343 research outputs found

    Autosomal-dominant familial hematuria with retinal arteriolar tortuosity and contractures: A novel syndrome

    Get PDF
    Autosomal-dominant familial hematuria with retinal arteriolar tortuosity and contractures: A novel syndrome.BackgroundAutosomal-dominant forms of hematuria have been mostly related to mutations in the COL4A3/COL4A4 genes. Patients with thin basement membrane (BM) disease do not have extrarenal manifestations, while those with Alport syndrome often present with hearing loss, anterior lenticonus, and dot-and-fleck retinopathy.MethodsWe performed a phenotypic study and a candidate gene approach in a four-generation family presenting with autosomal-dominant hematuria associated with extrarenal manifestations. Renal biopsy was analyzed for determination of BM thickness and expression of chains of type IV collagen. Linkage to 18 candidate genes/loci was investigated using polymorphic microsatellite markers.ResultsIn all affected patients, hematuria without proteinuria was associated with muscular contractures and retinal arterial tortuosities responsible for retinal hemorrhages. Cardiac arrythmia, Raynaud phenomena, and brain MRI abnormalities were also observed. Despite the presence of red cells in tubule sections, no glomerular abnormalities were found by electron microscopy. Expression of type IV collagen chains and glomerular BM thickness was normal. We searched for a molecular defect affecting either BM or angiogenesis. Linkage analyses of genes encoding BM components (COL4A3/COL4A4, COL6A1, COL6A2, COL6A3, FBLN1), and angiogenic factors or their receptors (VHL, ANPT1, ANPT2, TIE, TEK, NOTCH2, NOTCH3, NOTCH4, DLL4, JAG1, JAG2) and of the facio-sapulo-humeral dystrophy and 3q21 loci failed to show segregation of the disease with those gene loci.ConclusionWe have identified a new inherited hematuria syndrome associated with retinal vessel tortuosities and contractures. We recommend performing a fundus examination in patients with familial hematuria and episodes of visual impairment, as well as a urinary analysis in patients with retinal arterial tortuosity or congenital muscular contractures

    Epidemiology of histologically proven Glomerulonephritis in Africa: A systematic review and meta-analysis

    Get PDF
    Background and aim: Glomerulonephritis (GN) is a leading cause of end-stage renal disease (ESRD) in Africa. Data on epidemiology and outcomes of glomerular diseases from Africa is still limited. We conducted a systematic review on the epidemiology of histologically proven glomerular diseases in Africa between 1980 and 2014. Materials and methods We searched literature using PubMed, AfricaWide, the Cumulative Index to Nursing and Allied Health Literature on EBSCO Host, Scopus, African Journals online databases, and the African Index Medicus, for relevant studies. The review was conducted using standard methods and frameworks using only biopsy-confirmed data. RESULTS: Twenty four (24) studies comprising 12,093 reported biopsies from 13 countries were included in this analysis. The median number of biopsies per study was 127.0 (50-4436), most of the studies (70.0%) originated from North Africa and the number of performed kidney biopsies varied from 5.2 to 617 biopsies/year. Nephrotic syndrome was the commonest indication of renal biopsy. The frequency of reported primary pathologic patterns included, minimal change disease (MCD); 16.5% (95%CI: 11.2-22.6), focal segmental glomerulosclerosis (FSGS); 15.9% (11.3-21.1), mesangiocapillary GN (MCGN); 11.8% (9.2-14.6), crescentic GN; 2.0% (0.9-3.5) and IgA nephropathy 2.8% (1.3-4.9). Glomerular diseases related to hepatitis B and systemic lupus erythematosus had the highest prevalence among assessed secondary diseases: 8.4% (2.0-18.4) and 7.7% (4.5-11.7) respectively. There was no evidence of publication bias and regional differences were seen mostly for secondary GNs. CONCLUSIONS: Glomerular diseases remain poorly characterized in sub-Saharan Africa due to declining renal biopsy rates and consequent paucity of data on pathologic patterns of key renal diseases. Development of renal biopsy registries in Africa is likely to enable adequate characterization of the prevalence and patterns of glomerular diseases; this could have a positive impact on chronic kidney disease evaluation and treatment in the African continent since most glomerulopathies are amenable to treatment

    Acute metabolic acidosis in a GLUT2-deficient patient with Fanconi-Bickel syndrome: new pathophysiology insights

    Get PDF
    Fanconi-Bickel syndrome is a rare autosomal-recessive disorder caused by mutations in the SLC2A2 gene coding for the glucose transporter protein 2 (GLUT2). Major manifestations include hepatomegaly, glucose intolerance, post-prandial hypoglycaemia and renal disease that usually presents as proximal tubular acidosis associated with proximal tubule dysfunction (renal Fanconi syndrome). We report a patient harbouring a homozygous mutation of SLC2A2 who presented a dramatic exacerbation of metabolic acidosis in the context of a viral infection, owing to both ketosis and major urinary bicarbonate loss. The kidney biopsy revealed nuclear and cytoplasmic accumulation of glycogen in proximal tubule cells, a lack of expression of GLUT2, and major defects of key proteins of the proximal tubule such as megalin, cubilin and the B2 subunit of H+-ATPase. These profound alterations of the transport systems most likely contributed to proximal tubule alterations and profound bicarbonate los

    Serum Protein Signatures Using Aptamer-Based Proteomics for Minimal Change Disease and Membranous Nephropathy

    Get PDF
    Introduction: Minimal change disease (MCD) and membranous nephropathy (MN) are glomerular diseases (glomerulonephritis [GN]) that present with the nephrotic syndrome. Although circulating PLA2R antibodies have been validated as a biomarker for MN, the diagnosis of MCD and PLA2R-negative MN still relies on the results of kidney biopsy or empirical corticosteroids in children. We aimed to identify serum protein biomarker signatures associated with MCD and MN pathogenesis using aptamer-based proteomics. Methods: Quantitative SOMAscan proteomics was applied to the serum of adult patients with MCD (n = 15) and MN(n = 37) and healthy controls (n = 20). Associations between the 1305proteins detected with SOMAscan were assessed using multiple statistical tests, expression pattern analysis, and systems biology analysis. Results: A total of 208 and 244 proteins were identified that differentiated MCD and MN, respectively, with high statistical significance from the healthy controls (Benjamin-Hochberg [BH] P \u3c 0.0001). There were 157 proteins that discriminated MN from MCD (BH P \u3c 0.05). In MCD, 65 proteins were differentially expressed as compared with MN and healthy controls. When compared with MCD and healthy controls, 44 discriminatory proteins were specifically linked to MN. Systems biology analysis of these signatures identified cell death and inflammation as key pathways differentiating MN from MCD and healthy controls. Dysregulation of fatty acid metabolism pathways was confirmed in both MN and MCD as compared with the healthy subjects. Conclusion: SOMAscan represents a promising proteomic platform for biomarker development in GN. Validation of a greater number of discovery biomarkers in larger patient cohorts is needed before these data can be translated for clinical care

    High glucose up-regulates ENaC and SGK1 expression in HCD-cells

    Get PDF
    Background/Aim: Diabetic nephropathy is associated with progressive renal damage, leading to impaired function and end-stage renal failure. Secondary hypertension stems from a deranged ability of cells within the kidney to resolve and appropriately regulate sodium resorption in response to hyperglycaemia. However, the mechanisms by which glucose alters sodium re-uptake have not been fully characterised. Methods: Here we present RT-PCR, western blot and immunocytochemistry data confirming mRNA and protein expression of the serum and glucocorticoid inducible kinase (SGK1) and the a conducting subunit of the epithelial sodium channel (ENaC) in a model in vitro system of the human cortical collecting duct (HCD). We examined changes in expression of these elements in response to glucose challenge, designed to mimic hyperglycaemia associated with type 2 diabetes mellitus. Changes in Na+ concentration were assessed using single-cell microfluorimetry. Results: Incubation with glucose, the Ca2+-ionophore ionomycin and the cytokine TGF-beta 1 were all found to evoke significant and time-dependent increases in both SGK1 and alpha ENaC protein expression. These molecular changes were correlated to an increase in Na+-uptake at the single-cell level. Conclusion: Together these data offer a potential explanation for glucose-evoked Na+-resorption and a potential contributory role of SGK1 and ENaCs in development of secondary hypertension, commonly linked to diabetic nephropathy

    Both Monoclonal and Polyclonal Immunoglobulin Contingents Mediate Complement Activation in Monoclonal Gammopathy Associated-C3 Glomerulopathy

    Get PDF
    C3 glomerulopathy (C3G) results from acquired or genetic abnormalities in the complement alternative pathway (AP). C3G with monoclonal immunoglobulin (MIg-C3G) was recently included in the spectrum of “monoclonal gammopathy of renal significance.” However, mechanisms of complement dysregulation in MIg-C3G are not described and the pathogenic effect of the monoclonal immunoglobulin is not understood. The purpose of this study was to investigate the mechanisms of complement dysregulation in a cohort of 41 patients with MIg-C3G. Low C3 level and elevated sC5b-9, both biomarkers of C3 and C5 convertase activation, were present in 44 and 78% of patients, respectively. Rare pathogenic variants were identified in 2/28 (7%) tested patients suggesting that the disease is acquired in a large majority of patients. Anti-complement auto-antibodies were found in 20/41 (49%) patients, including anti-FH (17%), anti-CR1 (27%), anti-FI (5%) auto-antibodies, and C3 Nephritic Factor (7%) and were polyclonal in 77% of patients. Using cofactor assay, the regulation of the AP was altered in presence of purified IgG from 3/9 and 4/7 patients with anti-FH or anti-CR1 antibodies respectively. By using fluid and solid phase AP activation, we showed that total purified IgG of 22/34 (65%) MIg-C3G patients were able to enhance C3 convertase activity. In five documented cases, we showed that the C3 convertase enhancement was mostly due to the monoclonal immunoglobulin, thus paving the way for a new mechanism of complement dysregulation in C3G. All together the results highlight the contribution of both polyclonal and monoclonal Ig in MIg-C3G. They provide direct insights to treatment approaches and opened up a potential way to a personalized therapeutic strategy based on chemotherapy adapted to the B cell clone or immunosuppressive therapy

    A new classification of cardio-oncology syndromes

    Get PDF
    Abstract Increasing evidence suggests a multifaceted relationship exists between cancer and cardiovascular disease (CVD). Here, we introduce a 5-tier classification system to categorize cardio-oncology syndromes (COS) that represent the aspects of the relationship between cancer and CVD. COS Type I is characterized by mechanisms whereby the abrupt onset or progression of cancer can lead to cardiovascular dysfunction. COS Type II includes the mechanisms by which cancer therapies can result in acute or chronic CVD. COS Type III is characterized by the pro-oncogenic environment created by the release of cardiokines and high oxidative stress in patients with cardiovascular dysfunction. COS Type IV is comprised of CVD therapies and diagnostic procedures which have been associated with promoting or unmasking cancer. COS Type V is characterized by factors causing systemic and genetic predisposition to both CVD and cancer. The development of this framework may allow for an increased facilitation of cancer care while optimizing cardiovascular health through focused treatment targeting the COS type
    corecore