206 research outputs found
Quantitative stray field imaging of a magnetic vortex core
Thin-film ferromagnetic disks present a vortex spin structure whose dynamics,
added to the small size (~10 nm) of their core, earned them intensive study.
Here we use a scanning nitrogen-vacancy (NV) center microscope to
quantitatively map the stray magnetic field above a 1 micron-diameter disk of
permalloy, unambiguously revealing the vortex core. Analysis of both
probe-to-sample distance and tip motion effects through stroboscopic
measurements, allows us to compare directly our quantitative images to
micromagnetic simulations of an ideal structure. Slight perturbations with
respect to the perfect vortex structure are clearly detected either due to an
applied in-plane magnetic field or imperfections of the magnetic structures.
This work demonstrates the potential of scanning NV microscopy to map tiny
stray field variations from nanostructures, providing a nanoscale,
non-perturbative detection of their magnetic texture.Comment: 5 pages, 4 figure
Nanoscale magnetic field mapping with a single spin scanning probe magnetometer
We demonstrate quantitative magnetic field mapping with nanoscale resolution,
by applying a lock-in technique on the electron spin resonance frequency of a
single nitrogen-vacancy defect placed at the apex of an atomic force microscope
tip. In addition, we report an all-optical magnetic imaging technique which is
sensitive to large off-axis magnetic fields, thus extending the operation range
of diamond-based magnetometry. Both techniques are illustrated by using a
magnetic hard disk as a test sample. Owing to the non-perturbing and
quantitative nature of the magnetic probe, this work should open up numerous
perspectives in nanomagnetism and spintronics
Growth and magnetism of self-organized arrays of Fe(110) wires formed by deposition on kinetically grooved W(110)
Homoepitaxy of W(110) and Mo(110) is performed in a kinetically-limited
regime to yield a nanotemplate in the form of a uniaxial array of hills and
grooves aligned along the [001] direction. The topography and organization of
the grooves were studied with RHEED and STM. The nanofacets, of type {210}, are
tilted 18° away from (110). The lateral period could be varied from 4 to
12nm by tuning the deposition temperature. Magnetic nanowires were formed in
the grooves by deposition of Fe at 150°C on such templates. Fe/W wires
display an easy axis along [001] and a mean blocking temperature Tb=100KComment: Proceedings of ECOSS 2006 (Paris
The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry
The recent observation of current-induced domain wall (DW) motion with large
velocity in ultrathin magnetic wires has opened new opportunities for
spintronic devices. However, there is still no consensus on the underlying
mechanisms of DW motion. Key to this debate is the DW structure, which can be
of Bloch or N\'eel type, and dramatically affects the efficiency of the
different proposed mechanisms. To date, most experiments aiming to address this
question have relied on deducing the DW structure and chirality from its motion
under additional in-plane applied fields, which is indirect and involves strong
assumptions on its dynamics. Here we introduce a general method enabling
direct, in situ, determination of the DW structure in ultrathin ferromagnets.
It relies on local measurements of the stray field distribution above the DW
using a scanning nanomagnetometer based on the Nitrogen-Vacancy defect in
diamond. We first apply the method to a Ta/Co40Fe40B20(1 nm)/MgO magnetic wire
and find clear signature of pure Bloch DWs. In contrast, we observe left-handed
N\'eel DWs in a Pt/Co(0.6 nm)/AlOx wire, providing direct evidence for the
presence of a sizable Dzyaloshinskii-Moriya interaction (DMI) at the Pt/Co
interface. This method offers a new path for exploring interfacial DMI in
ultrathin ferromagnets and elucidating the physics of DW motion under current.Comment: Main text and Supplementary Information, 33 pages and 12 figure
Measuring the Boltzmann constant by mid-infrared laser spectroscopy of ammonia
We report on our ongoing effort to measure the Boltzmann constant,
using the Doppler broadening technique on ammonia. This paper presents some of
the improvements made to the mid-infrared spectrometer including the use of a
phase-stabilized quantum cascade laser, a lineshape analysis based on a refined
physical model and an improved fitting program 2 increasing the confidence in
our estimates of the relevant molecular parameters, and a first evaluation of
the saturation parameter and its impact on the measurement of k B. A summary of
the systematic effects contributing to the measurement is given and the optimal
experimental conditions for mitigating those effects in order to reach a
competitive measurement of at a part per million accuracy level are
outlined
Field-free deterministic ultra fast creation of skyrmions by spin orbit torques
Magnetic skyrmions are currently the most promising option to realize
current-driven magnetic shift registers. A variety of concepts to create
skyrmions were proposed and demonstrated. However, none of the reported
experiments show controlled creation of single skyrmions using integrated
designs. Here, we demonstrate that skyrmions can be generated deterministically
on subnanosecond timescales in magnetic racetracks at artificial or natural
defects using spin orbit torque (SOT) pulses. The mechanism is largely similar
to SOT-induced switching of uniformly magnetized elements, but due to the
effect of the Dzyaloshinskii-Moriya interaction (DMI), external fields are not
required. Our observations provide a simple and reliable means for skyrmion
writing that can be readily integrated into racetrack devices
Room temperature chiral magnetic skyrmion in ultrathin magnetic nanostructures
Magnetic skyrmions are chiral spin structures with a whirling configuration.
Their topological properties, nanometer size and the fact that they can be
moved by small current densities have opened a new paradigm for the
manipulation of magnetisation at the nanoscale. To date, chiral skyrmion
structures have been experimentally demonstrated only in bulk materials and in
epitaxial ultrathin films and under external magnetic field or at low
temperature. Here, we report on the observation of stable skyrmions in
sputtered ultrathin Pt/Co/MgO nanostructures, at room temperature and zero
applied magnetic field. We use high lateral resolution X-ray magnetic circular
dichroism microscopy to image their chiral N\'eel internal structure which we
explain as due to the large strength of the Dzyaloshinskii-Moriya interaction
as revealed by spin wave spectroscopy measurements. Our results are
substantiated by micromagnetic simulations and numerical models, which allow
the identification of the physical mechanisms governing the size and stability
of the skyrmions.Comment: Submitted version. Extended version to appear in Nature
Nanotechnolog
Uniform magnetic properties for an ultrahigh-density lattice of noninteracting Co nanostructures
We report on the magnetic properties of two-dimensional Co nanoparticles arranged in macroscopically phase-coherent superlattices created by self-assembly on Au(788). Our particles have a density of 26 Tera/in(2) (1 Tera=10(12)), are monodomain, and have uniaxial out-of-plane anisotropy. The distribution of the magnetic anisotropy energies has a half width at half maximum of 17%, a factor of 2 more narrow than the best results reported for superlattices of three-dimensional nanoparticles. Our data show the absence of magnetic interactions between the particles. Co/Au(788) thus constitutes an ideal model system to explore the ultimate density limit of magnetic recording
Emergent Phenomena Induced by Spin-Orbit Coupling at Surfaces and Interfaces
Spin-orbit coupling (SOC) describes the relativistic interaction between the
spin and momentum degrees of freedom of electrons, and is central to the rich
phenomena observed in condensed matter systems. In recent years, new phases of
matter have emerged from the interplay between SOC and low dimensionality, such
as chiral spin textures and spin-polarized surface and interface states. These
low-dimensional SOC-based realizations are typically robust and can be
exploited at room temperature. Here we discuss SOC as a means of producing such
fundamentally new physical phenomena in thin films and heterostructures. We put
into context the technological promise of these material classes for developing
spin-based device applications at room temperature
Inertia-driven resonant excitation of a magnetic skyrmion
Topological spin structures such as magnetic domain walls, vortices, and skyrmions, have been receiving great interest because of their high potential application in various spintronic devices. To utilize them in the future spintronic devices, it is first necessary to understand the dynamics of the topological spin structures. Since inertial effect plays a crucial role in the dynamics of a particle, understanding the inertial effect of topological spin structures is an important task. Here, we report that a strong inertial effect appears steadily when a skyrmion is driven by an oscillating spin-Hall-spintorque (SHST). We find that the skyrmion exhibits an inertia-driven hypocycloid-type trajectory when it is excited by the oscillating SHST. This motion has not been achieved by an oscillating magnetic field, which only excites the breathing mode without the inertial effect. The distinct inertial effect can be explained in terms of a spin wave excitation in the skyrmion boundary which is induced by the non-uniform SHST. Furthermore, the inertia-driven resonant excitation provides a way of experimentally estimating the inertial mass of the skyrmion. Our results therefore pave the way for the development of skyrmion-based device applications
- …