6 research outputs found
Multiple-input subject-specific modeling of plasma glucose concentration for feedforward control
The ability to accurately develop subject-specific, input causation models, for blood glucose concentration (BGC) for large input sets can have a significant impact on tightening control for insulin dependent diabetes. More specifically, for Type 1 diabetics (T1Ds), it can lead to an effective artificial pancreas (i.e., an automatic control system that delivers exogenous insulin) under extreme changes in critical disturbances. These disturbances include food consumption, activity variations, and physiological stress changes. Thus, this paper presents a free-living, outpatient, multiple-input, modeling method for BGC with strong causation attributes that is stable and guards against overfitting to provide an e ffective modeling approach for feedforward control (FFC). This approach is a Wiener block-oriented methodology, which has unique attributes for meeting critical requirements for effective, long-term, FFC
Dynamic Predictive Modeling Under Measured and Unmeasured Continuous-Time Stochastic Input Behavior
Many input variables of chemical processes have a continuous-time stochastic (CTS) behavior. The nature of these variables is a persistent, time-correlated variation that manifests as process variation as the variables deviate in time from their nominal levels. This work introduces methodologies in process identification for improving the modeling of process outputs by exploiting CTS input modeling under cases where the input is measured and unmeasured. In the measured input case, the output variable is measured offline, infrequently, and at a varying sampling rate. A method is proposed for estimating CTS parameters from the measured input by exploiting statistical properties of its CTS model. The proposed approach is evaluated based on both output accuracy and predictive ability several steps ahead of the current input measurement. Two parameter estimation techniques are proposed when the input is unmeasured. The first is a derivative-free approach that uses sample moments and analytical expressions for population moments to estimate the CTS model parameters. The second exploits the CTS input model and uses the analytical solution of the dynamic model to estimate these parameters. The predictive ability of the latter approach is evaluated in the same way as the measured input case. All of the data in this work were artificially generated under the probabilistic CTS model.Reprinted (adapted) with permission from Industrial and Engineering Chemistry Research 51 (2012): 5469, doi: 10.1021/ie201998b. Copyright 2012 American Chemical Society.</p
Dynamic predictive modeling under measured and unmeasured continuous-time stochastic input behavior
Many input variables of chemical processes have a continuous-time stochastic (CTS) behavior. The nature of these variables is a persistent, time-correlated variation that manifests as process variation as the variables deviate in time from their nominal levels. This work introduces methodologies in process identification for improving the modeling of process outputs by exploiting CTS input modeling under cases where the input is measured and unmeasured. In the measured input case, the output variable is measured offline, infrequently, and at a varying sampling rate. A method is proposed for estimating CTS parameters from the measured input by exploiting statistical properties of its CTS model. The proposed approach is evaluated based on both output accuracy and predictive ability several steps ahead of the current input measurement. Two parameter estimation techniques are proposed when the input is unmeasured. The first is a derivative-free approach that uses sample moments and analytical expressions for population moments to estimate the CTS model parameters. The second exploits the CTS input model and uses the analytical solution of the dynamic model to estimate these parameters. The predictive ability of the latter approach is evaluated in the same way as the measured input case. All of the data in this work were artificially generated under the probabilistic CTS model.Reprinted (adapted) with permission from Industrial and Engineering Chemistry Research 51 (2012): 5469, doi: 10.1021/ie201998b. Copyright 2012 American Chemical Society.</p
Multiple-input subject-specific modeling of plasma glucose concentration for feedforward control
The ability to accurately develop subject-specific, input causation models, for blood glucose concentration (BGC) for large input sets can have a significant impact on tightening control for insulin dependent diabetes. More specifically, for Type 1 diabetics (T1Ds), it can lead to an effective artificial pancreas (i.e., an automatic control system that delivers exogenous insulin) under extreme changes in critical disturbances. These disturbances include food consumption, activity variations, and physiological stress changes. Thus, this paper presents a free-living, outpatient, multiple-input, modeling method for BGC with strong causation attributes that is stable and guards against overfitting to provide an e ffective modeling approach for feedforward control (FFC). This approach is a Wiener block-oriented methodology, which has unique attributes for meeting critical requirements for effective, long-term, FFC.Reprinted (adapted) with permission from Industrial and Engineering Chemistry Research 53 (2104): 18216, doi: 10.1021/ie404119b. Copyright 2014 American Chemical Society.</p
Multiple-Input Subject-Specific Modeling of Plasma Glucose Concentration for Feedforward Control
The ability to accurately develop subject-specific, input causation models, for blood glucose concentration (BGC) for large input sets can have a significant impact on tightening control for insulin dependent diabetes. More specifically, for Type 1 diabetics (T1Ds), it can lead to an effective artificial pancreas (i.e., an automatic control system that delivers exogenous insulin) under extreme changes in critical disturbances. These disturbances include food consumption, activity variations, and physiological stress changes. Thus, this paper presents a free-living, outpatient, multiple-input, modeling method for BGC with strong causation attributes that is stable and guards against overfitting to provide an effective modeling approach for feedforward control (FFC). This approach is a Wiener block-oriented methodology, which has unique attributes for meeting critical requirements for effective, long-term, FFC