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Abstract 

A multi-disciplinary study of two major submarine canyons, Baltimore Canyon and Norfolk 

Canyon, off the US mid-Atlantic coast focused on the ecology and biology of canyon habitats, 

particularly those supporting deep-sea corals. Historical data on deep-sea corals from these 

canyons were sparse with less than 750 records for the mid-Atlantic region, with most being soft 

sediment species. This study substantially increased the number of deep-sea coral records for the 

target canyons and the region. Large gorgonians were the dominant structure-forming coral taxa 

on exposed hard substrates, but several species of scleractinians were also documented, including 

first observations of Lophelia pertusa in the mid-Atlantic Bight region. Coral distribution varied 



within and between the two canyons, with greater abundance of the octocoral P. arborea in 

Baltimore Canyon, and higher occurrence of stony corals in Norfolk Canyon; these observations 

reflect the differences in environmental conditions, particularly turbidity, between the canyons. 

Some species have a wide distribution (e.g., Paragorgia arborea, Primnoa resedeformis, 

Anthothela grandiflora), while others are limited to certain habitat types and/or depth zones (e.g., 

Paramuricea placomus, L. pertusa, Solenosmilia variabilis). The distribution of a species is 

driven by a combination of factors, which include availability of appropriate physical structure 

and environmental conditions. Although the diversity of the structure-forming corals 

(gorgonians, branching scleractinians and large anemones) was low, many areas of both canyons 

supported high coral abundance and a diverse coral-associated community. The canyons provide 

suitable habitat for the development of deep-sea coral communities that is not readily available 

elsewhere on the sedimented shelf and slope of the Mid-Atlantic Bight. 

 

Keywords: Deep-sea corals, canyons, Mid-Atlantic Bight, stony corals, gorgonians, 

environmental conditions   



1. Introduction  

Submarine canyons are widespread features that (Harris and Whiteway, 2011) connect 

continental shelves to deep ocean basins via transport of sediments and nutrients (Bennett et al., 

1985) and channel deep ocean water onto the shelf via upwelling. There is also evidence that 

canyon topography can concentrate migrating zooplankton, providing a rich food source for 

higher trophic levels (Green et al., 1988). With a few exceptions (Hudson and Haedrich 1984; 

King et al., 2008), canyon communities differ in species composition from those in similar 

depths outside canyons, and many canyons are biomass hotspots (de Leo et al., 2010). 

Megafauna are often more abundant in canyons at all depths than on the adjacent slopes(Griggs 

et al., 1969; Rowe 1972; Vetter and Dayton 1998; Carne 2005; de Leo et al., 2010). This 

phenomenon may be driven by entrainment of terrestrial and marine sediments, and organic 

material into canyons (Heezen et al., 1955; Keller and Shepard 1978), enhancing food 

availability in a normally food-poor area. Canyons represent areas of high diversity and biomass 

(including commercial fisheries) in the deep sea (Stefanescu et al., 1994; Gartner et al., 2008; de 

Leo et al., 2010), likely due to high levels of environmental heterogeneity, e.g., in physical 

structure, hydrography, and geological structure, which creates spatial and temporal 

heterogeneity in sedimentation rates, substrates, food and environmental factors (Vetter and 

Dayton 1999; Allen et al., 2001; Kuhnze et al., 2002; Buhl-Mortensen et al., 2010). This 

complex interplay of factors contributes to the observed patchiness in faunal assemblages 

(McClain and Barry 2010). Exposed hard substrates are common in canyons and are generally 

found where currents are strong around outcrops or relict shorelines along canyon walls, and 

sometimes along the canyon thalweg, around boulders deposited by turbidity flows (Stanley and 

Fenner 1973; Hecker et al., 1980; Malahoff et al., 1982). Hard substrates often support dense 



communities of sessile suspension and filter feeders, such as cnidarians and sponges, which 

provide habitat for diverse and abundant faunal assemblages. Submarine canyons may also 

provide refuge for demersal fish species (Ross et al., 2015), as bottom-tending fishing gear is not 

easily operated on the rugged topography common in submarine canyons (Huvenne et al., 2011). 

Their large size, complex topography and fast currents make canyons some of the most 

challenging of deep-sea environments to explore. Underwater vehicles are the most effective 

tools for surveying and sampling canyon habitats and communities, and their use in recent years 

has greatly increased our understanding of canyon ecology and processes.  

The Mid-Atlantic Bight (MAB) region of the U.S. Atlantic margin extends from Cape 

Hatteras to Cape Cod and contains between 30 and 40 submarine canyons; at least 13 of these 

are considered major canyons (Andrews et al., 2013). The canyons vary in size, shape, and 

topographic complexity; some are the product of ancient riverine systems (e.g., Wilmington, 

Hudson), but most formed via other erosional processes, such as slides, debris flows, and 

turbidity currents (Uchupi 1968; Malahoff et al., 1980; Tucholke 1987; Obelcz et al 2014). 

Early work in the MAB canyons carried out via submersibles and towed cameras included 

anthropogenic impact studies (Cooper et al 1992; Able 2002), fisheries surveys (Grimes et al., 

1987) and studies of benthic epifauna (Hecker et al., 1980, 1983), and revealed a wide range of 

habitat types including soft sediments, cobbles, rocky outcroppings and extensive excavations by 

fish and invertebrates (Grimes et al., 1987; Tucholke 1987). Visual surveys revealed deep-sea 

coral communities, dominated by octocorals, solitary scleractinians, and anemones (Cairns 1981; 

Watling and Auster 2005; Packer et al., 2007) rather than the reef-forming stony corals (Lophelia 

pertusa, Enallopsammia profunda) that are the foundation of deep-sea coral communities in the 

southeastern U.S. and Gulf of Mexico (Brooke and Schroeder 2007; Ross and Nizinski 2007). A 



comprehensive compilation of deep-sea octocoral (Alcyonaria) observations in the northeastern 

US (Cape Hatteras to the Canadian border) fall into two distinct time periods: 1874-1920 and 

1950-2001 and contains 761 records (Watling et al., 2003). . The earlier records were primarily 

incidental catches in dredge hauls taken by US vessels as part of mapping and geological studies 

(summarized by Deichmann, 1936). The later time period included visual surveys for fisheries, 

energy industry surveys and ocean dumping projects (Hecker et al., 1980 1983; Malahoff et al., 

1982; Grimes et al., 1987; Cooper et al., 1992; Able 2002). This database includes 10 families 

and 25 species (Watling and Auster, 2005), all of which, with the exception of the Acanella sp., 

were hard-substrate taxa. The NOAA Deep Sea Coral Research and Technology Program 

(DSCRTP) deep-sea coral data portal lists 166 records of gorgonians, 98 soft corals and 455 sea 

pens for the MAB alone. For Scleractinia, the data portal has 334 records for the MAB, of which 

~200 are taxa such as Flabellum and Dasmosmilia that live in unconsolidated sediments. In soft 

sediments of the western Atlantic slope, additional sessile cnidarians include pennatulids and 

burrowing cerianthid anemones, all of which are also found in sandy sediments within the 

canyons (Shepard et al., 1986; Packer et al., 2007).  

The use of submersibles, ROVs, AUVs and towed cameras has facilitated exploration of 

topographically complex features such as canyons, and several U. S. federal agencies (NOAA, 

BOEM, USGS) have recently supported geological and biological surveys of the MAB and New 

England canyons (Quattrini et al., 2015; Obelcz et al., 2014; Skarke et al., 2014; Pierdomenico et 

al., 2012). These studies resulted in range extensions for octocoral and fish species (Quattrini et 

al., 2015) and new observations of L. pertusa for the MAB region (Brooke and Ross 2014).  

Although the importance of deep-sea corals to other macrofauna has not been fully established 

(Auster 2005; Purser et al., 2013; Ross et al., 2015), deep-sea corals nevertheless contribute 



substantial structure and complexity to MAB canyon benthic habitats (Hecker et al., 1980; 

Brooke and Ross 2014; Ross et al., 2015). 

Data reported in this manuscript were generated by a large multi-disciplinary study of two 

MAB canyons: Baltimore Canyon and Norfolk Canyon. One of the objectives was to explore and 

characterize the little known hard-substrate habitats and their associated communities within 

these canyons, and relate the distribution of structure-forming corals with geological and 

environmental variables to identify potential drivers of species distributions and community 

structure both within and between canyons. 

 

2. Materials and methods 

 

2.1 Study area  

This study concentrated on Baltimore and Norfolk canyons and the immediate surrounding slope 

areas (Fig. 1). These large, shelf-incised canyons have rugged terrain mostly on the north and 

south walls and near the canyon heads, including a series of terraces that stepped down many of 

the canyon walls (Obelcz et al., 2014). Hard substrates mostly consisted of ridges and walls of 

consolidated mud, rocks, and talus fields (Tucholke 1987; authors pers. obs.).  The MAB slope is 

impinged by several different water masses at different depths that provide diagnostic signatures 

in temperature and salinity; those pertinent to this study are the North Atlantic Central Water (< 

500 m depth, 7-20
o
C, 35-36 salinity) and the Western Atlantic Subarctic Intermediate Water 

(500-1500 m depth, 3-9
o
C, 33-35 salinity) (Csanady and Hamilton 1988; Csanady et al., 1988). 

The cyclonic Slope Sea Gyre dominates larger scale surface water movement in the MAB 

(Brooks 1996), with periodic meanders of the Gulf Stream that cause upwelling and shoreward 



movement of nutrient-rich waters (Fitzgerald and Chamberlin 1981). However, tidal currents and 

internal waves are the major forcing functions for upwelling and down-welling flows along 

canyon axes (Keller and Shepard 1978; Allen and Durrieux de Madron 2009).  Turbidity within 

canyons is higher than on the adjacent slopes and an upper slope nepheloid layer occurs in both 

canyons, but particularly Baltimore Canyon (Gardner 1989, authors’ unpubl. data).  

Prior to the current study, images of deep-sea corals taken within Baltimore and Norfolk 

canyons came primarily from studies by Hecker and colleagues (Hecker et al., 1980, 1983). They 

documented abundant gorgonians (P. arborea, P resedaeformis, A. armata), soft corals and 

dense assemblages of anemones, particularly on the northern and western walls of Baltimore 

Canyon and the north and south walls of Norfolk Canyon at depths of ~160-600m. Analysis of 

these and other historical visual materials, in combination with multibeam maps of the canyons 

(generated during the current study), were used to guide ROV dives.   

 

2.2 Field methods 

The 2012 research cruise (17 Aug - 14 Sept) used the NOAA Ship Nancy Foster and the ROV 

Kraken II (Univ. of Connecticut), a Max Rover science-configured ROV with an operating depth 

of 1000 m. The ROV was equipped with a Kongsberg OE14-502 high definition (HD) video 

camera mounted on a pan and tilt and with parallel lasers (10 cm apart) for scaling, Kongsberg 

OE13-408 digital still camera (10 MP), five-function manipulator arm and a hydraulic collection 

platform with a suite of collecting containers. The vehicle also had a rotating carousel of 8 

buckets connected to a suction sampler for collecting small mobile or delicate samples. The 

ROVs position was continuously tracked using an ORE Trackpoint II Ultrashort Baseline 



system; position data was relayed through  a Winfrog integrated navigation system that provided 

near real-time view of the ROV location as well as logging the data for post-dive analysis.   

The 2013 research cruise (2-18 May 2013) used the NOAA Ship Ronald H. Brown and the 

ROV Jason II (Woods Hole Oceanographic Inst.), which can operate to 6500 m. The science 

camera on the ROV was an Insite Pacific Mini-Zeus HD video camera with parallel lasers (10 

cm apart) for scaling. There were two digital still cameras: a Nikon CoolPix (3 MP) and an Insite 

Pacific Super Scorpio (3.34 MP). Two seven-function hydraulic manipulator arms were used to 

collect samples.  A retractable sled on the front of the ROV was equipped with sampling devices, 

as well as a carousel of 6 buckets with a suction sampler. The ROV navigation system was a 

Sonardyne Ranger Ultra Short Baseline (USBL) and integrated navigation system, allowing a 

near real-time view of the ROV position.  

Color-shaded bathymetric GeoTiff maps (products of the 2011 Nancy Foster multibeam 

mapping cruise) of each dive site were uploaded into the ROV navigation systems and provided 

background maps for the ROV tracks. This approach greatly increased the efficiency of ROV 

dives as the pilots and scientists could continuously visualize the ROV position relative to the 

site topography.  The ROVs conducted standardized video transects of variable distances across 

multiple habitat types while moving at slow speeds (< 0.5 kts).  During transects, the color video 

cameras with scaling lasers were set on wide angle and positioned to record in front of the ROV.  

Digital still images were taken frequently to augment the digital video and to assist in species 

identifications. Specimens were collected using the manipulator arm, which transferred samples 

to a variety of containers attached to the ROV sampling platform. Every sample was documented 

with video, and collection data were recorded.  Data for physical variables were collected around 

the habitats of interest using a Seabird SBE 19+ data logger attached to the ROVs, which 



recorded conductivity (µS/cm), temperature (°C), depth (m), density (σθ, kg m
-3

), dissolved 

oxygen (DO, ml/L), pH  and turbidity (formazin turbidity units) at a frequency of once per 

second during each dive. Two Niskin bottles were mounted on the ROVs to make near-bottom 

water collections that were subsequently analyzed for carbonate chemistry. ROV position (ultra-

short baseline tracking) data were time-synchronized with all imagery, collections and 

environmental data. 

A small (5 m) otter trawl was used to make off-canyon collections of benthic fauna. The net 

was deployed at depths between 150-1700 m for 30-minute intervals over soft sediment habitats 

on the slopes adjacent to the target canyons. Both vessels had a CTD carousel with an array of 12 

Niskin bottles (5 L on the Nancy Foster; 10 L on the Ronald H. Brown).  Water samples were 

collected (during the upcast) from near surface, mid-water and near bottom over a depth range of 

97-1032 m in Baltimore Canyon and 100-1387 m in Norfolk canyons. These samples were used 

for analysis of carbonate chemistry.   

 

2.3 Habitat and community analysis 

The ROV navigation files (including latitude, longitude and depth) and the dive videos were 

synchronized via their time codes so that position and depth data could be assigned to 

observations on the video.  Video from the ROV dives was only analyzed when the vehicle was 

in transect configuration (Section 2.2) with lasers on and with adequate visibility to enable 

habitat and faunal descriptions. All poor quality video and sections where the ROV was 

stationary (usually for sampling) were removed.  The remainder of the video was categorized 

into one of six geological habitat types, which encompassed the dominant combinations of soft 

and hard substrates found in the canyons (Table 1; Fig. 2). In addition to these structural 



categories, the video data were further classified according to percentage cover (<25%, 25-75%, 

>75%) and type of structure-forming cnidarians (SFC) (Table 1).  The habitat analysis generated 

georeferenced habitat types and percent cover of SFC, which were used to create maps of dive 

tracks with habitat and SFC superimposed on bathymetry collected with multibeam sonar during 

previous cruises. 

To generate high-resolution information with uniform-sized replicates, video of each habitat 

category was split into one-minute intervals; segments of habitat type that were less than one 

minute were discarded.  For each time interval, all corals and large anemones were counted.  

Coral distributions were analyzed using multivariate statistics (Primer-E V6 software; Clarke and 

Gorley 2006) to identify any significant differences among factors (canyon, ROV dive, and 

habitat type). Prior to analysis, a fourth root transform was applied to the frequency count data to 

reduce the dominance of very abundant species.  Bray-Curtis similarity matrices were created 

and multi-dimensional scaling (MDS) plots were generated for corals by each factor.  Records of 

Keratoisis cf. grayi and Antipathidae were removed from the analysis due to their absence or 

rarity (< 10 records) in one or both canyons, and/or their taxonomic uncertainty. A two-way 

analysis of similarity (ANOSIM) was used to analyze differences in coral abundance by dive, 

nested within canyon. A one-way ANOSIM was used to determine the effect of habitat type.  

 

2.4 Physical environment 

Data from the Seabird (SBE 19+) instrument attached to the ROVs were incorporated into the 

habitat and community analysis data sheets by cross referencing the time stamps on the data 

from the instrument with the ROV navigation files. This process created geo-referenced coral 

location data with environmental conditions. These data were used in statistical analyses to 



identify potential environmental drivers for the observed coral distributions. A Spearman Rank 

correlation analysis was performed on the environmental data from all coral records to identify 

redundant variables (i.e. those with ρ > 0.95 or <-0.95).  Environmental data were square root 

transformed and normalized. The BEST routine (Primer-E V6) was used to generate correlations 

between environmental data and coral abundance.  Principal Component Analysis (PCA) was 

used to determine which environmental variables had the greatest contribution to coral 

abundances. To determine whether the relationship between environmental variables and coral 

abundance was statistically significant, the RELATE routine (Primer-E V6) was applied to the 

matched resemblance matrices for coral abundance (Bray-Curtis) and environmental data 

(Euclidean) using a Spearman Rank correlation.    

Water samples were taken from Niskin bottles attached to the ROV and from near-bottom 

collections made during the CTD casts. Dissolved organic carbon (DIC, µmol/kg) and total 

alkalinity (TA, µmol/kg) were measured by the NOAA Pacific Marine Environmental 

Laboratory, using standard analytical techniques (Dickson et al., 2007). Levels of other 

parameters of interest were calculated using DIC and TA measurements, including CO2 

(µmol/kg), HCO3 (µmol/kg), CO3
2-

 (µmol/kg), and saturation states of Aragonite (ΩArag.) and 

Calcite (ΩCalcite).  Since carbonate chemistry may influence the distribution of both octocorals 

and stony corals, these data are presented and discussed.  

 

3. Results 

 

3.1 Habitat and community analysis 



During the 2012 cruise, the ROV Kraken II made 17 dives that targeted coral/hard-bottom 

habitats over a depth range of 234-1001 m; 15 dives were made in Baltimore Canyon and two in 

Norfolk Canyon.  In 2013, the ROV Jason II made 10 dives on coral/hard-bottom habitats, one 

in Baltimore Canyon (288-388 m), and the remaining nine in Norfolk Canyon (320-1390 m).  

The ROV dives from both years combined generated 2,542 minutes (~42.4 hours) of video for 

habitat/community analysis of Baltimore Canyon, and 2,198 minutes (~36.6 hours) for Norfolk 

Canyon. Table 2 summarizes the total number of observations of each coral taxon by canyon, 

together with its depth range, habitat types and environmental conditions. To visualize the 

habitat and coral distribution data, two maps were constructed for each ROV dive; habitat maps 

comprised habitat data (extracted during video analysis) that was superimposed along the ROV 

dive track. Coral distribution maps were generated by overlaying coral locations along each 

ROV dive track. Both tracklines were overlaid on local bathymetry to provide topographic 

context for the data. These maps are presented as supplementary material (SM Fig. 1).  

Species richness of corals was low in both canyons with some species locally abundant 

(Table 2); however, richness of other sessile hard substrate fauna was higher, particularly for 

anemones and sponges. In addition to the large anemones counted as SFC, numerous smaller 

anemones often occurred in large patches of single morphotype (as defined  by size and color 

variations but most of these were not sampled and identified) on exposed hard substrates. 

Sponges were more diverse, with > 30 different morphotypes of hexactinellid and demosponges 

recorded during video analysis.   

Octocoral species that were observed in both canyons included the gorgonians (Order 

Alcyonacea) Paragorgia arborea (Fig. 3A) Primnoa resedaeformis (Fig. 3B) Anthothela 

grandiflora (Fig. 3C), Paramuricea placomus (Fig. 3D), as well as the soft corals (Order 



Alcyonacea) Duva florida (Fig. 3E) and Anthomastus sp. (Fig. 3F).  Colonies attributed to A. 

grandiflora may include a cryptic species and possibly a cryptic genus (Lawler et al., 2016); 

however, since it is not possible to distinguish between these taxa visually, A. grandiflora will be 

used to represent this taxonomic complex. The small, yellow gorgonian Acanthogorgia aspera 

(Fig. 3G) was common in Norfolk Canyon, but was not observed in Baltimore Canyon.  Bamboo 

corals (Gorgonacea, Isididae) (Fig. 3H) were observed infrequently in the canyon habitats, but 

large numbers of the soft-sediment bamboo coral Acanella arbuscula (Fig. 3I) plus some sea 

pens (Order Pennatulacea) were collected in five deep trawls  (1576-1694 m) conducted in 

Norfolk Canyon.   

Hexacoral taxa that were observed in both canyons included stony corals such as Lophelia 

pertusa (Fig. 4A) and the cup corals, Javania sp. and Desmophyllum dianthus (Order 

Scleractinia) (Fig. 4B, C), a yellow zoanthid (Order Zoantharia) (Fig. 4D), and large anemones 

(Order Actinaria) (Fig. 4E-G).  The scleractinians Solenosmilia variabilis and Flabellum 

alabastrum (Fig. 4H, I), and black corals (Order Antipatharia), such as Telopathes magna (Fig. 

4J), were only found in the deeper areas of Norfolk Canyon (> 956 m) and were not observed in 

Baltimore Canyon, possibly because of the limited number of deep dives (three > 800 m) 

conducted there. The distribution of coral species collected with the ROV within Baltimore 

Canyon is presented in Figure 5A, B and within Norfolk Canyon in Figure 6A, B. Soft-sediment 

cup corals were also collected using otter trawls from near the head of  Baltimore Canyon at 

~270 m depth (Dasmosmilia lymani) and from Norfolk Canyon at 1500 m depth (Flabellum 

alabastrum).   

Both octocorals and hexacorals were observed predominantly on walls and steep slopes and 

on large boulders of rock or consolidated sediment. Colonies of the gorgonian Paramuricea 



placomus however, were observed in one location in each canyon on flat pavement with 

sediment cover (Table 2). On occasion, large amounts of apparently suitable habitat such as steep 

rocky walls were observed, but with very few corals (ROV-2012-NF-17; SM Fig. 1).  Some of 

the habitat maps indicate high SFC cover, but had no octocorals or stony corals; these areas were 

dominated by large anemones (Order Actinaria) such as Bolocera tunediae, Actinioscyphia sp. or 

tube-dwelling anemones (order Ceriantharia). Areas dominated by large anemones occurred 

frequently in both Baltimore Canyon (SM Fig. 1, ROV-2012-NF-02, 13, 15, 16) and Norfolk 

Canyon (SM Fig. 1, ROV-2013-RB-686, 688, 691).  The common gorgonians P. arborea, P. 

resedaeformis, A. grandiflora, A. aspera, (Table 2), and Parazoanthidae (which grows over 

gorgonian colonies) were all found in a wide range of hard substrate habitats (Table 2), whereas 

other species were found under more restricted conditions; for example L. pertusa was observed 

only on steep walls within a depth range of 374-424 m (Table 2), and S. variabilis was only 

observed deeper than 1250 m.  

The number of observations per hour of ROV transect time was calculated for each octocoral 

and hexacoral taxa documented during video analysis of each canyon (Fig. 7 and 8).  The most 

common species overall was Desmophyllum dianthus, with > 34,000 records; however, most (> 

30,000) of these were from one long (~2.5 km) wall in Norfolk Canyon  between 1190 m and 

1390 m depth (SM Fig 1. ROV-2013-RB-685).  A steep wall on the western flank of Baltimore 

Canyon also had several clusters of this cup coral (SM Fig. 1, ROV-2012-NF-17, 18), but 

D. dianthus was generally observed in groups of 1-3 individuals.  Of the gorgonians, P. arborea 

was the most common in both canyons, although more were observed in Baltimore than in 

Norfolk Canyon.  These colonies were also by far the largest of the corals observed, often 

reaching over 2 m in height and width.  The soft coral, Duva florida was locally very abundant in 



both canyons, but was not observed frequently, although the habitats where they were found 

were similar to those for the other gorgonians (Table 2).   

Octocorals included in the statistical analyses were Paragorgia arborea, Primnoa 

resedaeformis, Paramuricea placomus, Anthothela grandiflora, Acanthogorgia aspera and D. 

florida, and hexacorals included Lophelia pertusa, Desmophyllum dianthus, Solenosmilia 

variabilis, and Parazoanthidae.  A two-way analysis of similarity (ANOSIM) for ROV dives 

nested within canyons showed significant differences in distribution by canyon (R=0.123, p 

<0.05) and by dive (R=0.500, p <0.001). Multi-dimensional scaling (MDS) plots are shown for 

coral abundance by canyon (Fig. 9A) and by ROV dive number (Fig. 9B); in the latter figure, all 

the coral records from the deepest dive (ROV-2013-RB-685, 1257-1398 m) are clustered 

together with little overlap with other dives. The corals observed on this long steep wall included 

the only observations of S. variabilis and the black coral T. magna as well as extremely high 

numbers of D. dianthus. The ANOSIM was re-run excluding this atypical dive but the statistical 

outcome did not change; therefore these observations are not driving the statistical differences 

between canyons and among dives.   

A one-way ANOSIM showed significant differences in coral abundance by habitat type 

(R=0.125, p <0.001), with the greatest differences between the habitat extremes such as soft 

sediment and walls (R = 0.511, p< 0.001) and no significant differences (R = -0.031, p = 0.88) 

between habitat categories that were relatively similar such as sediment-rubble (SR) with < 50% 

hard substrate and rubble (R) with > 50% hard substrate. Figure 9C shows an MDS plot for coral 

abundance by habitat type.  

A Spearman Rank Correlation test showed significant correlations between temperature and 

salinity (ρ = 0.95) and between temperature and density (ρ = 0.99), so salinity and density were 



removed from further analysis (correlations among all variables are show in Table 3).  The BEST 

routine (Primer-E V6) applied to the environmental data and coral abundance similarity matrix 

(Bray-Curtis) showed that depth had the greatest correlation with coral distribution (ρ = 0.395), 

followed by depth and temperature combined (ρ = 0.378). Turbidity (ρ = 0.356), pH (ρ =0.332), 

or oxygen (ρ =0.317) in addition to temperature and depth showed decreasing correlations with 

coral abundance.  

Principal Component Analysis (PCA) on coral environmental data (Fig. 10) resulted in the 

highest coefficients for temperature and depth in PC1 (0.636, 0.515), followed by oxygen 

(0.492), pH (0.270) and turbidity (0.122). In PC2, the ranks of these variables were exactly 

reversed.  Together, PC1 and PC2 accounted for 79.7% of the variation.  The RELATE analysis 

showed a statistically significant relationship between environmental variables and coral 

abundance (ρ = 0.291, p = 0.001).  

 

3.2 Physical environment   

The average (±SD) and range of environmental data collected during all the ROV dives (SM 

Table 1) reflected only near-bottom conditions during the dives, and depth data are provided for 

reference.  Each variable showed depth related trends; temperature and salinity decreased and 

density increased with depth similarly for both canyons (Fig. 11A, B, C).  The relationship 

between depth and each of these variables was non-linear; beyond approximately 600 m depth, 

the curves flattened and there was less change with increasing depth.  Oxygen and pH generally 

increased with depth (Fig. 11D, E), but oxygen levels were generally lower in Norfolk Canyon 

than Baltimore at comparable depths.  Turbidity was variable for both canyons with highest 

turbidity at mid-depths (600-800 m), and consistently lower at depths >1000 m (Fig. 11F).  



Carbonate chemistry of water samples also reflected primarily near-bottom conditions; however 

midwater and near surface samples were collected with the CTD in both canyons (SM Table 2). 

Aragonite saturation state (ΩArag.) values ranged from 2.27 near the surface (~100 m) to 1.2 at the 

deepest point measured (1387 m).  Between 100 and 250 m depth, the ΩArag declined rapidly 

from ~2.3 to 1.6, then declined more slowly with depth to a minimum of ~1.2 (Fig. 12).  

 

4. Discussion  

The data from our study substantially increased the number of deep coral observations for the 

MAB region; these included new observations of Lophelia pertusa for Norfolk and Baltimore 

canyons (Brooke and Ross 2014) and new records of Solenosmilia variabilis and the black coral 

Telopathes magna for Norfolk Canyon. In addition to the deep coral communities, two methane 

seeps were documented in Baltimore Canyon (410-430 m) and Norfolk Canyon (1500-1600 m). 

Recent surveys have revealed an additional ~ 570 gas seepage sites along the western Atlantic 

margin, although few have been ground-truthed to date (Skarke et al., 2014; Quattrini et al., 

2015). Several colonies of P. arborea were observed on authigenic carbonate (a byproduct of 

bacterial metabolism of methane) at the Baltimore Canyon seep. These carbonates, while 

somewhat limited in area, can provide habitat for sessile benthic fauna in otherwise soft-

sediment environments.  

Surveys of steep canyon walls in the NE Atlantic revealed previously unknown aggregations 

of L. pertusa (Huvenne et al., 2011), and exploration of canyons in the northeastern US 

documented new deep coral communities and methane seeps (Quattrini et al., 2015). Such data 

illustrate that a modest number of visual surveys can yield large amounts of new information 

from poorly studied habitats. Although several range extensions have been reported, no new 



coral species (with the exception of the cryptic Anthothela) were identified during our study, 

indicating that the canyons, at least for these taxa,  provide habitat for a regional fauna, rather 

than providing unique niches for endemic species.  

Paragorgia arborea was the most abundant, widely distributed and largest of the gorgonians 

and exhibited several phenotypes (white, pink and red color morphs, robust and delicate 

branches).  Morphological differences were not genetically defined, as all Paragorgia 

phenotypes collected were verified as P. arborea using mitochondrial gene sequencing (Clostio 

and France, unpubl. data).  Color and branching structure variation also occurs in other species of 

deep corals; L. pertusa colonies may have heavily calcified or fragile branching patterns (Brooke 

and Schroeder 2007), and colonies from the eastern Atlantic often have orange pigmentation in 

their tissues. Coral pigments are created by different forms of carotenoids derived from diet 

(Elde et al., 2012), and can also be vertically transmitted through the eggs of pigmented colonies 

(Larsson et al., 2014).  The purpose of these pigments has not been resolved, but possibilities 

include anti-oxidant and antibiotic properties (Shnit-Orland et al., 2008; Elde et al., 2012) or they 

may confer a nutritional advantage (Neulinger et al., 2008). In the MAB canyons, all of the 

different P. arborea phenotypes were observed together with no clear distribution pattern; 

therefore, the selective benefits/costs (if any) of the different phenotypes are unclear and warrant 

further study.  Other common octocoral species that usually co-occurred with P. arborea were P. 

resedaeformis and A. grandiflora, which had similar habitat associations and ranges of depth and 

environmental conditions.  

Some species of octocorals (e.g., P. placomus and D. florida) were observed infrequently, 

but were locally highly abundant.  Most coral species were found on steep terrain with little or no 

sediment accumulation; however, a single patch of ~250 colonies of P. placomus was observed 



once in each canyon along the top of a flat rocky ledge with a sediment layer sufficiently thick in 

some places that the underlying hard substrate was invisible.  Most corals cannot tolerate chronic 

high sediment environments, as particles can clog feeding and respiration apparatus (Reigl 1995; 

Kelmo et al., 2003). Corals produce mucus in order to remove particles, and this energetically-

expensive process cannot be sustained over long periods (Dallmeyer et al., 1982).  Some species, 

such as L. pertusa, appear to have a moderately high tolerance to sediment (Brooke et al., 2009) 

and reduced oxygen levels (Dodds et al., 2007).  Colonies of P. placomus can also evidently 

tolerate chronic suspended sediment and/or episodic high sediment deposition, which may allow 

them to exploit habitats that other species cannot. This species is also found in areas with 

significant sediment cover in the deep Gulf of Maine (Watling and Auster 2005), and congeners 

P. biscaya are found in similar habitats in the deep Gulf of Mexico (Fisher et al., 2014). Flat 

sandy/rocky terraces were observed frequently in both canyons, but the very limited number of 

P. placomus observations implies the presence of a limiting factor (e.g., current speed, food, 

larval delivery) beyond habitat availability.  The soft coral D. florida occurred in few locations 

but in extremely high numbers; they were observed in similar habitats to other octocorals, 

i.e., rocky boulders or walls, so (as with P. placomus) it seems the distribution of D. florida, was 

also driven by factors other than habitat. 

Hexacorals (excluding anemones) were generally less abundant in both canyons than the 

octocorals, with two exceptions; a yellow Parazoanthus sp. that grows over dead (and possibly 

live) octocorals, and the cup coral D. diathus.  The zoanthid was observed on A. grandiflora, 

P. placomus and P. resedaeformis (but not P. arborea). The yellow zoanthids overgrowing P. 

placomus were identified as Corallizoanthus sp using gene sequence data. (Clostio and France, 

unpubl. data), but zoanthids collected from other octocorals were identified morphologically by 



J. Reimer as Parazoanthus sp. This taxon is currently being revised so  Reimer’s identification 

will be used here, with the understanding that future revisions may classify this genus as 

Corallizoanthus. The Parazoanthus sp. had often completely overgrown the ‘host’ octocoral 

skeleton, but it was also observed growing on partially-live colonies.  It is not clear whether the 

zoanthids are parasitic on live colonies or merely take advantage of dead skeleton as 

opportunistic substrate. These zoanthids were considerably more abundant in Norfolk Canyon 

than Baltimore Canyon. The abundance of P. placomus and P. resedaeformis was comparable 

between the two canyons, but there were more than twice as many A. grandiflora in Norfolk 

Canyon; therefore, the distribution of Parazoanthus sp. may be determined to some extent by the 

distribution of the ‘host’ species as well as the environmental tolerances of the zoanthid.  The 

extremely high numbers of D. dianthus in Norfolk Canyon are driven by observations made 

during a single ROV dive (J2-685).  A series of deep (~1200 m) vertical walls were heavily 

colonized by thousands of small D. dianthus, as well as S. variabilis and a new species of 

fileshell (Acesta cryptadelphe sp.nov,, Gagnon et al., 2015). This extreme D. dianthus abundance 

was only observed on these deep walls of Norfolk Canyon where the individuals were small with 

fragile skeletons; however a moderately high abundance (~170 individuals) was also observed on 

a steep wall in Baltimore Canyon at ~670 m, but calices were much more robust. In shallower 

habitats (< 500 m), this species occurred on different types of rocky habitat, as large heavily 

calcified single specimens or in small clusters and was generally uncommon.   

Environmental data used for correlations with coral distributions were collected during the 

ROV dives, and therefore do not necessarily reflect long term conditions; however, since the 

dives occurred over a two-week to one-month period, in two consecutive years and over a wide 

depth range, the data were considered useful for distributional analysis. These correlative 



statistics are useful, butmust be interpreted with caution, and more work is needed to understand 

the causal relationships between environment and species distributions.   

Coral abundances are most highly correlated with temperature and/or depth followed by pH, 

turbidity and oxygen. Depth and temperature have both been recognized as primary drivers of 

deep-sea coral distributions (Roberts et al., 2009; Baker et al., 2012) so this is not a surprising 

outcome. Some species however, have a wide tolerance to temperature, which could reduce the 

influence of temperature on their distribution. For example, L. pertusa can survive highly 

variable environments (Brooke et al., 2013) and has been observed in unusually warm conditions 

(up to 14
o
C) in the Mediterranean (Freiwald et al., 2009). Other research has indicated the 

importance of water mass density to L. pertusa (Dullo et al., 2008); in the northeastern Atlantic, 

living reefs were found between densities of 27.35 and 27.65 σθ, but L. pertusa colonies were 

observed in more dense waters (27.74-27.84 σθ) in Whittard Canyon, NE Atlantic (Huvenne et 

al., 2011) and over a wider density range (27.32-28.23) in Baltimore and Norfolk canyons.  

After depth and temperature, turbidity showed the highest correlation with coral abundance. 

Both of the canyons have  chronically high turbidity levels, but Baltimore Canyon has a 

persistent dense nepheloid layer along the thalweg between 300-800 m depth (Davies et al., 

unpubl. data). This phenomenon was observed during ROV dives and was also reported by 

Gardner (1989), which adds support for a consistent pattern of mid-canyon turbidity maxima. In 

contrast, Norfolk Canyon has smaller, separate turbidity layers between 400-1100 m depth and a 

more uniform sediment deposition pattern (Davies et al., unpubl. data). Ample evidence exists 

that high sediment loads have detrimental effects on stony corals, including reduced skeletal 

growth, reproductive capacity and lipid content as they shed sediment through the energetically 

costly processes of ciliary action and mucus production and, in extreme cases, corals can 



suffocate under sediment load (Dallmeyer et al., 1982; Wesseling et al., 1999; Kelmo et al., 

2003). Stony corals in the canyons were most frequently observed on steep walls or other areas 

with little or no sediment accumulation, and there were many more stony corals observed in 

Norfolk Canyon than Baltimore Canyon, especially D. dianthus and S. variabilis at the deeper 

sites where turbidity is low (Fig. 11F). This distribution could reflect low stony coral tolerance to 

sediment; however L. pertusa has shown high survival under chronic moderate sediment loads 

and even short term burial (Brooke et al., 2009), so turbidity alone may not explain the observed 

differences in stony coral abundance between the canyons, at least for L. pertusa.  

Another notable difference in coral distribution between the canyons is the very high 

abundance of P. arborea, in Baltimore Canyon (more than double the number observed in 

Norfolk Canyon), which has a depth range that coincides with the nepheloid layer. Paramuricea  

placomus was also found living in potentially high sediment environments on flat pavements in 

both canyons. Some species can therefore tolerate high turbidity, and may even benefit from it 

nutritionally. Stable isotope studies have shown that deep corals living in high sediment 

environments are consuming re-worked material such as older POM, whereas those living in 

current-swept conditions have access to fresher material and have a higher trophic level 

(Sherwood et al., 2008; Demopoulos et al., unpubl. data). Generally in the deep sea, deposition 

of organic material decreases with depth (Levin and Gooday 2003; Rex and Etter 2010); 

however, increased organic material and high turbidity are characteristic of submarine canyons 

globally (Durrieu de Madron 1994; de Stigter et al., 2007; Huvenne et al., 2011), and are 

important drivers of benthic communities (Ingels et al., 2009; De Leo et al., 2010; Rex and Etter 

2010).  



As depth increases, ΩArag decreases (Feely et al., 2004), potentially making production of 

calcified skeletons more energetically costly (Fabry 2008). Most of the corals in the current 

study were found in ΩArag > 1.35, which is within the currently known limits for deep-sea corals 

such as L. pertusa (Lunden et al., 2012). The deepest dive off Norfolk Canyon (1257-1398) was 

dominated by a steep wall, densely covered in thousands of small fragile D. dianthus. At this 

depth the ΩArag was ~ 1.2 and in shallower areas, where D. dianthus was heavily calcified (~400-

700 m), the ΩArag was ~1.5; however, it seems unlikely that this difference would explain the 

great differences in skeletal structure (particularly when both locations have ΩArag > 1). Extreme 

high abundances (~1500 individuals/m
2 

in the Chilean fjords; Forsterra and Haussermann 2003) 

have been observed elsewhere for this species under low ΩArag (Fillinger and Richter 2013). It 

seems therefore, that under certain circumstances D. dianthus shifts from small robust calices to 

very large numbers of fragile individuals. The reasons for this are not clear, but it is possible that 

the availability of large areas of good habitat (steep wall with little sedimentation) in the deep 

part of Norfolk Canyon allowed for high recruitment, but growth rates were reduced by other 

factors such as low temperatures, reduced food and competition for space. Differences in habitat 

availability and conditions between deep and shallower areas potentially create the different 

observed distributions and size structure in this species. 

The deep coral reefs in the South Atlantic Bight (SAB) and Gulf of Mexico (GOM) are 

constructed by the stony corals Lophelia pertusa and Enallopsammia profunda, which can create 

large bioherms of consolidated coral rubble with live coral on the flanks and peaks.  These deep 

reefs (and other abundant hard-substrates in the region) have a high diversity of gorgonians, 

antipatharians, sponges and other mobile and sessile invertebrates (Brooke and Schroeder 2007, 

Ross and Nizinski 2007).  The deep corals that colonize the numerous seamounts and canyons of 



the northeastern US are primarily octocorals with some species of black corals and stony corals, 

but the overall coral species diversity is low (Packer et al., 2007).  The western Atlantic can be 

divided into two biogeographic provinces: the Warm Temperate Carolinian Province south of 

Cape Hatteras, NC and the Western Atlantic Boreal Region that extends from Cape Hatteras 

north to Labrador, Canada (Briggs 1974).  There has, however, been disagreement over the 

geographic extent of the boreal region, as many of the fauna from the MAB belong to the 

southern Carolinian province. A recent realignment of marine biogeographic provinces based on 

fishes (Briggs and Bowen 2012) clearly places the MAB in the northern boreal region.  The deep 

coral fauna from the canyons also more closely resembles those of the northeastern US, than the 

SAB. The three most frequently observed species of octocorals in the MAB are also common in 

the northeastern US but are either absent (P. resedaeformis, A. grandiflora) or very rare (P. 

arborea) in the SAB and GOM (Brooke and Schroeder 2007; Ross and Nizinski 2007).  Other 

species such as L. pertusa, S. variabilis and D. dianthus have broad distributions and are found 

throughout the North Atlantic.  One exception is the gorgonian Acanthogorgia aspera, which 

was frequently observed in Norfolk Canyon.  This species had not been documented north of 

Cape Hatteras prior to this study (Watling and Auster 2005) so it is more allied to the Carolinian 

province; its congener A. armata occurs in the northern boreal province. 

Various forms of debris were observed on almost every ROV dive, primarily plastic bags and 

lost fishing gear (traps, lines, nets). Although the canyon axes and walls are not targeted by 

regional fisheries due to their rugged topography and unpredictable currents, derelict fishing gear 

was often observed tangled in rocky outcrops, particularly near the canyon heads.  In June 2015, 

the Mid-Atlantic Fisheries Management Council (MAFMC) proposed to create Deep-Sea Coral 

Zones to protect ~98,420 km
2
 of canyon and slope habitats to bottom-tending fishing gear.  This 



proposal is currently under consideration at the U.S. Department of Commerce, and if approved, 

will provide legislation to preserve these fragile and valuable resources. Data from this study and 

others (funded by NOAA) will assist U.S. Federal agencies in the management and conservation 

of canyon ecosystems.  

  

5. Conclusions 

This multi-disciplinary study greatly increased our understanding of the complex physical 

conditions in submarine canyons of the MAB, and their influence on biological communities. 

Observations of different coral species correlated with specific habitat types and environmental 

conditions, although these correlations do not fully explain the patchy or limited distributions of 

some species. Future studies that integrate physical and ecological approaches are needed to 

understand the complex interactions that drive the distribution and population structure of 

different species. Such information is needed to refine deep-sea coral predictive habitat models, 

which are useful management tools for data-poor ecosystems. Exploration and research of deep-

sea ecosystems are challenging and expensive; however these efforts not only advance scientific 

knowledge, but also inform management and generate public empathy to protect these valuable 

resources.  
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Figure 1. Map of four of the major submarine canyons off the mid-Atlantic including Baltimore 

and Norfolk canyons which were the focus of this study. Shaded area represents coverage by 

multibeam sonar. 

 

Figure 2. A-F Examples of different canyon habitat types A) S: Soft sediment with no hard 

substrate visible (goosefish Lophius americanus is visible in the image), B) SR: Soft sediment 

with small pieces of rock or emergent hard substrate (note cerianthid anemones and sponges) C) 

R: Isolated rock, rubble > 50% cover of hard substrate D) PB: Large areas of hard substrate >50% 

cover with attached sponges and anemones, E) B: Large boulder of rock or consolidated 

sediment with attached octocorals and anemones, F) W: Walls and steep slopes. Red squat 

lobsters Eumunida picta (Eumunidae) are visible in B and D.  

 

Figure 3. Images of octocorals observed in Baltimore and Norfolk canyons. A) Paragorgia 

arborea, B) Primnoa resedaeformis, C) Anthothela grandiflora, D) Paramuricea placomus, E) 

Soft coral Duva florida, F) Anthomastus sp., G) Acanthogorgia armata, H) Bamboo coral 

Keratoisis cf grayi,  I) Acanella arbuscula and sea pen Funiculina quadrangularis 

  



 

Figure 4.  Images of hexacorals observed in Baltimore and Norfolk canyons: A) Lophelia 

pertusa, B) Javania cf cailleti, C) Desmophyllum dianthus with Brisingid asteroid, Acesta sp. 

bivalve and octopus, D) Zoanthids (Parazoanthus sp.) overgrowing dead octocoral skeleton, E) 

Actinoscyphia sp., F) Bolocera tunediae, G) Cerianthid anemones, H) Solenosmilia variabilis 

with D. dianthus in top right corner, I) Flabellum alabastrum,  J) Telopathes magna with a Ghost 

Catshark (Apristurus manis) swimming next to the colony.  

 

Figure 5. Distribution of A) Baltimore Canyon octocorals, B) Baltimore Canyon hexacorals 

observed during ROV dives 

 

Figure 6. Distribution of A) Norfolk Canyon octocorals, B) Norfolk Canyon hexacorals 

observed during ROV dives 

 

Figure 7. Number of octocoral observations per hour of ROV transects in Baltimore and Norfolk 

canyons 

 

Figure 8. Number of hexacoral observations per hour of ROV transects in Baltimore and 

Norfolk canyons 

 

Figure 9. Multi-dimensional scaling plots on fourth root transformed coral abundance data using 

a Bray-Curtis similarity matrix. A) by canyon B) by dive and C) by habitat type 

 



Figure 10. PCA plot of environmental variables for all corals combined    

 

Figure 11. Environmental data taken during ROV dives A) Temperature (
o
C), B) Salinity,  

Density (σθ, kg m
-3

), D) Dissolved oxygen (ml/L), E) pH, F) Turbidity (formazin turbidity units). 

Water column data has been removed 

 

Figure 12. Aragonite saturation state data (ΩArag.) for Baltimore and Norfolk canyons, compiled 

from water samples taken during ROV dives and CTD casts 

 

  



 

Table 1. Codes used in habitat characterization for ROV dives conducted in Norfolk and 

Baltimore canyons 

 

Table 2. Number of observations (extracted from ROV video transects), depth range, habitat 

type and environmental conditions associated with corals in A) Baltimore and B) Norfolk 

canyons. See Table 1 for habitat type descriptions 

 

Table 3. Correlations between environmental variables observed during ROV dives in both 

canyons (Spearman rank correlation coefficients, ρ). Significant correlations * occurred between 

temperature and both salinity and density.  

  



 

Table 1.  

Habitat Type 

S Sediment with no hard substrate visible.    

SR Sediment with pieces of rock or emergent hard substrate (EHS); < 50% hard substrate.  

R Isolated rock, rubble, EHS; > 50% cover of hard substrate.   

PB Large areas of EHS, consolidated sediment or hard pavement; >50% hard substrate.  

B Large boulder of rock or consolidated sediment.  

W Walls and steep slopes (rock or consolidated sediment). 

Percentage cover categories 

1 0 

2 <25% cover 

3 25-75% cover 

4 >75% cover 

Type of Structure-Forming Cnidarians (SFC) 

LC Large corals: Paragorgia, Primnoa, Anthothela, Paramuricea, Lophelia, Solenosmilia 

LA Large anemones and small corals: Cerianthids, Actinoscyphia, Bolocera, cup corals 

M Mix of TC and LA 
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Table 3.  

 
Depth (m) Temp. (

o
C) Salinity 

O2 

(ml/L) 
pH 

Density 

σθ, kg m
-3

 

Temp. (
o
C) -0.6628      

Salinity -0.5526   0.9494*     

O2 (ml/L)  0.2835 -0.6960 -0.6484    

pH  0.4331 -0.3346 -0.2684 -0.1284   

Density (σθ 

kg/m
3
) 

 0.6467 -0.9889* -0.9011 0.6795 0.3390  

Turbidity (FTU) -0.2740 -0.1876 -0.2059  0.5106 -0.2830  0.1895 
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