67 research outputs found

    Secondary education reform in Lesotho and Zimbabwe and the needs of rural girls: Pronouncements, policy and practice

    Get PDF
    Analysis of the educational needs of rural girls in Lesotho and Zimbabwe suggests a number of shortcomings in the current form of secondary education, and ways in which it might be modified so as to serve this sizeable group of students better. Several of the shortcomings, notably in relation to curricular irrelevance and excessive focus on examinations, have long been recognised, including by politicians. Yet political pronouncements are seldom translated into policy, and even where policy is formulated, reforms are seldom implemented in schools. This paper makes use of interviews with educational decision-makers in the two southern African countries and a range of documentary sources to explore why, despite the considerable differences between the two contexts, much needed educational reforms have been implemented in neither

    Introduction and Historical Review

    Get PDF

    Time scales of crystal residence and magma chamber volume from modelling of diffusion profiles in phenocrysts: Vesuvius 1944

    No full text
    Diffusional smoothing of Fe–Mg compositional gradients in clinopyroxene crystals from the 1944 eruption of Vesuvius is used to determine the preeruption residence times of crystals at magmatic temperatures. The result is a distribution of crystal residence times from one sample that can be used to constrain magma chamber volumes. Diffusional zones between compositionally distinct cores and rims were observed by backscattered electron (BSE) imaging to vary in width from 1.6 to 11.9 ÎŒm and represent storage of crystals at magmatic temperatures for periods ranging from 4.5 months up to 9 years prior to eruption. The distribution of residence times is skewed to young ages and is best explained by the open-system behaviour of an 8.0×107 m3 chamber that received an input of between 3.5×107 and 7.0×107 m3 in the final 6 months prior to eruption. The calculated inputs, compared with contemporary observations of the emitted magma volumes, implies that some 3.0×107–6.5×107 m3 of magma input did not erupt but was accommodated by chamber expansion before the 1944 eruption. This would place the preeruptive chamber volume between 1.15×108 and 1.5×108 m3. The eruption was then triggered by a further input of 1.9×107 m3 which forced the extrusion of a similar volume of relatively degassed magma as lava flows prior to the fire-fountaining episode. The backscattered electron imaging technique for residence time determination has great potential in unravelling the histories of populations of phenocrysts in many volcanic systems

    The relationship between riverine U-series disequilibria and erosion rates in a basaltic terrain

    No full text
    U-series isotopes have been measured in the dissolved phase, suspended load and bedload of the main rivers draining basaltic catchments in Iceland. For the dissolved phase, (234U/238U) and (238U/230Th) range between 1.08 and 2.2, and 7.4 and 516, respectively. For the suspended load and bedload, (234U/238U) and (238U/230Th) range from 0.97 to 1.09 and from 0.93 to 1.05, respectively. Chemical erosion rates, calculated from dissolved major elements, range between 13 and 333 t km− 2 yr− 1. Physical erosion rates have also been estimated, from existing data, and range between 21 and 4864 t/km2/yr, with an average of 519 t km− 2 yr− 1. U-series disequilibria indicate that weathering in Iceland operates at close to steady-state conditions. A model of continuous weathering indicates a maximum weathering timescale of 10 kyr, with an average rate of uranium release into water of 1.6 · 10− 4 yr− 1, which is significant when compared to granitic terrains located at similar latitudes and to tropical basaltic terrains. All river waters display (234U/238U) greater than secular equilibrium, consistent with the effects of alpha-recoil. The same dissolved phase (234U/238U) exhibit a negative trend with physical erosion rates, explained by the dominant effect of close-to-congruent chemical weathering of hyaloclastites in the younger basaltic terrains. Therefore, chemical erosion rate and mineral weathering susceptibility play a major role in determining 234U–238U disequilibria in basaltic river waters. Comparison of global data for river basins in which weathering was recently strongly limited indicates a negative correlation between silicate weathering rates estimated with major elements and the age of weathering estimated with U-series disequilibria. This strongly suggests a key role of time and soil thickness on the chemical erosion of silicates

    Petrogenesis and timing of mafic magmatism, South Taimyr, Arctic Siberia: a northerly continuation of the Siberian Traps?

    No full text
    The Siberian large igneous province (LIP) forms the world's most extensive continental exposure of basalt and has several sub-provinces surrounding it, which may be genetically related. The Taimyr peninsula of north Siberia is one of these sub-provinces and is frequently assumed to be the northerly continuation of the basalts exposed at Noril'sk, the best-studied area of the Siberian LIP. However, the correlation is uncertain. We present new major and trace element data from 35 samples of extrusive and intrusive rocks from Taimyr, with Sr and Nd isotope data from a subset of ten. The Taimyr rocks fall into two groups with low (~ 7 wt.%) and elevated (~ 9 wt.%) MgO concentrations. The high-MgO rocks display a restricted range of initial 87Sr/86Sr (0.705 to 0.706) and 143Nd/144Nd (0.5122 to 0.5124) ratios, and share bulk silicate earth normalised rare earth element patterns strikingly similar to data observed in the ore-related Noril'sk intrusions. The remaining low-MgO group samples have a broader range with higher Sr and lower Nd isotope values and higher incompatible trace element ratios (e.g., Th/Ta > 5.3 and La/Smn > 1.7) similar to the crustally-contaminated Nadezhdinsky and Morongovsky suite basalts of the Noril'sk region. The major and trace element data for both groups are consistent with a process of fractional crystallisation coupled with small degrees of assimilation of incompatible-element-enriched lower crust involving different contaminants. Trace element model calculations indicate a process of magma formation at large degrees of partial melting and at pressures of less than 3 GPa, probably within the garnet–spinel transition zone or the spinel stability field of the asthenospheric mantle. We obtained an argon plateau age of ~ 252 (252.7 ± 1.5) Ma and a ~ 239 Ma total fusion age from a Taimyr lava and intrusive sample, respectively, confirming that volcanism is only partly contemporaneous with the activity of the Siberian LIP. Although this is in agreement with previous interpretations, we argue that the age difference between both events is only ~ 13 Ma and probably less (~ 5 Ma) although further investigation of the relationship is required. Our data allow correlation with distinct Noril'sk members and most importantly to the ore-bearing (Ni–Cu) intrusions implying that whole rock chemistry could have value as a prospecting tool in Taimyr
    • 

    corecore