53,765 research outputs found

    Space Station Freedom seal leakage rate analysis and testing summary: Air leaks in ambient versus vacuum exit conditions

    Get PDF
    This report is intended to reveal the apparent relationship of air seal leakage rates between 2 atmospheres (atm) to 1 atm and 1 atm to vacuum conditions. Gas dynamics analysis is provided as well as data summarizing the MSFC test report, 'Space Station Freedom (S.S. Freedom) Seal Flaw Study With Delta Pressure Leak Rate Comparison Test Report'

    Shape evolution in Yttrium and Niobium neutron-rich isotopes

    Get PDF
    The isotopic evolution of the ground-state nuclear shapes and the systematics of one-quasiproton configurations are studied in neutron-rich odd-A Yttrium and Niobium isotopes. We use a selfconsistent Hartree-Fock-Bogoliubov formalism based on the Gogny energy density functional with two parametrizations, D1S and D1M. The equal filling approximation is used to describe odd-A nuclei preserving both axial and time reversal symmetries. Shape-transition signatures are identified in the N=60 isotopes in both charge radii and spin-parities of the ground states. These signatures are a common characteristic for nuclei in the whole mass region. The nuclear deformation and shape coexistence inherent to this mass region are shown to play a relevant role in the understanding of the spectroscopic features of the ground and low-lying one-quasiproton states. Finally, a global picture of the neutron-rich A=100 mass region from Krypton up to Molybdenum isotopes is illustrated with the systematics of the nuclear charge radii isotopic shifts.Comment: 21 pages, 14 figures. To be published in Phys. Rev.

    Systematics of one-quasiparticle configurations in neutron-rich Sr, Zr, and Mo odd isotopes with the Gogny energy density functional

    Get PDF
    The systematics of one-quasiparticle configurations in neutron-rich Sr, Zr, and Mo odd isotopes is studied within the Hartree-Fock-Bogoliubov plus Equal Filling Approximation method preserving both axial and time reversal symmetries. Calculations based on the Gogny energy density functional with both the standard D1S parametrization and the new D1M incarnation of this functional are included in our analysis. The nuclear deformation and shape coexistence inherent to this mass region are shown to play a relevant role in the understanding of the spectroscopic features of the ground and low-lying one-quasineutron states.Comment: 11 page

    Signatures of shape transition in odd-A neutron-rich Rubidium isotopes

    Get PDF
    The isotopic evolution of the ground-state nuclear shapes and the systematics of one-quasiproton configurations are studied in odd-A Rubidium isotopes. We use a selfconsistent Hartree-Fock-Bogoliubov formalism based on the Gogny energy density functional with two parametrizations, D1S and D1M, and implemented with the equal filling approximation. We find clear signatures of a sharp shape transition at N=60 in both charge radii and spin-parity of the ground states, which are robust, consistent to each other, and in agreement with experiment. We point out that the combined analysis of these two observables could be used to predict unambiguously new regions where shape transitions might develop.Comment: 6 pages, 7 figures. To appear in Phys. Rev. C (Rapid Communications

    Microscopic description of quadrupole-octupole coupling in Sm and Gd isotopes with the Gogny Energy Density Functional

    Get PDF
    The interplay between the collective dynamics of the quadrupole and octupole deformation degree of freedom is discussed in a series of Sm and Gd isotopes both at the mean field level and beyond, including parity symmetry restoration and configuration mixing. Physical properties like negative parity excitation energies, E1 and E3 transition probabilities are discussed and compared to experimental data. Other relevant intrinsic quantities like dipole moments, ground state quadrupole moments or correlation energies associated to symmetry restoration and configuration mixing are discussed. For the considered isotopes, the quadrupole-octupole coupling is found to be weak and most of the properties of negative parity states can be described in terms of the octupole degree of freedom alone.Comment: 31 pages, 11 figure

    Gamow-Teller strength distributions in Fe and Ni stable isotopes

    Get PDF
    We study Gamow-Teller strength distributions in some selected nuclei of particular Astrophysical interest within the iron mass region. The theoretical framework is based on a proton-neutron Quasiparticle Random Phase Approximation built on a deformed selfconsistent mean field basis obtained from two-body density-dependent Skyrme forces. We compare our results to available experimental information obtained from (n,p) and (p,n) charge exchange reactions.Comment: 11 pages, 3 figure

    Isospin mixing and Fermi transitions: Selfconsistent deformed mean field calculations and beyond

    Get PDF
    We study Fermi transitions and isospin mixing in an isotopic chain 70-78 Kr considering various approximations that use the same Skyrme-Hartree-Fock single particle basis. We study Coulomb effects as well as the effect of BCS and quasiparticle random phase approximation (QRPA) correlations. A measure of isospin mixing in the approximate ground state is defined by means of the expectation value of the isospin operator squared in N=Z nuclei (which is generalized to N different from Z nuclei). Starting from strict Hartree-Fock approach without Coulomb, it is shown that the isospin breaking is negligible, on the order of a few per thousand for (N-Z)=6, increasing to a few percent with Coulomb. Pairing correlations induce rather large isospin mixing and Fermi transitions of the forbidden type (beta- for NZ). The enhancement produced by BCS correlations is compensated to a large extent by QRPA correlations induced by isospin conserving residual interactions that tend to restore isospin symmetry.Comment: 14 pages, 5 figures, to be published in Phys. Rev.

    Material Dependence of the Wire-Particle Casimir Interaction

    Get PDF
    We study the Casimir interaction between a metallic cylindrical wire and a metallic spherical particle by employing the scattering formalism. At large separations, we derive the asymptotic form of the interaction. In addition, we find the interaction between a metallic wire and an isotropic atom, both in the non-retarded and retarded limits. We identify the conditions under which the asymptotic Casimir interaction does not depend on the material properties of the metallic wire and the particle. Moreover, we compute the exact Casimir interaction between the particle and the wire numerically. We show that there is a complete agreement between the numerics and the asymptotic energies at large separations. For short separations, our numerical results show good agreement with the proximity force approximation
    • …
    corecore