11 research outputs found

    Propiedades optoelectrónicas en perovskitas halogenadas y su aplicación en energía y sensores

    Full text link
    Tesis por compendio[ES] La creciente urbanización e industrialización de las sociedades en las últimas décadas han provocado una alta demanda de energía. No obstante, mientras no se desarrollen fuentes de energía renovables que se constituyan como un reemplazo plausible de las actuales, la liberación de gases de efecto invernadero y sus consecuencias sobre el cambio climático difícilmente serán atajadas. Por ello, se está llevando a cabo una intensa búsqueda de energías renovables para un futuro inmediato. En los últimos años, la perovskita ha alcanzado una gran popularidad, centrando numerosos esfuerzos de investigación debido a sus propiedades ópticas y eléctricas únicas. Como por ejemplo su alto coeficiente de absorción y su alta movilidad de carga. Esta tesis comprende seis artículos científicos en torno a las perovskitas. Por un lado, 3 trabajos estudian los fenómenos ópticos que ocurren en el seno del material, con la finalidad de lograr una mejor comprensión de éstos. Puesto que el conocimiento de estos fenómenos ópticos a nivel individual (cristales aislados) permite modular y adaptar su síntesis y morfología para aplicaciones determinadas. Por otro lado, las perovskitas han sido implementadas en distintos dispositivos para su aplicación en tres campos: fotocatálisis, sensores y fotovoltaica. Por primera vez, se ha logrado utilizar este material para la obtención de hidrógeno llevando a cabo la reacción en fase vapor. Asimismo, diversas composiciones de perovskita se han usado para decorar grafeno y detectar niveles traza de Compuestos Orgánicos Volátiles (COV) como benceno y tolueno. Y finalmente se ha desarrollado una estrategia para insertar en la estructura de la perovskita moléculas orgánicas, de forma que se permite una ampliación de la fotorespuesta en el espectro visible. Por lo tanto, las perovskitas se han implementado exitosamente en aplicaciones de diversa índole, constituyéndose como un material prometedor y fácilmente adaptable a los distintos requisitos de cada campo de estudio.[CAT] La creixent urbanització i industrialització de les societats durant les últimes dècades han provocat una alta demanda d'energia. No obstant això, fins que no es desenvolupen fonts d'energia renovables que puguen ser un reemplaçament plausible de les actuals, l'alliberament de gasos d'efecte hivernacle i les seues conseqüències sobre el canvi climàtic seran difícilment aturades. Per tant, s'està duent a terme una intensa cerca d'energies renovables per a un futur immediat. En els últims anys, la perovskita ha aconseguit una gran popularitat, centrant nombrosos esforços de recerca a causa de les seues propietats òptiques i elèctriques úniques. Per exemple, el seu al coeficient d'absorció i la seua alta mobilitat de càrrega. Aquesta tesi reuneix sis articles científics al voltant de les perovskites. Per una banda, 3 treballs estudien els fenòmens òptics que ocorren en el material, amb la finalitat d'assolir una major comprensió d'aquests. Donat que el coneixement d'aquests fenòmens òptics a nivell individual (cristalls aïllats) permeten modular i adaptar la seua síntesi i morfologia per a determinades aplicacions. Per altra banda, les perovskites han sigut implementats en diferents dispositius per a la seua aplicació en tres camps: fotocatàlisi, sensors i fotovoltaica. Per primera vegada, s'hi ha aconseguit utilitzar aquest material per a l'obtenció d'hidrogen duent a terme la reacció en fase vapor. Així mateix, diverses composicions de perovskita s'han utilitzat per a decorar grafè i detectar nivells traça de Compostos Orgànics Volàtils (COV) com benzè i toluè. I finalment s'ha desenvolupat una estratègia per a inserir en l'estructura de la perovskita molècules orgàniques, de forma que es permet una ampliació de la fotoresposta en l'espectre del visible. Per tant, les perovskites s'han implementat exitosament en aplicacions de diversa índole, constituint-se com un material prometedor i fàcilment adaptable als diferents requisits de cada camp d'estudi.[EN] During the last decades, the growing urbanization and industrialization result in a significant need for energy. However, since feasible renewable energy sources should be further developed to replace the current energy source, the release of greenhouse gases and their climate change consequences are difficult to overcome. For that reason, the development of renewable energy sources has been attracting growing research efforts. Recently, perovskites gathered great interest owing to their outstanding optical and electrical properties. For instance, their high absorption coefficient and superior charge mobility. This thesis comprises six scientific articles about perovskites. On one hand, 3 works study the optical phenomena that occur within the material in order to achieve a better understanding. The deep knowledge of these optical phenomena's at the individual level (isolated crystals) enable the modulation and tuning of their synthesis and morphology to match specific applications. On another hand, perovskites have been implemented in several devices for their application in three research fields: photocatalysis, sensors, and photovoltaic. For the first time, this nanomaterial was successfully employed for obtaining hydrogen carrying out the reaction in the vapor phase. Likewise, several perovskite compositions have been used for decorating graphene and detect trace levels of Volatile Organic Compounds (VOC) as benzene and toluene. And finally, it has been developed a strategy to insert organic molecules in the perovskite structure, resulting in an enhanced photoresponse in the visible range. Therefore, perovskites have been successfully implemented in several applications, becoming a promising material and easily adaptable to the different requirements needed in each field of study.Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, SEV-2016-0683), Intramural CSIC project 201680I006, and Fundación Ramón Areces (XVII Concurso Nacional para la adjudicación de Ayudas a la Investigación en Ciencias de la Vida y de la Materia) is gratefully acknowledged. This research was financially supported by the Spanish Ministry of Economy and Competitiveness (Mineco) of Spain (TQ2011-26455)2, MAT2015-69669-P, and regional government grant PrometeoII/2017/026. This work was supported by Spanish ministry of Economy, Industry and Competitiveness (MINECO) through the projects TEC2015-74405-JIN, MAT2015-69669-P as well as the regional projects of both Provincia Autonoma di Trento (PAT) of Italy, through the call Grandi Progetti 2012: SIQURO and the Comunidad Valenciana of Spain project PrometeoII/2014/026. This work was supported in part by MICINN and FEDER via grants no. RTI2018-101580- B-I00, by AGAUR under grant. 2017SGR418. S. R.-B. thanks the Research Executive Agency (REA) and the European Commission for the funding received under the Marie Skłodowska Curie actions (H2020-MSCA-IF-2015/Grant agreement number 709023/ZESMO). R. G. A. acknowledges the FPI scholarship from MINECO MAT2015-69669-P. P. A. acknowledges the financial support from the Spanish Government through ‘Severo Ochoa” (SEV-2016-0683, MINECO) and PGC2018-099744-B-I00 (MCIU/AEI/FEDER)García Aboal, R. (2021). Propiedades optoelectrónicas en perovskitas halogenadas y su aplicación en energía y sensores [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/175357TESISCompendi

    Gas Sensing Properties of Perovskite Decorated Graphene at Room Temperature

    Full text link
    [EN] This paper explores the gas sensing properties of graphene nanolayers decorated with lead halide perovskite (CH3NH3PbBr3) nanocrystals to detect toxic gases such as ammonia (NH3) and nitrogen dioxide (NO2). A chemical-sensitive semiconductor film based on graphene has been achieved, being decorated with CH3NH3PbBr3 perovskite (MAPbBr3) nanocrystals (NCs) synthesized, and characterized by several techniques, such as field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Reversible responses were obtained towards NO2 and NH3 at room temperature, demonstrating an enhanced sensitivity when the graphene is decorated by MAPbBr3 NCs. Furthermore, the effect of ambient moisture was extensively studied, showing that the use of perovskite NCs in gas sensors can become a promising alternative to other gas sensitive materials, due to the protective character of graphene, resulting from its high hydrophobicity. Besides, a gas sensing mechanism is proposed to understand the effects of MAPbBr3 sensing propertiesThis work was funded in part by MINECO, MICINN and FEDER via grants no. RTI2018-101580-B-I00, by AGAUR under grant. 2017SGR 418 J.C.C gratefully acknowledges a doctoral fellowship from URV under the Marti i Franques fellowship program. E.L. is supported by the Catalan institution for Research and Advanced Studies via the 2012 and 2018 Editions of the ICREA Academia Award. P.A. acknowledges the financial support from the Spanish Government through 'Severo Ochoa"(SEV-2016-0683, MINECO) and PGC2018-099744-B-I00 (MCIU/AEI/FEDER, UE), and R.G.A. acknowledges FPI scholarship the Spanish Government-MINECO for a (TEC2015-74405-JIN), MAT2015-69669-P.Casanova-Cháfer, J.; García-Aboal, R.; Atienzar Corvillo, PE.; Llobet, E. (2019). Gas Sensing Properties of Perovskite Decorated Graphene at Room Temperature. Sensors. 19(20):1-14. https://doi.org/10.3390/s19204563S11419207 Million Premature Deaths Annually Linked to Air Pollution https://www.who.int/mediacentre/news/releases/2014/air-pollution/en/Hansen, J., Sato, M., Ruedy, R., Lacis, A., & Oinas, V. (2000). Global warming in the twenty-first century: An alternative scenario. Proceedings of the National Academy of Sciences, 97(18), 9875-9880. doi:10.1073/pnas.170278997Ibañez, F. J., & Zamborini, F. P. (2011). Chemiresistive Sensing with Chemically Modified Metal and Alloy Nanoparticles. Small, 8(2), 174-202. doi:10.1002/smll.201002232Mirzaei, A., Leonardi, S. G., & Neri, G. (2016). Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceramics International, 42(14), 15119-15141. doi:10.1016/j.ceramint.2016.06.145Zaidi, N. A., Tahir, M. W., Vellekoop, M. J., & Lang, W. (2017). A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas. Sensors, 17(10), 2283. doi:10.3390/s17102283Meng, F.-L., Guo, Z., & Huang, X.-J. (2015). Graphene-based hybrids for chemiresistive gas sensors. TrAC Trends in Analytical Chemistry, 68, 37-47. doi:10.1016/j.trac.2015.02.008Miller, D. R., Akbar, S. A., & Morris, P. A. (2014). Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensors and Actuators B: Chemical, 204, 250-272. doi:10.1016/j.snb.2014.07.074Scott, S. M., James, D., & Ali, Z. (2006). Data analysis for electronic nose systems. Microchimica Acta, 156(3-4), 183-207. doi:10.1007/s00604-006-0623-9Rodríguez-Pérez, L., Herranz, M. Á., & Martín, N. (2013). The chemistry of pristine graphene. Chemical Communications, 49(36), 3721. doi:10.1039/c3cc38950bPrezioso, S., Perrozzi, F., Giancaterini, L., Cantalini, C., Treossi, E., Palermo, V., … Ottaviano, L. (2013). Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing. The Journal of Physical Chemistry C, 117(20), 10683-10690. doi:10.1021/jp3085759Lipatov, A., Varezhnikov, A., Wilson, P., Sysoev, V., Kolmakov, A., & Sinitskii, A. (2013). Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale, 5(12), 5426. doi:10.1039/c3nr00747bVarghese, S. S., Lonkar, S., Singh, K. K., Swaminathan, S., & Abdala, A. (2015). Recent advances in graphene based gas sensors. Sensors and Actuators B: Chemical, 218, 160-183. doi:10.1016/j.snb.2015.04.062Rodner, M., Puglisi, D., Ekeroth, S., Helmersson, U., Shtepliuk, I., Yakimova, R., … Eriksson, J. (2019). Graphene Decorated with Iron Oxide Nanoparticles for Highly Sensitive Interaction with Volatile Organic Compounds. Sensors, 19(4), 918. doi:10.3390/s19040918Kaniyoor, A., Imran Jafri, R., Arockiadoss, T., & Ramaprabhu, S. (2009). Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale, 1(3), 382. doi:10.1039/b9nr00015aSeekaew, Y., Lokavee, S., Phokharatkul, D., Wisitsoraat, A., Kerdcharoen, T., & Wongchoosuk, C. (2014). Low-cost and flexible printed graphene–PEDOT:PSS gas sensor for ammonia detection. Organic Electronics, 15(11), 2971-2981. doi:10.1016/j.orgel.2014.08.044Kang, M.-A., Ji, S., Kim, S., Park, C.-Y., Myung, S., Song, W., … An, K.-S. (2018). Highly sensitive and wearable gas sensors consisting of chemically functionalized graphene oxide assembled on cotton yarn. RSC Advances, 8(22), 11991-11996. doi:10.1039/c8ra01184bFine, G. F., Cavanagh, L. M., Afonja, A., & Binions, R. (2010). Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors, 10(6), 5469-5502. doi:10.3390/s100605469Sun, D., Luo, Y., Debliquy, M., & Zhang, C. (2018). Graphene-enhanced metal oxide gas sensors at room temperature: a review. Beilstein Journal of Nanotechnology, 9, 2832-2844. doi:10.3762/bjnano.9.264Llobet, E. (2013). Gas sensors using carbon nanomaterials: A review. Sensors and Actuators B: Chemical, 179, 32-45. doi:10.1016/j.snb.2012.11.014Correa-Baena, J.-P., Abate, A., Saliba, M., Tress, W., Jesper Jacobsson, T., Grätzel, M., & Hagfeldt, A. (2017). The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science, 10(3), 710-727. doi:10.1039/c6ee03397kSun, S., Salim, T., Mathews, N., Duchamp, M., Boothroyd, C., Xing, G., … Lam, Y. M. (2014). The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci., 7(1), 399-407. doi:10.1039/c3ee43161dJuarez-Perez, E. J., Ono, L. K., Maeda, M., Jiang, Y., Hawash, Z., & Qi, Y. (2018). Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. Journal of Materials Chemistry A, 6(20), 9604-9612. doi:10.1039/c8ta03501fChen, H., Zhang, M., Bo, R., Barugkin, C., Zheng, J., Ma, Q., … Tricoli, A. (2017). Superior Self‐Powered Room‐Temperature Chemical Sensing with Light‐Activated Inorganic Halides Perovskites. Small, 14(7), 1702571. doi:10.1002/smll.201702571Kakavelakis, G., Gagaoudakis, E., Petridis, K., Petromichelaki, V., Binas, V., Kiriakidis, G., & Kymakis, E. (2017). Solution Processed CH3NH3PbI3–xClx Perovskite Based Self-Powered Ozone Sensing Element Operated at Room Temperature. ACS Sensors, 3(1), 135-142. doi:10.1021/acssensors.7b00761Bao, C., Yang, J., Zhu, W., Zhou, X., Gao, H., Li, F., … Zou, Z. (2015). A resistance change effect in perovskite CH3NH3PbI3 films induced by ammonia. Chemical Communications, 51(84), 15426-15429. doi:10.1039/c5cc06060eZhuang, Y., Yuan, W., Qian, L., Chen, S., & Shi, G. (2017). High-performance gas sensors based on a thiocyanate ion-doped organometal halide perovskite. Physical Chemistry Chemical Physics, 19(20), 12876-12881. doi:10.1039/c7cp01646hStoeckel, M.-A., Gobbi, M., Bonacchi, S., Liscio, F., Ferlauto, L., Orgiu, E., & Samorì, P. (2017). Reversible, Fast, and Wide-Range Oxygen Sensor Based on Nanostructured Organometal Halide Perovskite. Advanced Materials, 29(38), 1702469. doi:10.1002/adma.201702469Zhu, R., Zhang, Y., Zhong, H., Wang, X., Xiao, H., Chen, Y., & Li, X. (2019). High-performance room-temperature NO2 sensors based on CH3NH3PbBr3 semiconducting films: Effect of surface capping by alkyl chain on sensor performance. Journal of Physics and Chemistry of Solids, 129, 270-276. doi:10.1016/j.jpcs.2019.01.020Acik, M., & Darling, S. B. (2016). Graphene in perovskite solar cells: device design, characterization and implementation. Journal of Materials Chemistry A, 4(17), 6185-6235. doi:10.1039/c5ta09911kChristians, J. A., Miranda Herrera, P. A., & Kamat, P. V. (2015). Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air. Journal of the American Chemical Society, 137(4), 1530-1538. doi:10.1021/ja511132aLeguy, A. M. A., Hu, Y., Campoy-Quiles, M., Alonso, M. I., Weber, O. J., Azarhoosh, P., … Barnes, P. R. F. (2015). Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells. Chemistry of Materials, 27(9), 3397-3407. doi:10.1021/acs.chemmater.5b00660O’Keeffe, P., Catone, D., Paladini, A., Toschi, F., Turchini, S., Avaldi, L., … Di Carlo, A. (2019). Graphene-Induced Improvements of Perovskite Solar Cell Stability: Effects on Hot-Carriers. Nano Letters, 19(2), 684-691. doi:10.1021/acs.nanolett.8b03685Berhe, T. A., Su, W.-N., Chen, C.-H., Pan, C.-J., Cheng, J.-H., Chen, H.-M., … Hwang, B.-J. (2016). Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science, 9(2), 323-356. doi:10.1039/c5ee02733kLee, G. Y., Yang, M. Y., Kim, D., Lim, J., Byun, J., Choi, D. S., … Kim, S. O. (2019). Nitrogen‐Dopant‐Induced Organic–Inorganic Hybrid Perovskite Crystal Growth on Carbon Nanotubes. Advanced Functional Materials, 29(30), 1902489. doi:10.1002/adfm.201902489Fu, X., Jiao, S., Dong, N., Lian, G., Zhao, T., Lv, S., … Cui, D. (2018). A CH3NH3PbI3 film for a room-temperature NO2 gas sensor with quick response and high selectivity. RSC Advances, 8(1), 390-395. doi:10.1039/c7ra11149eGupta, N., Nanda, O., Grover, R., & Saxena, K. (2018). A new inorganic-organic hybrid halide perovskite thin film based ammonia sensor. Organic Electronics, 58, 202-206. doi:10.1016/j.orgel.2018.04.015Air Quality Standards https://ec.europa.eu/environment/air/quality/standards.htmCommission Directive 2000/39/EC https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02000L0039-20100108&from=ENSchmidt, L. C., Pertegás, A., González-Carrero, S., Malinkiewicz, O., Agouram, S., Mínguez Espallargas, G., … Pérez-Prieto, J. (2014). Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. Journal of the American Chemical Society, 136(3), 850-853. doi:10.1021/ja4109209Yang, G., Kim, B.-J., Kim, K., Han, J. W., & Kim, J. (2015). Energy and dose dependence of proton-irradiation damage in graphene. RSC Advances, 5(40), 31861-31865. doi:10.1039/c5ra03551aD’Acunto, G., Ripanti, F., Postorino, P., Betti, M. G., Scardamaglia, M., Bittencourt, C., & Mariani, C. (2018). Channelling and induced defects at ion-bombarded aligned multiwall carbon nanotubes. Carbon, 139, 768-775. doi:10.1016/j.carbon.2018.07.032Johra, F. T., Lee, J.-W., & Jung, W.-G. (2014). Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry, 20(5), 2883-2887. doi:10.1016/j.jiec.2013.11.022Ganesan, K., Ghosh, S., Gopala Krishna, N., Ilango, S., Kamruddin, M., & Tyagi, A. K. (2016). A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures. Physical Chemistry Chemical Physics, 18(32), 22160-22167. doi:10.1039/c6cp02033jRoy, S., Das, T., Ming, Y., Chen, X., Yue, C. Y., & Hu, X. (2014). Specific functionalization and polymer grafting on multiwalled carbon nanotubes to fabricate advanced nylon 12 composites. Journal of Materials Chemistry A, 2(11), 3961. doi:10.1039/c3ta14528jDatsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., … Galiotis, C. (2008). Chemical oxidation of multiwalled carbon nanotubes. Carbon, 46(6), 833-840. doi:10.1016/j.carbon.2008.02.012Kumar, P. V., Bernardi, M., & Grossman, J. C. (2013). The Impact of Functionalization on the Stability, Work Function, and Photoluminescence of Reduced Graphene Oxide. ACS Nano, 7(2), 1638-1645. doi:10.1021/nn305507pLiu, J., Durstock, M., & Dai, L. (2014). Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy Environ. Sci., 7(4), 1297-1306. doi:10.1039/c3ee42963fGeorgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., … Kim, K. S. (2012). Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 112(11), 6156-6214. doi:10.1021/cr3000412Wang, Y., Zhang, Y., Lu, Y., Xu, W., Mu, H., Chen, C., … Bao, Q. (2015). Hybrid Graphene-Perovskite Phototransistors with Ultrahigh Responsivity and Gain. Advanced Optical Materials, 3(10), 1389-1396. doi:10.1002/adom.201500150Lv, C., Hu, C., Luo, J., Liu, S., Qiao, Y., Zhang, Z., … Watanabe, A. (2019). Recent Advances in Graphene-Based Humidity Sensors. Nanomaterials, 9(3), 422. doi:10.3390/nano9030422Casanova-Cháfer, J., Navarrete, E., Noirfalise, X., Umek, P., Bittencourt, C., & Llobet, E. (2018). Gas Sensing with Iridium Oxide Nanoparticle Decorated Carbon Nanotubes. Sensors, 19(1), 113. doi:10.3390/s19010113Fang, H.-H., Adjokatse, S., Wei, H., Yang, J., Blake, G. R., Huang, J., … Loi, M. A. (2016). Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases. Science Advances, 2(7). doi:10.1126/sciadv.160053

    Vapor-Phase Photocatalytic Overall Water Splitting Using Hybrid Methylammonium Copper and Lead Perovskites

    Get PDF
    [EN] Films or powders of hybrid methylammonium copper halide perovskite exhibit photocatalytic activity for overall water splitting in the vapor phase in the absence of any sacrificial agent, resulting in the generation of H-2 and O-2, reaching a maximum production rate of 6 mu mol H-2 x g cat(-1)h(-1) efficiency. The photocatalytic activity depends on the composition, degreasing all inorganic Cs2CuCl2Br2 perovskite and other Cl/Br proportions in the methylammonium hybrids. XRD indicates that MA(2)CuCl(2)Br(2) is stable under irradiation conditions in agreement with the linear H-2 production with the irradiation time. Similar to copper analogue, hybrid methylammonium lead halide perovskites also promote the overall photocatalytic water splitting, but with four times less efficiency than the Cu analogues. The present results show that, although moisture is strongly detrimental to the photovoltaic applications of hybrid perovskites, it is still possible to use these materials as photocatalysts for processes requiring moisture due to the lack of relevance in the photocatalytic processes of interparticle charge migration.This research was funded by the Fundacion Ramon Areces (XVII Concurso Nacional para la adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia), Intramural CSIC project 201680I006, and the Spanish Ministry of Spain Severo Ochoa Program, grant number SEV-2016-0683, grant number MAT2015-69669-P.García, T.; García-Aboal, R.; Albero-Sancho, J.; Atienzar Corvillo, PE.; García Gómez, H. (2020). Vapor-Phase Photocatalytic Overall Water Splitting Using Hybrid Methylammonium Copper and Lead Perovskites. Nanomaterials. 10(5):1-14. https://doi.org/10.3390/nano10050960S11410

    Groove-assisted solution growth of lead bromide perovskite aligned nanowires: a simple method towards photoluminescent materials with guiding light properties

    Full text link
    [EN] High refractive index nanowires are very attractive because of their waveguiding properties and their multiple applications. In this sense, metal halide perovskites, an emerging and appealing optoelectronic material, have also been tailored into nanowire structures. Here, we present an easy, low-cost and versatile method that has made possible to achieve nanowires of controlled and uniform width. The method has been applied here to all-inorganic and hybrid lead bromide perovskite (CsPbBr3 and CH3NH3PbBr3 respectively) materials. The procedure is based on the spin coating of precursor solutions, at room temperature, on a PDMS replica of the periodic grooves and lands of commercially available Compact Disc (CD) or Digital Versatile Disc (DVD) polycarbonate plates. The method can be applied for the synthesis of other material nanowires before being transferred onto other substrates. The obtained CsPbBr3 and CH3NH3PbBr3 nanowires exhibit high photoluminescence and guiding light properties along the material.The authors would like to gratefully acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness (MIMECO) (Severo Ochoa (SEV-2016-0683), MAT2015-69669-P projects) and Generalitat Valenciana (Prometeo II/2017/026 Excellency project). P. A. acknowledges the Fundacion Ramon Areces (XVII Concurso Nacional para la adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia) for its funding. F. R.-M. thanks the financial contribution of the Spanish Ministry of Economy and Competitiveness (MIMECO) through the program for young researchers support (TEC 2015 2015-74405-JIN). Finally, IR also thanks the Electron Microscopy Service of the Universitat Politecnica de Valencia for their support in FESEM image acquisition and FIB milling, as well as Ana Moreno for her help in template preparation.Rodriguez, I.; Fenollosa Esteve, R.; Ramiro Manzano, F.; García-Aboal, R.; Atienzar Corvillo, PE.; Meseguer Rico, FJ. (2019). Groove-assisted solution growth of lead bromide perovskite aligned nanowires: a simple method towards photoluminescent materials with guiding light properties. Materials Chemistry Frontiers. 3(9):1754-1760. https://doi.org/10.1039/c9qm00210cS1754176039Semiconductor nanowires: From next-generation Electronics to Sustainable Energy , ed. W. Lu and J. Xiang , RSC Smart Materials Series, 2015Semiconductor Nanowires, Materials, Synthesis, Characterization and Applications , ed. J. Arbiol and Q. Xiong , Woodhead Publishing , 2015Peng, K.-Q., Wang, X., Li, L., Hu, Y., & Lee, S.-T. (2013). Silicon nanowires for advanced energy conversion and storage. Nano Today, 8(1), 75-97. doi:10.1016/j.nantod.2012.12.009M. Mikolajick and W. M.Weber , Silicon Nanowires in Anisotropic Nanomaterials , ed. Q. Li , Springer , 2015 , pp. 1–25Hasan, M., Huq, M. F., & Mahmood, Z. H. (2013). A review on electronic and optical properties of silicon nanowire and its different growth techniques. SpringerPlus, 2(1). doi:10.1186/2193-1801-2-151Liu, Z., Mi, Y., Guan, X., Su, Z., Liu, X., & Wu, T. (2018). Morphology-Tailored Halide Perovskite Platelets and Wires: From Synthesis, Properties to Optoelectronic Devices. Advanced Optical Materials, 6(17), 1800413. doi:10.1002/adom.201800413Fu, Y., Zhu, H., Chen, J., Hautzinger, M. P., Zhu, X.-Y., & Jin, S. (2019). Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nature Reviews Materials, 4(3), 169-188. doi:10.1038/s41578-019-0080-9Manser, J. S., Christians, J. A., & Kamat, P. V. (2016). Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chemical Reviews, 116(21), 12956-13008. doi:10.1021/acs.chemrev.6b00136Kitazawa, N., Watanabe, Y., & Nakamura, Y. (2002). Journal of Materials Science, 37(17), 3585-3587. doi:10.1023/a:1016584519829Albero, J., & García, H. (2017). Luminescence control in hybrid perovskites and their applications. Journal of Materials Chemistry C, 5(17), 4098-4110. doi:10.1039/c7tc00714kLongo, G., La-Placa, M.-G., Sessolo, M., & Bolink, H. J. (2017). High Photoluminescence Quantum Yields in Organic Semiconductor-Perovskite Composite Thin Films. ChemSusChem, 10(19), 3788-3793. doi:10.1002/cssc.201701265Richter, J. M., Abdi-Jalebi, M., Sadhanala, A., Tabachnyk, M., Rivett, J. P. H., Pazos-Outón, L. M., … Friend, R. H. (2016). Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nature Communications, 7(1). doi:10.1038/ncomms13941De Wolf, S., Holovsky, J., Moon, S.-J., Löper, P., Niesen, B., Ledinsky, M., … Ballif, C. (2014). Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. The Journal of Physical Chemistry Letters, 5(6), 1035-1039. doi:10.1021/jz500279bWehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J., & Herz, L. M. (2013). High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Advanced Materials, 26(10), 1584-1589. doi:10.1002/adma.201305172Sutherland, B. R., & Sargent, E. H. (2016). Perovskite photonic sources. Nature Photonics, 10(5), 295-302. doi:10.1038/nphoton.2016.62Bi, D., Tress, W., Dar, M. I., Gao, P., Luo, J., Renevier, C., … Hagfeldt, A. (2016). Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances, 2(1). doi:10.1126/sciadv.1501170Jung, H. S., & Park, N.-G. (2014). Perovskite Solar Cells: From Materials to Devices. Small, 11(1), 10-25. doi:10.1002/smll.201402767Zhang, W., Eperon, G. E., & Snaith, H. J. (2016). Metal halide perovskites for energy applications. Nature Energy, 1(6). doi:10.1038/nenergy.2016.48Kim, Y.-H., Wolf, C., Kim, Y.-T., Cho, H., Kwon, W., Do, S., … Lee, T.-W. (2017). Highly Efficient Light-Emitting Diodes of Colloidal Metal–Halide Perovskite Nanocrystals beyond Quantum Size. ACS Nano, 11(7), 6586-6593. doi:10.1021/acsnano.6b07617Veldhuis, S. A., Boix, P. P., Yantara, N., Li, M., Sum, T. C., Mathews, N., & Mhaisalkar, S. G. (2016). Perovskite Materials for Light-Emitting Diodes and Lasers. Advanced Materials, 28(32), 6804-6834. doi:10.1002/adma.201600669Wang, N., Cheng, L., Ge, R., Zhang, S., Miao, Y., Zou, W., … Huang, W. (2016). Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 10(11), 699-704. doi:10.1038/nphoton.2016.185Zhu, H., Fu, Y., Meng, F., Wu, X., Gong, Z., Ding, Q., … Zhu, X.-Y. (2015). Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Materials, 14(6), 636-642. doi:10.1038/nmat4271Harwell, J. R., Whitworth, G. L., Turnbull, G. A., & Samuel, I. D. W. (2017). Green Perovskite Distributed Feedback Lasers. Scientific Reports, 7(1). doi:10.1038/s41598-017-11569-3Jia, Y., Kerner, R. A., Grede, A. J., Rand, B. P., & Giebink, N. C. (2017). Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nature Photonics, 11(12), 784-788. doi:10.1038/s41566-017-0047-6Xing, G., Mathews, N., Lim, S. S., Yantara, N., Liu, X., Sabba, D., … Sum, T. C. (2014). Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 13(5), 476-480. doi:10.1038/nmat3911Zhang, S., Audebert, P., Wei, Y., Al Choueiry, A., Lanty, G., Bréhier, A., … Deleporte, E. (2010). Preparations and Characterizations of Luminescent Two Dimensional Organic-inorganic Perovskite Semiconductors. Materials, 3(5), 3385-3406. doi:10.3390/ma3053385Shoaib, M., Zhang, X., Wang, X., Zhou, H., Xu, T., Wang, X., … Pan, A. (2017). Directional Growth of Ultralong CsPbBr3 Perovskite Nanowires for High-Performance Photodetectors. Journal of the American Chemical Society, 139(44), 15592-15595. doi:10.1021/jacs.7b08818Xing, J., Liu, X. F., Zhang, Q., Ha, S. T., Yuan, Y. W., Shen, C., … Xiong, Q. (2015). Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers. Nano Letters, 15(7), 4571-4577. doi:10.1021/acs.nanolett.5b01166Gu, L., Tavakoli, M. M., Zhang, D., Zhang, Q., Waleed, A., Xiao, Y., … Fan, Z. (2016). 3D Arrays of 1024-Pixel Image Sensors based on Lead Halide Perovskite Nanowires. Advanced Materials, 28(44), 9713-9721. doi:10.1002/adma.201601603Wang, Y., Sun, X., Shivanna, R., Yang, Y., Chen, Z., Guo, Y., … Shi, J. (2016). Photon Transport in One-Dimensional Incommensurately Epitaxial CsPbX3 Arrays. Nano Letters, 16(12), 7974-7981. doi:10.1021/acs.nanolett.6b04297Park, K., Lee, J. W., Kim, J. D., Han, N. S., Jang, D. M., Jeong, S., … Song, J. K. (2016). Light–Matter Interactions in Cesium Lead Halide Perovskite Nanowire Lasers. The Journal of Physical Chemistry Letters, 7(18), 3703-3710. doi:10.1021/acs.jpclett.6b01821Chen, J., Fu, Y., Samad, L., Dang, L., Zhao, Y., Shen, S., … Jin, S. (2016). Vapor-Phase Epitaxial Growth of Aligned Nanowire Networks of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Letters, 17(1), 460-466. doi:10.1021/acs.nanolett.6b04450Zhou, H., Yuan, S., Wang, X., Xu, T., Wang, X., Li, H., … Pan, A. (2016). Vapor Growth and Tunable Lasing of Band Gap Engineered Cesium Lead Halide Perovskite Micro/Nanorods with Triangular Cross Section. ACS Nano, 11(2), 1189-1195. doi:10.1021/acsnano.6b07374Wang, X., Zhou, H., Yuan, S., Zheng, W., Jiang, Y., Zhuang, X., … Pan, A. (2017). Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. Nano Research, 10(10), 3385-3395. doi:10.1007/s12274-017-1551-1Oksenberg, E., Sanders, E., Popovitz-Biro, R., Houben, L., & Joselevich, E. (2017). Surface-Guided CsPbBr3 Perovskite Nanowires on Flat and Faceted Sapphire with Size-Dependent Photoluminescence and Fast Photoconductive Response. Nano Letters, 18(1), 424-433. doi:10.1021/acs.nanolett.7b04310Chen, J., Luo, Z., Fu, Y., Wang, X., Czech, K. J., Shen, S., … Jin, S. (2019). Tin(IV)-Tolerant Vapor-Phase Growth and Photophysical Properties of Aligned Cesium Tin Halide Perovskite (CsSnX3; X = Br, I) Nanowires. ACS Energy Letters, 4(5), 1045-1052. doi:10.1021/acsenergylett.9b00543Eaton, S. W., Lai, M., Gibson, N. A., Wong, A. B., Dou, L., Ma, J., … Yang, P. (2016). Lasing in robust cesium lead halide perovskite nanowires. Proceedings of the National Academy of Sciences, 113(8), 1993-1998. doi:10.1073/pnas.1600789113Tavakoli, M. M., Waleed, A., Gu, L., Zhang, D., Tavakoli, R., Lei, B., … Fan, Z. (2017). A non-catalytic vapor growth regime for organohalide perovskite nanowires using anodic aluminum oxide templates. Nanoscale, 9(18), 5828-5834. doi:10.1039/c7nr00444cIm, J.-H., Luo, J., Franckevičius, M., Pellet, N., Gao, P., Moehl, T., … Park, N.-G. (2015). Nanowire Perovskite Solar Cell. Nano Letters, 15(3), 2120-2126. doi:10.1021/acs.nanolett.5b00046Wong, A. B., Lai, M., Eaton, S. W., Yu, Y., Lin, E., Dou, L., … Yang, P. (2015). Growth and Anion Exchange Conversion of CH3NH3PbX3 Nanorod Arrays for Light-Emitting Diodes. Nano Letters, 15(8), 5519-5524. doi:10.1021/acs.nanolett.5b02082Deng, H., Dong, D., Qiao, K., Bu, L., Li, B., Yang, D., … Song, H. (2015). Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices. Nanoscale, 7(9), 4163-4170. doi:10.1039/c4nr06982jSpina, M., Bonvin, E., Sienkiewicz, A., Náfrádi, B., Forró, L., & Horváth, E. (2016). Controlled growth of CH3NH3PbI3 nanowires in arrays of open nanofluidic channels. Scientific Reports, 6(1). doi:10.1038/srep19834Ashley, M. J., O’Brien, M. N., Hedderick, K. R., Mason, J. A., Ross, M. B., & Mirkin, C. A. (2016). Templated Synthesis of Uniform Perovskite Nanowire Arrays. Journal of the American Chemical Society, 138(32), 10096-10099. doi:10.1021/jacs.6b05901Deng, W., Huang, L., Xu, X., Zhang, X., Jin, X., Lee, S.-T., & Jie, J. (2017). Ultrahigh-Responsivity Photodetectors from Perovskite Nanowire Arrays for Sequentially Tunable Spectral Measurement. Nano Letters, 17(4), 2482-2489. doi:10.1021/acs.nanolett.7b00166Wang, S., Wang, K., Gu, Z., Wang, Y., Huang, C., Yi, N., … Song, Q. (2017). Solution-Phase Synthesis of Cesium Lead Halide Perovskite Microrods for High-Quality Microlasers and Photodetectors. Advanced Optical Materials, 5(11), 1700023. doi:10.1002/adom.201700023Petrov, A. A., Pellet, N., Seo, J.-Y., Belich, N. A., Kovalev, D. Y., Shevelkov, A. V., … Graetzel, M. (2016). New Insight into the Formation of Hybrid Perovskite Nanowires via Structure Directing Adducts. Chemistry of Materials, 29(2), 587-594. doi:10.1021/acs.chemmater.6b03965Fu, Y., Zhu, H., Stoumpos, C. C., Ding, Q., Wang, J., Kanatzidis, M. G., … Jin, S. (2016). Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). ACS Nano, 10(8), 7963-7972. doi:10.1021/acsnano.6b03916Zhang, D., Eaton, S. W., Yu, Y., Dou, L., & Yang, P. (2015). Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires. Journal of the American Chemical Society, 137(29), 9230-9233. doi:10.1021/jacs.5b05404Zhang, D., Yu, Y., Bekenstein, Y., Wong, A. B., Alivisatos, A. P., & Yang, P. (2016). Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowires. Journal of the American Chemical Society, 138(40), 13155-13158. doi:10.1021/jacs.6b08373Fu, Y., Zhu, H., Schrader, A. W., Liang, D., Ding, Q., Joshi, P., … Jin, S. (2016). Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability. Nano Letters, 16(2), 1000-1008. doi:10.1021/acs.nanolett.5b04053Liu, P., He, X., Ren, J., Liao, Q., Yao, J., & Fu, H. (2017). Organic–Inorganic Hybrid Perovskite Nanowire Laser Arrays. ACS Nano, 11(6), 5766-5773. doi:10.1021/acsnano.7b01351Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338(6107), 643-647. doi:10.1126/science.1228604Niu, G., Guo, X., & Wang, L. (2015). Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A, 3(17), 8970-8980. doi:10.1039/c4ta04994bBerhe, T. A., Su, W.-N., Chen, C.-H., Pan, C.-J., Cheng, J.-H., Chen, H.-M., … Hwang, B.-J. (2016). Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science, 9(2), 323-356. doi:10.1039/c5ee02733kBrunetti, B., Cavallo, C., Ciccioli, A., Gigli, G., & Latini, A. (2016). On the Thermal and Thermodynamic (In)Stability of Methylammonium Lead Halide Perovskites. Scientific Reports, 6(1). doi:10.1038/srep31896Conings, B., Drijkoningen, J., Gauquelin, N., Babayigit, A., D’Haen, J., D’Olieslaeger, L., … Boyen, H.-G. (2015). Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Advanced Energy Materials, 5(15), 1500477. doi:10.1002/aenm.201500477Kulbak, M., Gupta, S., Kedem, N., Levine, I., Bendikov, T., Hodes, G., & Cahen, D. (2015). Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. The Journal of Physical Chemistry Letters, 7(1), 167-172. doi:10.1021/acs.jpclett.5b02597Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M. K., … Grätzel, M. (2016). Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science, 9(6), 1989-1997. doi:10.1039/c5ee03874jService, R. F. (2016). Cesium fortifies next-generation solar cells. Science, 351(6269), 113-114. doi:10.1126/science.351.6269.113Kang, J., & Wang, L.-W. (2017). High Defect Tolerance in Lead Halide Perovskite CsPbBr3. The Journal of Physical Chemistry Letters, 8(2), 489-493. doi:10.1021/acs.jpclett.6b02800Pazos-Outón, L. M., Szumilo, M., Lamboll, R., Richter, J. M., Crespo-Quesada, M., Abdi-Jalebi, M., … Deschler, F. (2016). Photon recycling in lead iodide perovskite solar cells. Science, 351(6280), 1430-1433. doi:10.1126/science.aaf1168Dursun, I., Zheng, Y., Guo, T., De Bastiani, M., Turedi, B., Sinatra, L., … Malko, A. V. (2018). Efficient Photon Recycling and Radiation Trapping in Cesium Lead Halide Perovskite Waveguides. ACS Energy Letters, 3(7), 1492-1498. doi:10.1021/acsenergylett.8b00758F. Ramiro-Manzano , R.García-Aboal , R.Fenollosa , S.Basi , I.Rodriguez , P.Atienzar and F.Meseguer , Optical properties of organic/inorganic perovskite microcrystals through the characterization of Fabry–Pérot resonances, 2019, submittedRamiro-Manzano, F., Bonet, E., Rodriguez, I., & Meseguer, F. (2010). Colloidal Crystal Thin Films Grown into Corrugated Surface Templates. Langmuir, 26(7), 4559-4562. doi:10.1021/la904396mGarcía-Aboal, R., Fenollosa, R., Ramiro-Manzano, F., Rodríguez, I., Meseguer, F., & Atienzar, P. (2018). Single Crystal Growth of Hybrid Lead Bromide Perovskites Using a Spin-Coating Method. ACS Omega, 3(5), 5229-5236. doi:10.1021/acsomega.8b00447Fenollosa, R., Garín, M., & Meseguer, F. (2016). Spherical silicon photonic microcavities: From amorphous to polycrystalline. Physical Review B, 93(23). doi:10.1103/physrevb.93.23530

    Photoactive Zr and Ti Metal-Organic-Frameworks for SolidState Solar Cells

    Full text link
    This is the peer reviewed version of the following article: A. Melillo, R. García-Aboal, S. Navalón, P. Atienzar, B. Ferrer, M. Álvaro, H. García, ChemPhysChem 2021, 22, 842. ], which has been published in final form at https://doi.org/10.1002/cphc.202100083. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Solid-state photovoltaic cells based on robust metal-organic frameworks (MOFs), MIL-125(Ti), MIL-125(Ti)-NH2, UiO-67, Ru(bpy)(2)-UiO-67, (bpy 2,2'-bipyridine) as active components and spiro-MeOTAD (MeOTAD 2,2',7,7'-tetrakis[N,N-di(p-methoxyphenyl)amino]-9,9 '-spirobifluorene) as hole transporting layer have been prepared., The photovoltaic response of this material increases in the presence of bathochromic -NH2 groups on the linker or Ru (II) polypyridyl complexes light harvester. These results show that the strategies typically employed in photocatalysis to enhance the photocatalytic activity of MOFs can also be applied in the field of photovoltaic devices.Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-98276-CO2-1) and Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. S.N. thanks financial support by the Ministerio de Ciencia, Innovacion y Universidades (RTI 2018-099482-A-I00 project) and Agencia Valenciana de la Innovacion (AVI-GVA, Carboagua project, INNEST/2020/111).Melillo, A.; García-Aboal, R.; Navalón Oltra, S.; Atienzar Corvillo, PE.; Ferrer Ribera, RB.; Alvaro Rodríguez, MM.; García Gómez, H. (2021). Photoactive Zr and Ti Metal-Organic-Frameworks for SolidState Solar Cells. ChemPhysChem (Online). 22(9):842-848. https://doi.org/10.1002/cphc.202100083S84284822

    Single Crystal Growth of Hybrid Lead Bromide Perovskites Using a Spin-Coating Method

    Full text link
    [EN] Synthesis and studies of single crystals of hybrid perovskite are important for achieving a better understanding of the optoelectronic phenomena occurring in this material and for improving ongoing applications. Here, we report on the growth of micrometer-size single crystals of methylammonium lead bromide (MAPbBr3) using the spin coating deposition method on a quartz substrate. We studied the influence of the rotation speed and the use of three different additives N-cyclohexyl-2-pyrrolidone, dimethyl sulfoxide, and 4-tert-butylpyridine on the crystal size and shape. The introduction of an additive in the precursor solution is revealed to be very useful for obtaining crystals with well-defined geometries and for decreasing the amount of defects. In this way, high-quality single crystals that sustain optical resonating modes were obtained and characterized by transmittance and photoluminescence measurements.Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, SEV-2016-0683), Intramural CSIC project 201680I006, and Fundacion Ramon Areces (XVII Concurso Nacional para la adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia) is gratefully acknowledged. Financial support was also provided by the Spanish Ministry of Economy and Competitiveness (Mineco) of Spain (TEC2015-74405-JIN), MAT2015-69669-P, and regional government grant PrometeoII/2017/026.García-Aboal, R.; Fenollosa Esteve, R.; Ramiro Manzano, F.; Rodriguez, I.; Messeguer Rico, FJ.; Atienzar Corvillo, PE. (2018). Single Crystal Growth of Hybrid Lead Bromide Perovskites Using a Spin-Coating Method. ACS Omega. 3(5):5229-5236. https://doi.org/10.1021/acsomega.8b00447S522952363

    Remarkable Activity of 002 Facet of Ruthenium Nanoparticles Grown on Graphene Films on the Photocatalytic CO2 Methanation

    Full text link
    [EN] In the context of diminishing atmospheric CO2 emissions, there is an urgent need to develop processes that can be carried out at a scale commensurate with appropriate CO2 volumes. One possible reaction is the transformation of CO2 to methane (Sabatier reaction). Due to its chemical stability, catalytic CO2 hydrogenation to methane is carried out at temperatures of 450 degrees C or higher and pressures above 5 bars, thus, requiring a significant energy input. One alternative possibility to conventional thermal catalysis is the use of solar light as the primary energy, performing the photocatalytic CO2 hydrogenation. In this broad context, the present study shows the photocatalytic activity of nanometric films of oriented Ru nanoparticles (NPs) strongly grafted on defective graphene. These graphene films (thinner than 20 nm) containing Ru NPs nanoplatelets (less than 2 nanomol(Ru)/cm(2)) are among the most active photocatalysts ever prepared for CO2 hydrogenation and operate through photoinduced charge separationSupport by the Ministerio de Ciencia e Innovacion (Severo Ochoa and RTI2018-098237-B-C21) and Generalitat Valenciana (Prometeo 2017/083) was acknowledged. Thanks are due to Galicia Supercomputing Center. A.A. thanks UEMF (Euromed Unniversity Fes) and UPV for an Erasmus+ 2019-1-ES01-KA107-062073 Scholarship. A.P. thanks the Spanish Ministry for a Ramon y Cajal research associate contract.Anouar, A.; García-Aboal, R.; Atienzar Corvillo, PE.; Franconetti, A.; Katir, N.; El Kadib, A.; Primo Arnau, AM.... (2022). Remarkable Activity of 002 Facet of Ruthenium Nanoparticles Grown on Graphene Films on the Photocatalytic CO2 Methanation. Advanced Sustainable Systems. 6(5):1-10. https://doi.org/10.1002/adsu.2021004871106

    Optical properties of organic/inorganic perovskite microcrystals through the characterization of Fabry-Perot resonances

    Full text link
    [EN] A precise knowledge of the optical properties, specifically the refractive index, of organic/inorganic perovskites, is essential for pushing forward the performance of the current photovoltaic devices that are being developed from these materials. Here we show a robust method for determining the real and the imaginary part of the refractive index of MAPbBr(3) thin films and micrometer size single crystals with planar geometry. The simultaneous fit of both the optical transmittance and the photoluminescence spectra to theoretical models defines unambiguously the refractive index and the crystal thickness. Because the method relies on the optical resonance phenomenon occurring in these microstructures, it can be used to further develop optical microcavities from perovskites or from other optical materials.This work was supported by the Spanish ministry of Economy, Industry and Competitiveness (MINECO) through the projects TEC2015-74405-JIN, MAT2015-69669-P as well as the regional projects of both Provincia Autonoma di Trento (PAT) of Italy, through the call Grandi Progetti 2012: SIQURO and the Comunidad Valenciana of Spain project PrometeoII/2014/026.Ramiro Manzano, F.; García-Aboal, R.; Fenollosa Esteve, R.; Biasi, S.; Rodriguez, I.; Atienzar Corvillo, PE.; Meseguer Rico, FJ. (2020). Optical properties of organic/inorganic perovskite microcrystals through the characterization of Fabry-Perot resonances. Dalton Transactions. 49(36):12798-12804. https://doi.org/10.1039/d0dt02254c1279812804493

    Enhanced CO<sub>2</sub> Sensing by Oxygen Plasma-Treated Perovskite-Graphene Nanocomposites

    Full text link
    [EN] Carbon dioxide (CO2) is a major greenhouse gas responsible for global warming and climate change. The development of sensitive CO2 sensors is crucial for environmental and industrial applications. This paper presents a novel CO2 sensor based on perovskite nanocrystals immobilized on graphene and functionalized with oxygen plasma treatment. The impact of this post-treatment method was thoroughly investigated using various characterization techniques, including Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The detection of CO2 at parts per million (ppm) levels demonstrated that the hybrids subjected to 5 min of oxygen plasma treatment exhibited a 3-fold improvement in sensing performance compared to untreated layers. Consequently, the CO2 sensing capability of the oxygen-treated samples showed a limit of detection and limit of quantification of 6.9 and 22.9 ppm, respectively. Furthermore, the influence of ambient moisture on the CO2 sensing performance was also evaluated, revealing a significant effect of oxygen plasma treatment.J.C.-C. is supported by Marie Sk & lstrok;odowska-Curie Individual Fellowship (Horizon Europe program) under grant agreement no. 101066282 "GREBOS". E.L. is supported by the Catalan Institute for Advanced Studies (ICREA) via the 2018 Edition of the ICREA Academia Award. This work was supported in part by the Marie Sk & lstrok;odowska-Curie Action (MSCA) Research and in part by the Innovation Staff Exchange (RISE) under grant no. H2020-MSCA-RISE-2018-823895 "SENSOFT". This research was also funded by the ITQ through the project PID2021-123163OB-I00 funded by MCIN/AEI/10.13039/501100011033 and FEDER A way of making Europe and Severo Ochoa Centre of Excellence program (CEX2021-001230-S).Casanova-Chafer, J.; García-Aboal, R.; Llobet, E.; Atienzar Corvillo, PE. (2024). Enhanced CO2 Sensing by Oxygen Plasma-Treated Perovskite-Graphene Nanocomposites. ACS Sensors. 9(2):830-839. https://doi.org/10.1021/acssensors.3c021668308399

    Scanning Photocurrent Microscopy in Single Crystal Multidimensional Hybrid Lead Bromide Perovskites

    No full text
    We investigated solution-grown single crystals of multidimensional 2D–3D hybrid lead bromide perovskites using spatially resolved photocurrent and photoluminescence. Scanning photocurrent microscopy (SPCM) measurements where the electrodes consisted of a dip probe contact and a back contact. The crystals revealed significant differences between 3D and multidimensional 2D–3D perovskites under biased detection, not only in terms of photocarrier decay length values but also in the spatial dynamics across the crystal. In general, the photocurrent maps indicate that the closer the border proximity, the shorter the effective decay length, thus suggesting a determinant role of the border recombination centers in monocrystalline samples. In this case, multidimensional 2D–3D perovskites exhibited a simple fitting model consisting of a single exponential, while 3D perovskites demonstrated two distinct charge carrier migration dynamics within the crystal: fast and slow. Although the first one matches that of the 2D–3D perovskite, the long decay of the 3D sample exhibits a value two orders of magnitude larger. This difference could be attributed to the presence of interlayer screening and a larger exciton binding energy of the multidimensional 2D–3D perovskites with respect to their 3D counterparts
    corecore