36.6� 4699 679 5.8
AG002 Viosca Knoll 29�06.4�, 88�23� 4744 307 11.2

*Diameter at base

Figure 3. Cross section of specimen A8601 after KOH treatment.

Skeletal 210Pb Dating
We subsampled 4-mm-thick cross sections from the bases of spec-

imens A9902 and A8601 into three equal concentric regions labeled,
from the outside to the inside, A9902-A, A9902-B, and A9902-C, and
A8601-A, A8601-B, and A8601-C, respectively. Subsamples were cut
with a wafering blade attached to a Dremel drill to obtain a minimum
0.5 g of material, cleaned three times ultrasonically with Milli-Q water
for 10 min to ensure removal of all particles not incorporated into the
skeleton, and then dried overnight at 40 �C. After cleaning, subsamples
were handled with clean forceps at all times to prevent contamination.
Subsamples (�0.5 g) and 209Po spike (�3 dpm) were dissolved in a
mixture of two-thirds concentrated HCl and one-third concentrated
HNO3 on a low-temperature hot plate until completely dissolved and
dried. The dried mixture was redissolved in 0.5 N HCl; 210Po was
plated onto a silver disc from the solution at �80 �C for several hours.
The 210Po activity was counted in an Alpha Counter EGG-ORTIC 476
according to methods of Ruiz-Fernández et al. (2003).

There are three potential sources of 210Pb to the antipatharian skel-
eton: the excess (unsupported) fraction, the supported fraction, and the
in-growth fraction. The 210Pb has low solubility, thus it adheres to
particulate matter in the water column. The relatively slow radial
growth rates of antipatharians (based on estimates from shallow-water
specimens; Grange and Goldberg, 1994) provide sufficient time for
particulate matter to adhere to the outside layer of the skeleton during
formation; this is the source of unsupported 210Pbex to the skeleton.
The 210Pbex fraction can be used to determine the age of a subsample;
however, first the other two sources of 210Pb must be accounted for.
Detrital particles in the water column are also a source of supported
210Pb, which comes from the decay of 238U. The in-growth 210Pb frac-
tion comes from the in situ decay of 226Ra taken up from seawater
during skeletal formation. The supported and in-growth fractions are
assumed to be 0; this is discussed in the following.

The subsamples for 210Pb analysis were taken along a time-
dependent growth axis from the external and youngest subsample A to
the internal and oldest subsample C for both specimens. The distance
from the average point of each subsample along the radial growth axis
to the outside edge of the section (time � 0) was plotted against mea-
sured 210Pb activity. The asymptote of the curve for specimen A9902
is essentially 0; therefore, we can assume that supported 210Pb and in-
growth 210Pb is 0 and thus does not need to be accounted for in this
specimen. The natural log of 210Pb activity for each subsample was
then taken to convert the curve into a straight line in which the natural
logarithm of the y-intercept represents initial activity. For specimen
A9902 the trend equation is y � �0.07563x 	 1.8788 (R2 � 0.9993)

and initial activity (A0) � 6.84 dpm/g. This calculation assumes that
initial 210Pbex is constant in time and space.

The age of specimen A9902, based on the radioactive decay of
210Pb in the coral skeleton, was calculated using:

�
tA � A e ,ex o (1)

where Aex is the activity measured at time (t), A0 is the initial activity
at t � 0, and 
 is the decay constant of 210Pb (
 � 0.0311 yr�1)
(Druffel et al., 1990). The initial activity calculated above was then
substituted into Equation 1 along with the measured excess activity to
determine specimen age.

Band Separation and Analysis
A 5-mm-thick cross section from the base of each specimen was

placed in a solution of 4 g of KOH in 50 mL of water for �1 week,
resulting in band delamination (Fig. 3). Bands were separated under a
light microscope using forceps, working from the outside of the section
toward the center. After removal, each band was rinsed three times in
Milli-Q water and dried overnight at 40 �C. Subsamples (0.7–0.8 mg)
were taken from each band and analyzed for �13C and �15N. Analysis
was performed on an Isoprime Mass Spectrometer in continuous flow
with a Carlo Erba Elemental Analyzer. Isotopic abundances are re-
ported in the standard delta notation versus Vienna Peedee belemnite
(Coplen, 1994) and atmospheric nitrogen (Mariotti, 1984) for carbon
and nitrogen, respectively, where �13C or �15N � [(Rsample�Rstandard)/
Rstandard] [1000 ‰] and R � 13C/12C or 15N/14N. Analyses were made
against internal laboratory standards and the international standards
USGS-25 and IAEA C6 sucrose. Instrumental precision of the mass
spectrometer is �0.1‰ for �13C and 0.2‰ for �15N based on
repeated analysis of standards. Precision, and thus reproducibility, for
the organic antipatharian skeleton was measured for two bands using
five random replicate subsamples from each band. The combined an-
alytical precision of both bands for �13C was 0.04‰. For �15N, the
combined precision was 0.17‰. The effect of KOH treatment on
stable isotope composition is negligible (Williams, 2005).
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TABLE 2. SUBSAMPLE AGE AND EXTRAPOLATED SPECIMEN AGE

Subsample Distance
(mm)

Activity
(dpm/g)*

Calculated age
(years)†

Extrapolated age
(years)§

Specimen A9902
A 0.46 2.47 (0.03) 33 (1)
B 1.43 0.35 (0.01) 95 (2.5)
C 2.40 0.04 (0.004) 163 (1)
Radius 2.90 198 (2) 198

Specimen A8601
A 1.65 0.27 (0.02)
B 3.95 �0.01 (0.005)
C 6.25 0.009 (0.04)
Radius 7.00 483

Specimen A8401
Radius 4.30 290

Specimen G002
Radius 5.60 386

Note: Concentric, coeval subsamples were subsampled from the most recent
growth (A) to the oldest growth (C). The error represents instrumental imprecision
in measuring 210Pb activity and the resulting calculated age.

*Activity represents 210Pbex activity.
†Calculated age determined from the decay of 210Pbex activity.
§Extrapolated age based on growth rate from specimen A9902 (0.0145 mm yr�1).

Figure 4. Cross section of specimen A8601 under light microscope.

RESULTS AND DISCUSSION
Dating and Growth Rates

These corals are long-lived and slow-growing organisms. Results
and extrapolated age calculations are provided in Table 2. The 210Pb
activity yielded ages of 33, 95, and 163 yr for subsamples A9902-A,
A9902-B, and A9902-C, respectively, and an overall age of 200 yr for
a specimen with a diameter of 5.8 mm at the base. The activity of
210Pb (dpm/g) for subsamples A9902-A, A9902-B, and A9902-C was
2.47 (0.03), 0.35 (0.01), and 0.041 (0.004), respectively. For sub-
samples A8601-A, A8601-B, and A8601-C the 210Pb (dpm/g) activity
was 0.27 (0.02), �0.013 (0.005), and 0.0094 (0.004).

Specimen A9902 grew 0.97 mm in 62 yr from A9902-A to
A9902-B, resulting in a growth rate of 0.015 mm yr�1 and 0.97 mm
in 68 yr from A9902-B to A9902-C, with a growth rate of 0.014 mm
yr�1. The average growth rate was 0.0145 mm yr�1. The average mea-
sured radius of the specimen was 2.9 mm; therefore, the total age of
the specimen is 200 yr. A major assumption with this method of dating
is constant growth rates. Growth-rate estimates from subsamples
A9902-A to A9902-B and from A9902-B to A9902-C were very sim-
ilar, suggesting that the average growth rate did not change significantly
between the first and second half of the specimen’s life. This assump-
tion is supported by a comparison of growth rates between specimens
A9902 and A8601. Subsample A8601-A plotted on the same line as
subsamples from A9902 (y � �0.07563x 	 1.8788) calculated from
plotting the natural log of 210Pb activity versus distance from the sub-
sample center to the outside edge of the cross section. This indicated
a similar growth rate between specimens. Subsamples A8601-B and
A8601-C were ignored because 210Pb activity was essentially zero.

If average radial growth rates of deep-water L. glaberrima are
approximately constant between specimens, this suggests by extrapo-
lation that specimen A8601 is 480 yr, A8401 is 290 yr, and specimen
AG002 is 390 yr old. Whatever the error in such extrapolation, it seems
certain that each specimen is �100 yr old. Other long-lived cnidarians
have been reported: the zoanthid Gerardia, formed of a layered pro-
teinaceous skeleton, may reach ages of 1800 yr (300 yr) (Druffel et
al., 1995).

Banding
Examination of 30 �m thin sections from all specimens under

light microscope revealed banding in L. glaberrima, visible as banding
couplets of different optical density (Fig. 4). The optically dark bands

ranged in width from 0.002 to 0.018 mm; the optically lighter bands
ranged from 0.003 to 0.022 mm. Specimen A8601 contained 460
bands, specimen A8401 contained 310, specimen A9902 contained
200, and specimen AG002 contained 230. Visual examination of thick
sections polished and partially treated with KOH displayed thin layers
of skeleton, 25–40 �m, tightly packed together. SEM photographs of
deep-water L. glaberrima suggested that growth occurred by regular
cyclic formation of a thin layer of skeleton. This growth pattern is
similar to Gerardia, which was originally classified as an antipatharian
(Druffel et al., 1995). In contrast, A. fiordensis grows with lighter and
darker regions, and studies suggest that the optically darker bands are
annual (Grange and Goldberg, 1994), the optically lighter bands being
formed of cement layers (Goldberg, 1991).

The factors influencing formation of the skeletal growth layers in
L. glaberrima are not known. Physico-chemical factors potentially
causing band formation in A. fiordensis were reviewed in Grange and
Goldberg (1994); however, no correlations were found between band
formation and surface or underwater light levels, salinity, or tempera-
ture. In deep-water gorgonians, variation in the structure of the skeleton
may be related to food availability (Sherwood, 2002). Under nutrient-
rich conditions, the animal forms protein-rich organic skeleton, where-
as calcite forms under nutrient-poor conditions (Sherwood, 2002). A
similar mechanism could be present in the antipatharians, such that the
skeleton is formed under nutrient-rich conditions, but under nutrient-
poor conditions skeletal formation ceases.

Stable Isotopes
Nitrogen isotope values for the specimens ranged from 7.70‰ to

8.61‰ (Table 3). The �15N signature of deep-water antipatharians is
determined by their probable food source, which is believed to be fall-
ing organic matter from surface waters. The �15N specimens A8601
and A8401 were collected from comparable depths (593 and 561 m,
respectively) at the Jacksonville lithoherms. They displayed similar
�15N values, suggesting a similar food source, while specimen A9902,
from a deeper area (679 m) and farther offshore (Fig. 1), is depleted
in 15N (7.70‰). The �15N signature of sinking particles decreases with
depth (Altabet et al., 1991), which may account for the variation be-
tween specimens A8601-A8401 and A9902. Specimen AG002, from
the Gulf of Mexico, was collected from the shallowest depth (307 m)
and has an intermediate mean 15N value (8.02‰). The �15N of organic
particulate matter also reflects phytoplankton and nitrate concentration
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TABLE 3. MEASURED �13C AND �15N ISOTOPIC ABUNDANCES

Specimen Depth
(m)

Age
(years)

Mean �13C
(‰)

SE Range
(‰)

A8601 593 483 �15.66 0.05 2.51
A8401 561 290 �16.31 0.02 1.57
A9902 679 198 �16.14 0.06 1.42
G002 307 386 �16.39 0.03 0.74

Specimen Depth
(m)

Age
(years)

Mean �15N
(‰)

SE Range
(‰)

A8601 593 483 8.61 0.02 3.65
A8401 561 290 8.46 0.07 2.56
A9902 679 198 7.70 0.15 2.56
G002 307 386 8.02 0.19 3.36

dynamics (Wada and Hattori, 1976; Altabet and Francois, 1994). The
northern Gulf of Mexico receives high fluxes of nitrate fertilizer (�15N
from �4‰ to 4‰; Kendall, 1998) from the Mississippi-Atchafalaya
watershed (Goolsby et al., 2001). The input of 15N-depleted material
relative to antipatharian specimens and anthropogenic alteration of ni-
trogen dynamics can account for the intermediate 15N value of speci-
men AG002 relative to the deeper Atlantic specimens.

Carbon isotope values for the four specimens ranged from
�15.66‰ to �16.39‰ with a variety in range of values from 0.74‰
to 2.51‰ (Table 3). Similar to nitrogen, carbon isotopes in the skeleton
likely are determined by the food source, organic matter. The average
�13C value for southeastern U.S. specimens was �16.04‰  .04‰
(Table 3), although specimen A8601 from the Jacksonville lithoherms
had notably lower values (�15.66‰  .05‰) than the other two
southeastern U.S. specimens: A8401 (�16.31‰  .02‰) and A9902
(�16.14‰  .06‰), and the Gulf of Mexico specimen AG002
(�16.39‰  .03‰). The �13C values for A8401 and A9902 were
similar: 1.6‰ and 1.4‰, respectively, while AG002 was half as much
(0.74‰) and A8601 was twice as much (2.5‰). This suggests that
�13CPOM has been very variable over the past 500 yr in the Atlantic,
possibly as a reflection of changing atmospheric carbon dioxide con-
centrations, and that carbon dynamics have been more stable in the
Gulf of Mexico over a similar period of time.

This is the first study of possible environmental signals recorded
in skeletons of antipatharians. Their wide distribution in the world’s
oceans, coupled with their slow growth rate, suggests that they may
provide data from a range of depths on the time scale of hundreds of
years.

CONCLUSIONS
Deep-water antipatharians are slow growing, with estimated radial

growth rates of 0.0145 mm yr�1, far slower than those recorded from
warm and temperate shallow-water antipatharians.

Stable isotope results are reproducible among specimens from the
same location, indicating that antipatharians have potential as proxy
records.
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