10 research outputs found

    A pair of tess planets spanning the radius valley around the nearby mid-m dwarf ltt 3780

    Get PDF
    We present the confirmation of two new planets transiting the nearby mid-M dwarf LTT 3780 (TIC 36724087, TOI-732, V=13.07V=13.07, Ks=8.204K_s=8.204, RsR_s=0.374 R_{\odot}, MsM_s=0.401 M_{\odot}, d=22 pc). The two planet candidates are identified in a single TESS sector and are validated with reconnaissance spectroscopy, ground-based photometric follow-up, and high-resolution imaging. With measured orbital periods of Pb=0.77P_b=0.77 days, Pc=12.25P_c=12.25 days and sizes rp,b=1.33±0.07r_{p,b}=1.33\pm 0.07 R_{\oplus}, rp,c=2.30±0.16r_{p,c}=2.30\pm 0.16 R_{\oplus}, the two planets span the radius valley in period-radius space around low mass stars thus making the system a laboratory to test competing theories of the emergence of the radius valley in that stellar mass regime. By combining 63 precise radial-velocity measurements from HARPS and HARPS-N, we measure planet masses of mp,b=2.620.46+0.48m_{p,b}=2.62^{+0.48}_{-0.46} M_{\oplus} and mp,c=8.61.3+1.6m_{p,c}=8.6^{+1.6}_{-1.3} M_{\oplus}, which indicates that LTT 3780b has a bulk composition consistent with being Earth-like, while LTT 3780c likely hosts an extended H/He envelope. We show that the recovered planetary masses are consistent with predictions from both photoevaporation and from core-powered mass loss models. The brightness and small size of LTT 3780, along with the measured planetary parameters, render LTT 3780b and c as accessible targets for atmospheric characterization of planets within the same planetary system and spanning the radius valley

    Pantropical tree growth resilience to drought

    Get PDF

    International Lower Limb Collaborative Paediatric subpopulation analysis (INTELLECT-P) study: multicentre, international, retrospective audit of paediatric open fractures

    Get PDF

    La importancia de las cronologías de anillos de árboles tropicales para la investigación del cambio global

    Get PDF
    Tropical forests and woodlands are key components of the global carbon and water cycles. Yet, how climate change affects these biogeochemical cycles is poorly understood because of scarce long-term observations of tropical tree growth. The recent rise in tropical tree-ring studies may help to fill this gap, but a large-scale quantitative analysis of their potential in global change research is missing. We compiled a list of all tropical tree species known to form annual tree rings and built a network encompassing 492 tropical ring-width chronologies to evaluate the potential to generate insights on climate sensitivity of woody productivity and to build centuries-long reconstructions of climate variability. We assess chronology quality, length, and climatic representativeness and explore how these change along climatic gradients. Finally, we applied species-distribution modeling to identify regions with potential for tree-ring studies in ecological and climatic studies. The number of tropical chronologies has rapidly increased, with ~400 added over the past two decades. Yet, tree-ring studies are biased towards high-elevation locations, with gaps in warmer and wetter climates, on the African continent, and for angiosperm species. The longest chronologies with strongest climate signals (i.e., synchronous growth variations among trees) are from cool regions. In wet regions, climate signals and precipitation sensitivity decrease. Most tropical regions harbor 5–15 (and up to 80) species with proven potential to generate chronologies. The potential for long climate reconstructions is particularly high in drier high elevation sites. Our findings support strategies to effectively expand tree-ring research in the tropics, by targeting specific species and regions. Tropical dendrochronology can importantly contribute to global change research by generating historical context of climate extremes, quantifying climate sensitivity of woody productivity and benchmarking vegetation models

    The importance of tropical tree-ring chronologies for global change research

    No full text
    Tropical forests and woodlands are key components of the global carbon and water cycles. Yet, how climate change affects these biogeochemical cycles is poorly understood because of scarce long-term observations of tropical tree growth. The recent rise in tropical tree-ring studies may help to fill this gap, but a large-scale quantitative analysis of their potential in global change research is missing. We compiled a list of all tropical tree species known to form annual tree rings and built a network encompassing 492 tropical ring-width chronologies to evaluate the potential to generate insights on climate sensitivity of woody productivity and to build centuries-long reconstructions of climate variability. We assess chronology quality, length, and climatic representativeness and explore how these change along climatic gradients. Finally, we applied species-distribution modeling to identify regions with potential for tree-ring studies in ecological and climatic studies. The number of tropical chronologies has rapidly increased, with similar to 400 added over the past two decades. Yet, tree-ring studies are biased towards high-elevation locations, with gaps in warmer and wetter climates, on the African continent, and for angiosperm species. The longest chronologies with strongest climate signals (i.e., synchronous growth variations among trees) are from cool regions. In wet regions, climate signals and precipitation sensitivity decrease. Most tropical regions harbor 5-15 (and up to 80) species with proven potential to generate chronologies. The potential for long climate reconstructions is particularly high in drier high elevation sites. Our findings support strategies to effectively expand tree-ring research in the tropics, by targeting specific species and regions. Tropical dendrochronology can importantly contribute to global change research by generating historical context of climate extremes, quantifying climate sensitivity of woody productivity and benchmarking vegetation models.Tropical forests and woodlands are key components of the global carbon and water cycles. Yet, how climate change affects these biogeochemical cycles is poorly understood because of scarce long-term observations of tropical tree growth. The recent rise in tropical tree-ring studies may help to fill this gap, but a large-scale quantitative analysis of their potential in global change research is missing. We compiled a list of all tropical tree species known to form annual tree rings and built a network encompassing 492 tropical ring-width chronologies to evaluate the potential to generate insights on climate sensitivity of woody productivity and to build centuries-long reconstructions of climate variability. We assess chronology quality, length, and climatic representativeness and explore how these change along climatic gradients. Finally, we applied species-distribution modeling to identify regions with potential for tree-ring studies in ecological and climatic studies. The number of tropical chronologies has rapidly increased, with similar to 400 added over the past two decades. Yet, tree-ring studies are biased towards high-elevation locations, with gaps in warmer and wetter climates, on the African continent, and for angiosperm species. The longest chronologies with strongest climate signals (i.e., synchronous growth variations among trees) are from cool regions. In wet regions, climate signals and precipitation sensitivity decrease. Most tropical regions harbor 5-15 (and up to 80) species with proven potential to generate chronologies. The potential for long climate reconstructions is particularly high in drier high elevation sites. Our findings support strategies to effectively expand tree-ring research in the tropics, by targeting specific species and regions. Tropical dendrochronology can importantly contribute to global change research by generating historical context of climate extremes, quantifying climate sensitivity of woody productivity and benchmarking vegetation models.A

    Lung Cancer OncoGuia

    No full text

    Pantropical tree rings show small effects of drought on stem growth

    No full text

    Chemistry and Biology of Selected Mexican Medicinal Plants

    No full text

    Liraglutide and Renal Outcomes in Type 2 Diabetes.

    No full text
    BACKGROUND: In a randomized, controlled trial that compared liraglutide, a glucagon-like peptide 1 analogue, with placebo in patients with type 2 diabetes and high cardiovascular risk who were receiving usual care, we found that liraglutide resulted in lower risks of the primary end point (nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes) and death. However, the long-term effects of liraglutide on renal outcomes in patients with type 2 diabetes are unknown. METHODS: We report the prespecified secondary renal outcomes of that randomized, controlled trial in which patients were assigned to receive liraglutide or placebo. The secondary renal outcome was a composite of new-onset persistent macroalbuminuria, persistent doubling of the serum creatinine level, end-stage renal disease, or death due to renal disease. The risk of renal outcomes was determined with the use of time-to-event analyses with an intention-to-treat approach. Changes in the estimated glomerular filtration rate and albuminuria were also analyzed. RESULTS: A total of 9340 patients underwent randomization, and the median follow-up of the patients was 3.84 years. The renal outcome occurred in fewer participants in the liraglutide group than in the placebo group (268 of 4668 patients vs. 337 of 4672; hazard ratio, 0.78; 95% confidence interval [CI], 0.67 to 0.92; P=0.003). This result was driven primarily by the new onset of persistent macroalbuminuria, which occurred in fewer participants in the liraglutide group than in the placebo group (161 vs. 215 patients; hazard ratio, 0.74; 95% CI, 0.60 to 0.91; P=0.004). The rates of renal adverse events were similar in the liraglutide group and the placebo group (15.1 events and 16.5 events per 1000 patient-years), including the rate of acute kidney injury (7.1 and 6.2 events per 1000 patient-years, respectively). CONCLUSIONS: This prespecified secondary analysis shows that, when added to usual care, liraglutide resulted in lower rates of the development and progression of diabetic kidney disease than placebo. (Funded by Novo Nordisk and the National Institutes of Health; LEADER ClinicalTrials.gov number, NCT01179048 .)
    corecore