60 research outputs found

    Single-photon emission from Ni-related color centers in CVD diamond

    Full text link
    Color centers in diamond are very promising candidates among the possible realizations for practical single-photon sources because of their long-time stable emission at room temperature. The popular nitrogen-vacancy center shows single-photon emission, but within a large, phonon-broadened spectrum (~100nm), which strongly limits its applicability for quantum communication. By contrast, Ni-related centers exhibit narrow emission lines at room temperature. We present investigations on single color centers consisting of Ni and Si created by ion implantation into single crystalline IIa diamond. We use systematic variations of ion doses between 10^8/cm^2 and 10^14/cm^2 and energies between 30keV and 1.8MeV. The Ni-related centers show emission in the near infrared spectral range (~770nm to 787nm) with a small line-width (~3nm FWHM). A measurement of the intensity correlation function proves single-photon emission. Saturation measurements yield a rather high saturation count rate of 77.9 kcounts/s. Polarization dependent measurements indicate the presence of two orthogonal dipoles.Comment: 8 pages, published in conference proceedings of SPIE Photonics Europe 201

    Coherence of a charge stabilised tin-vacancy spin in diamond

    Get PDF
    Quantum information processing (QIP) with solid state spin qubits strongly depends on the efficient initialisation of the qubit’s desired charge state. While the negatively charged tin-vacancy (SnV−) centre in diamond has emerged as an excellent platform for realising QIP protocols due to long spin coherence times at liquid helium temperature and lifetime limited optical transitions, its usefulness is severely limited by termination of the fluorescence under resonant excitation. Here, we unveil the underlying charge cycle, potentially applicable to all group IV-vacancy (G4V) centres, and exploit it to demonstrate highly efficient and rapid initialisation of the desired negative charge state of single SnV centres while preserving long term stable optical resonances. In addition to investigating the optical coherence, we all-optically probe the coherence of the ground state spins by means of coherent population trapping and find a spin dephasing time of 5(1) μs. Furthermore, we demonstrate proof-of-principle single shot spin state readout without the necessity of a magnetic field aligned to the symmetry axis of the defect

    A carbene stabilized precursor for the spatial atomic layer deposition of copper thin films

    Get PDF
    This paper demonstrates a carbene stabilized precursor [Cu(tBuNHC)(hmds)] with suitable volatility, reactivity and thermal stability, that enables the spatial plasma-enhanced atomic layer deposition (APP-ALD) of copper thin films at atmospheric pressure. The resulting conductive and pure copper layers were thoroughly analysed and a comparison of precursor and process with the previously reported silver analogue [Ag(tBuNHC)(hmds)] revealed interesting similarities and notable differences in precursor chemistry and growth characteristics. This first report of APP-ALD grown copper layers is an important starting point for high throughput, low-cost manufacturing of copper films for nano- and optoelectronic devices

    A sustainable CVD approach for ZrN as a potential catalyst for nitrogen reduction reaction

    Get PDF
    In pursuit of developing alternatives for the highly polluting Haber-Bosch process for ammonia synthesis, the electrocatalytic nitrogen reduction reaction (NRR) using transition metal nitrides such as zirconium mononitride (ZrN) has been identified as a potential pathway for ammonia synthesis. In particular, specific facets of ZrN have been theoretically described as potentially active and selective for NRR. Major obstacles that need to be addressed include the synthesis of tailored catalyst materials that can activate the inert dinitrogen bond while suppressing hydrogen evolution reaction (HER) and not degrading during electrocatalysis. To tackle these challenges, a comprehensive understanding of the influence of the catalyst's structure, composition, and morphology on the NRR activity is required. This motivates the use of metal–organic chemical vapor deposition (MOCVD) as the material synthesis route as it enables catalyst nanoengineering by tailoring the process parameters. Herein, we report the fabrication of oriented and facetted crystalline ZrN thin films employing a single source precursor (SSP) MOCVD approach on silicon and glassy carbon (GC) substrates. First principles density functional theory (DFT) simulations elucidated the preferred decomposition pathway of SSP, whereas ab initio molecular dynamics simulations show that ZrN at room temperature undergoes surface oxidation with ambient O2, yielding a Zr-O-N film, which is consistent with compositional analysis using Rutherford backscattering spectrometry (RBS) in combination with nuclear reaction analysis (NRA) and X-ray photoelectron spectroscopy (XPS) depth profiling. Proof-of-principle electrochemical experiments demonstrated the applicability of the developed ZrN films on GC for NRR and qualitatively hint towards a possible activity for the electrochemical NRR in the sulfuric acid electrolyte.A versatile CVD process for growing facetted ZrN layers as a potential catalyst for electrochemical reduction of nitrogen to ammonia.Deutsche Forschungsgemeinschaf

    Direct liquid injection chemical vapor deposition of ZrO2 films from a heteroleptic Zr precursor: Interplay between film characteristics and corrosion protection of stainless steel

    Get PDF
    The direct liquid injection chemical vapor deposition (DLI-CVD) of uniform and dense zirconium oxide (ZrO2) thin films applicable as corrosion protection coatings (CPCs) is reported. We present the entire development chain from the rational choice and thermal evaluation of the suitable heteroleptic precursor [Zr(OiPr)2(tbaoac)2] over the detailed DLI-CVD process design and finally benchmarking the CPC behavior using electrochemical impedance spectroscopy (EIS). For a thorough development of the growth process, the deposition temperature (Tdep) is varied in the range of 400 – 700 °C on Si(100) and stainless steel (AISI 304) substrates. Resulting thin films are thoroughly analyzed in terms of structure, composition, and morphology. Grazing incidence X-ray diffractometry (GIXRD) reveals an onset of crystallization at Tdep ≥ 500 °C yielding monoclinic and even cubic phase at low temperatures. At Tdep = 400 °C, isotropic growth of XRD amorphous material is shown to feature cubic crystalline domains at the interfacial region as revealed by electron diffraction. Corrosion results obtained through EIS measurements and further immersion tests revealed improved CPC characteristic for the 400 °C processed ZrO2 coatings compared to the ones deposited at Tdep ≥ 500 °C, yielding valuable insights into the correlation between growth parameter and CPC performance which are of high relevance for future exploration of CPCs

    Aufbau eines Recoil-Massenseparators für die nukleare Astrophysik

    No full text
    Die Planung, der Aufbau und eine experimentelle Bestimmung der Spezifikationen eines Recoil-Separators erfolgten, um einen Detektor zur Verfügung zu haben, mit dessen Hilfe neue Daten zur 12C^{12}C(α,γ(\alpha,\gamma)16O^{16}O-Reaktion gewonnen werden können. Der direkte Nachweis der Reaktion über die Detektion der 16O^{16}O-Recoil-Kerne stellt hohe Anforderungen an die Akzeptanz und das Herausfiltern des Primärstrahls. Der Separator ist mit ionenoptischen Rechnungen entworfen und nach erfolgtem Aufbau experimentell getestet worden. Die ermittelte Separationsfähigkeit und die mit Hilfe eines Pilotstrahls bestimmte Akzeptanz erlauben 12C^{12}C(α,γ)\alpha,\gamma)16O^{16}O-Messungen in einem deutlich erweiterten Energiebereich gegenüber bereits existierenden Daten. Durch eine erste Messung dieser Reaktion ist die Funktionstüchtigkeit des Separators und das Zusammenwirken aller Komponenten des Systems gezeigt worden. Darüber hinaus hat er sich in einer weiteren Anwendung als 14C^{14}C-Detektor bei Radiocarbondatierungen bewährt

    Partii

    No full text

    Role of anionic backbone in NHC-stabilized coinage metal complexes: New precursors for atomic layer deposition

    No full text
    Cu and Ag precursors that are volatile, reactive, and thermally stable are currently of high interest for their application in atomic layer deposition (ALD) of thin metal films. In pursuit of new precursors for coinage metals namely Cu and Ag, a series of new N-heterocyclic carbene (NHC) based Cu(I) and Ag(I) complexes were synthesized. Modifications in the substitution pattern of diketonate-based anionic backbones led to five monomeric Cu complexes and four closely related Ag complexes with the general formula [M(tBuNHC)(R)] (M = Cu, Ag; tBuNHC = 1,3-di-tert-butyl-imidazolin-2-ylidene; R = diketonate). Thermal analysis indicated that most of the Cu complexes are thermally stable and volatile compared to the more fragile Ag analogs. One of the promising Cu precursors was evaluated for the ALD of nanoparticulate Cu metal films using hydroquinone as the reducing agent at appreciably low deposition temperatures (145–160 °C). This study highlights the considerable impact of the employed ligand sphere on the structural and thermal properties of metal complexes that are relevant for vapor phase processing of thin films
    • …
    corecore