Gas Sensing Properties of Perovskite Decorated Graphene at Room Temperature

Abstract

[EN] This paper explores the gas sensing properties of graphene nanolayers decorated with lead halide perovskite (CH3NH3PbBr3) nanocrystals to detect toxic gases such as ammonia (NH3) and nitrogen dioxide (NO2). A chemical-sensitive semiconductor film based on graphene has been achieved, being decorated with CH3NH3PbBr3 perovskite (MAPbBr3) nanocrystals (NCs) synthesized, and characterized by several techniques, such as field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Reversible responses were obtained towards NO2 and NH3 at room temperature, demonstrating an enhanced sensitivity when the graphene is decorated by MAPbBr3 NCs. Furthermore, the effect of ambient moisture was extensively studied, showing that the use of perovskite NCs in gas sensors can become a promising alternative to other gas sensitive materials, due to the protective character of graphene, resulting from its high hydrophobicity. Besides, a gas sensing mechanism is proposed to understand the effects of MAPbBr3 sensing propertiesThis work was funded in part by MINECO, MICINN and FEDER via grants no. RTI2018-101580-B-I00, by AGAUR under grant. 2017SGR 418 J.C.C gratefully acknowledges a doctoral fellowship from URV under the Marti i Franques fellowship program. E.L. is supported by the Catalan institution for Research and Advanced Studies via the 2012 and 2018 Editions of the ICREA Academia Award. P.A. acknowledges the financial support from the Spanish Government through 'Severo Ochoa"(SEV-2016-0683, MINECO) and PGC2018-099744-B-I00 (MCIU/AEI/FEDER, UE), and R.G.A. acknowledges FPI scholarship the Spanish Government-MINECO for a (TEC2015-74405-JIN), MAT2015-69669-P.Casanova-Cháfer, J.; García-Aboal, R.; Atienzar Corvillo, PE.; Llobet, E. (2019). Gas Sensing Properties of Perovskite Decorated Graphene at Room Temperature. Sensors. 19(20):1-14. https://doi.org/10.3390/s19204563S11419207 Million Premature Deaths Annually Linked to Air Pollution https://www.who.int/mediacentre/news/releases/2014/air-pollution/en/Hansen, J., Sato, M., Ruedy, R., Lacis, A., & Oinas, V. (2000). Global warming in the twenty-first century: An alternative scenario. Proceedings of the National Academy of Sciences, 97(18), 9875-9880. doi:10.1073/pnas.170278997Ibañez, F. J., & Zamborini, F. P. (2011). Chemiresistive Sensing with Chemically Modified Metal and Alloy Nanoparticles. Small, 8(2), 174-202. doi:10.1002/smll.201002232Mirzaei, A., Leonardi, S. G., & Neri, G. (2016). Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceramics International, 42(14), 15119-15141. doi:10.1016/j.ceramint.2016.06.145Zaidi, N. A., Tahir, M. W., Vellekoop, M. J., & Lang, W. (2017). A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas. Sensors, 17(10), 2283. doi:10.3390/s17102283Meng, F.-L., Guo, Z., & Huang, X.-J. (2015). Graphene-based hybrids for chemiresistive gas sensors. TrAC Trends in Analytical Chemistry, 68, 37-47. doi:10.1016/j.trac.2015.02.008Miller, D. R., Akbar, S. A., & Morris, P. A. (2014). Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensors and Actuators B: Chemical, 204, 250-272. doi:10.1016/j.snb.2014.07.074Scott, S. M., James, D., & Ali, Z. (2006). Data analysis for electronic nose systems. Microchimica Acta, 156(3-4), 183-207. doi:10.1007/s00604-006-0623-9Rodríguez-Pérez, L., Herranz, M. Á., & Martín, N. (2013). The chemistry of pristine graphene. Chemical Communications, 49(36), 3721. doi:10.1039/c3cc38950bPrezioso, S., Perrozzi, F., Giancaterini, L., Cantalini, C., Treossi, E., Palermo, V., … Ottaviano, L. (2013). Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing. The Journal of Physical Chemistry C, 117(20), 10683-10690. doi:10.1021/jp3085759Lipatov, A., Varezhnikov, A., Wilson, P., Sysoev, V., Kolmakov, A., & Sinitskii, A. (2013). Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale, 5(12), 5426. doi:10.1039/c3nr00747bVarghese, S. S., Lonkar, S., Singh, K. K., Swaminathan, S., & Abdala, A. (2015). Recent advances in graphene based gas sensors. Sensors and Actuators B: Chemical, 218, 160-183. doi:10.1016/j.snb.2015.04.062Rodner, M., Puglisi, D., Ekeroth, S., Helmersson, U., Shtepliuk, I., Yakimova, R., … Eriksson, J. (2019). Graphene Decorated with Iron Oxide Nanoparticles for Highly Sensitive Interaction with Volatile Organic Compounds. Sensors, 19(4), 918. doi:10.3390/s19040918Kaniyoor, A., Imran Jafri, R., Arockiadoss, T., & Ramaprabhu, S. (2009). Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale, 1(3), 382. doi:10.1039/b9nr00015aSeekaew, Y., Lokavee, S., Phokharatkul, D., Wisitsoraat, A., Kerdcharoen, T., & Wongchoosuk, C. (2014). Low-cost and flexible printed graphene–PEDOT:PSS gas sensor for ammonia detection. Organic Electronics, 15(11), 2971-2981. doi:10.1016/j.orgel.2014.08.044Kang, M.-A., Ji, S., Kim, S., Park, C.-Y., Myung, S., Song, W., … An, K.-S. (2018). Highly sensitive and wearable gas sensors consisting of chemically functionalized graphene oxide assembled on cotton yarn. RSC Advances, 8(22), 11991-11996. doi:10.1039/c8ra01184bFine, G. F., Cavanagh, L. M., Afonja, A., & Binions, R. (2010). Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors, 10(6), 5469-5502. doi:10.3390/s100605469Sun, D., Luo, Y., Debliquy, M., & Zhang, C. (2018). Graphene-enhanced metal oxide gas sensors at room temperature: a review. Beilstein Journal of Nanotechnology, 9, 2832-2844. doi:10.3762/bjnano.9.264Llobet, E. (2013). Gas sensors using carbon nanomaterials: A review. Sensors and Actuators B: Chemical, 179, 32-45. doi:10.1016/j.snb.2012.11.014Correa-Baena, J.-P., Abate, A., Saliba, M., Tress, W., Jesper Jacobsson, T., Grätzel, M., & Hagfeldt, A. (2017). The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science, 10(3), 710-727. doi:10.1039/c6ee03397kSun, S., Salim, T., Mathews, N., Duchamp, M., Boothroyd, C., Xing, G., … Lam, Y. M. (2014). The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci., 7(1), 399-407. doi:10.1039/c3ee43161dJuarez-Perez, E. J., Ono, L. K., Maeda, M., Jiang, Y., Hawash, Z., & Qi, Y. (2018). Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. Journal of Materials Chemistry A, 6(20), 9604-9612. doi:10.1039/c8ta03501fChen, H., Zhang, M., Bo, R., Barugkin, C., Zheng, J., Ma, Q., … Tricoli, A. (2017). Superior Self‐Powered Room‐Temperature Chemical Sensing with Light‐Activated Inorganic Halides Perovskites. Small, 14(7), 1702571. doi:10.1002/smll.201702571Kakavelakis, G., Gagaoudakis, E., Petridis, K., Petromichelaki, V., Binas, V., Kiriakidis, G., & Kymakis, E. (2017). Solution Processed CH3NH3PbI3–xClx Perovskite Based Self-Powered Ozone Sensing Element Operated at Room Temperature. ACS Sensors, 3(1), 135-142. doi:10.1021/acssensors.7b00761Bao, C., Yang, J., Zhu, W., Zhou, X., Gao, H., Li, F., … Zou, Z. (2015). A resistance change effect in perovskite CH3NH3PbI3 films induced by ammonia. Chemical Communications, 51(84), 15426-15429. doi:10.1039/c5cc06060eZhuang, Y., Yuan, W., Qian, L., Chen, S., & Shi, G. (2017). High-performance gas sensors based on a thiocyanate ion-doped organometal halide perovskite. Physical Chemistry Chemical Physics, 19(20), 12876-12881. doi:10.1039/c7cp01646hStoeckel, M.-A., Gobbi, M., Bonacchi, S., Liscio, F., Ferlauto, L., Orgiu, E., & Samorì, P. (2017). Reversible, Fast, and Wide-Range Oxygen Sensor Based on Nanostructured Organometal Halide Perovskite. Advanced Materials, 29(38), 1702469. doi:10.1002/adma.201702469Zhu, R., Zhang, Y., Zhong, H., Wang, X., Xiao, H., Chen, Y., & Li, X. (2019). High-performance room-temperature NO2 sensors based on CH3NH3PbBr3 semiconducting films: Effect of surface capping by alkyl chain on sensor performance. Journal of Physics and Chemistry of Solids, 129, 270-276. doi:10.1016/j.jpcs.2019.01.020Acik, M., & Darling, S. B. (2016). Graphene in perovskite solar cells: device design, characterization and implementation. Journal of Materials Chemistry A, 4(17), 6185-6235. doi:10.1039/c5ta09911kChristians, J. A., Miranda Herrera, P. A., & Kamat, P. V. (2015). Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air. Journal of the American Chemical Society, 137(4), 1530-1538. doi:10.1021/ja511132aLeguy, A. M. A., Hu, Y., Campoy-Quiles, M., Alonso, M. I., Weber, O. J., Azarhoosh, P., … Barnes, P. R. F. (2015). Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells. Chemistry of Materials, 27(9), 3397-3407. doi:10.1021/acs.chemmater.5b00660O’Keeffe, P., Catone, D., Paladini, A., Toschi, F., Turchini, S., Avaldi, L., … Di Carlo, A. (2019). Graphene-Induced Improvements of Perovskite Solar Cell Stability: Effects on Hot-Carriers. Nano Letters, 19(2), 684-691. doi:10.1021/acs.nanolett.8b03685Berhe, T. A., Su, W.-N., Chen, C.-H., Pan, C.-J., Cheng, J.-H., Chen, H.-M., … Hwang, B.-J. (2016). Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science, 9(2), 323-356. doi:10.1039/c5ee02733kLee, G. Y., Yang, M. Y., Kim, D., Lim, J., Byun, J., Choi, D. S., … Kim, S. O. (2019). Nitrogen‐Dopant‐Induced Organic–Inorganic Hybrid Perovskite Crystal Growth on Carbon Nanotubes. Advanced Functional Materials, 29(30), 1902489. doi:10.1002/adfm.201902489Fu, X., Jiao, S., Dong, N., Lian, G., Zhao, T., Lv, S., … Cui, D. (2018). A CH3NH3PbI3 film for a room-temperature NO2 gas sensor with quick response and high selectivity. RSC Advances, 8(1), 390-395. doi:10.1039/c7ra11149eGupta, N., Nanda, O., Grover, R., & Saxena, K. (2018). A new inorganic-organic hybrid halide perovskite thin film based ammonia sensor. Organic Electronics, 58, 202-206. doi:10.1016/j.orgel.2018.04.015Air Quality Standards https://ec.europa.eu/environment/air/quality/standards.htmCommission Directive 2000/39/EC https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02000L0039-20100108&from=ENSchmidt, L. C., Pertegás, A., González-Carrero, S., Malinkiewicz, O., Agouram, S., Mínguez Espallargas, G., … Pérez-Prieto, J. (2014). Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. Journal of the American Chemical Society, 136(3), 850-853. doi:10.1021/ja4109209Yang, G., Kim, B.-J., Kim, K., Han, J. W., & Kim, J. (2015). Energy and dose dependence of proton-irradiation damage in graphene. RSC Advances, 5(40), 31861-31865. doi:10.1039/c5ra03551aD’Acunto, G., Ripanti, F., Postorino, P., Betti, M. G., Scardamaglia, M., Bittencourt, C., & Mariani, C. (2018). Channelling and induced defects at ion-bombarded aligned multiwall carbon nanotubes. Carbon, 139, 768-775. doi:10.1016/j.carbon.2018.07.032Johra, F. T., Lee, J.-W., & Jung, W.-G. (2014). Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry, 20(5), 2883-2887. doi:10.1016/j.jiec.2013.11.022Ganesan, K., Ghosh, S., Gopala Krishna, N., Ilango, S., Kamruddin, M., & Tyagi, A. K. (2016). A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures. Physical Chemistry Chemical Physics, 18(32), 22160-22167. doi:10.1039/c6cp02033jRoy, S., Das, T., Ming, Y., Chen, X., Yue, C. Y., & Hu, X. (2014). Specific functionalization and polymer grafting on multiwalled carbon nanotubes to fabricate advanced nylon 12 composites. Journal of Materials Chemistry A, 2(11), 3961. doi:10.1039/c3ta14528jDatsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., … Galiotis, C. (2008). Chemical oxidation of multiwalled carbon nanotubes. Carbon, 46(6), 833-840. doi:10.1016/j.carbon.2008.02.012Kumar, P. V., Bernardi, M., & Grossman, J. C. (2013). The Impact of Functionalization on the Stability, Work Function, and Photoluminescence of Reduced Graphene Oxide. ACS Nano, 7(2), 1638-1645. doi:10.1021/nn305507pLiu, J., Durstock, M., & Dai, L. (2014). Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy Environ. Sci., 7(4), 1297-1306. doi:10.1039/c3ee42963fGeorgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., … Kim, K. S. (2012). Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 112(11), 6156-6214. doi:10.1021/cr3000412Wang, Y., Zhang, Y., Lu, Y., Xu, W., Mu, H., Chen, C., … Bao, Q. (2015). Hybrid Graphene-Perovskite Phototransistors with Ultrahigh Responsivity and Gain. Advanced Optical Materials, 3(10), 1389-1396. doi:10.1002/adom.201500150Lv, C., Hu, C., Luo, J., Liu, S., Qiao, Y., Zhang, Z., … Watanabe, A. (2019). Recent Advances in Graphene-Based Humidity Sensors. Nanomaterials, 9(3), 422. doi:10.3390/nano9030422Casanova-Cháfer, J., Navarrete, E., Noirfalise, X., Umek, P., Bittencourt, C., & Llobet, E. (2018). Gas Sensing with Iridium Oxide Nanoparticle Decorated Carbon Nanotubes. Sensors, 19(1), 113. doi:10.3390/s19010113Fang, H.-H., Adjokatse, S., Wei, H., Yang, J., Blake, G. R., Huang, J., … Loi, M. A. (2016). Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases. Science Advances, 2(7). doi:10.1126/sciadv.160053

    Similar works