193 research outputs found

    Gottfried Wilhelm Osann (1833, 1836) on Simultaneous Color Contrast:Translation and Commentary

    Get PDF
    Gottfried Wilhelm Osann (1796–1866) was a German scientist most renowned for his work in chemistry and physics. However, inspired by Goethe’s work on color, he published a paper on simultaneous color contrast in 1833 using a method that is similar to that of later authors: reflection of an achromatic spot from an angled piece of glass. He wrote at least four more papers on color contrasts, in 1836 using essentially the same method as credited to others. We provide a description and translation of Osann’s 1833 paper and the relevant part of his 1836 paper, say why these papers are interesting and important, give some biographical information about Osann, comment on the fate of Osann’s papers, and describe Osann’s other papers on color

    Regulation of Peripheral Myelination through Transcriptional Buffering of Egr2 by an Antisense Long Non-coding RNA

    Get PDF
    Precise regulation of Egr2 transcription is fundamentally important to the control of peripheral myelination. Here, we describe a long non-coding RNA antisense to the promoter of Egr2 (Egr2-AS-RNA). During peripheral nerve injury, the expression of Egr2-AS-RNA is increased and correlates with decreased Egr2 transcript and protein levels. Ectopic expression of Egr2-AS-RNA in dorsal root ganglion (DRG) cultures inhibits the expression of Egr2 mRNA and induces demyelination. In vivo inhibition of Egr2-AS-RNA using oligonucleotide GapMers released from a biodegradable hydrogel following sciatic nerve injury reverts the EGR2-mediated gene expression profile and significantly delays demyelination. Egr2-AS-RNA gradually recruits H3K27ME3, AGO1, AGO2, and EZH2 on the Egr2 promoter following sciatic nerve injury. Furthermore, expression of Egr2-AS-RNA is regulated through ERK1/2 signaling to YY1, while loss of Ser184 of YY1 regulates binding to Egr2-AS-RNA. In conclusion, we describe functional exploration of an antisense long non-coding RNA in peripheral nervous system (PNS) biology. Keywords: nerve injury response; transcription; RNA epigenetics; antisense RNA; Egr2; myelination; YY1; neureguli

    In vitro dissolution models for the prediction of in vivo performance of an oral mesoporous silica formulation

    Get PDF
    Drug release from mesoporous silica systems has been widely investigated in vitro using USP Type II (paddle) dissolution apparatus. However, it is not clear if the observed enhanced in vitro dissolution can forecast drug bioavailability in vivo. In this study, the ability of different in vitro dissolution models to predict in vivo oral bioavailability in a pig model was examined. The fenofibrate-loaded mesoporous silica formulation was compared directly to a commercial reference product, Lipantil Supra®. Three in vitro dissolution methods were considered; USP Type II (paddle) apparatus, USP Type IV (flow-through cell) apparatus and a USP IV Transfer model (incorporating a SGF to FaSSIF-V2 media transfer). In silico modelling, using a physiologically based pharmacokinetic modelling and simulation software package (Gastroplus™), to generate in vitro/in vivo relationships was also investigated. The study demonstrates that the in vitro dissolution performance of a mesoporous silica formulation varies depending on the dissolution apparatus utilised and experimental design. The findings show that the USP IV transfer model was the best predictor of in vivo bioavailability. The USP Type II (paddle) apparatus was not effective at forecasting in vivo behaviour. This observation is likely due to hydrodynamic differences between the two apparatus and the ability of the transfer model to better simulate gastrointestinal transit. The transfer model is advantageous in forecasting in vivo behaviour for formulations which promote drug supersaturation and as a result are prone to precipitation to a more energetically favourable, less soluble form. The USP IV transfer model could prove useful in future mesoporous silica formulation development. In silico modelling has the potential to assist in this process. However, further investigation is required to overcome the limitations of the model for solubility enhancing formulations

    Child and family factors associated with positive outcomes among youth born extremely preterm

    Get PDF
    BackgroundTo analyze the relationship of child behavioral and communication disorders, and adverse family events, to later-in-life child health and cognitive function among youth born extremely preterm.MethodsThe study participants were 694 children enrolled in the Extremely Low Gestational Age Newborn Study. At ages 2 and 10, we assessed internalizing and externalizing behaviors, and at age 10, we assessed adverse life events within the family. Associations were evaluated between these child and family factors and positive child health at age 10 years, and global health and cognitive function at age 15 years.ResultsLower T-scores for internalizing or externalizing behaviors at age 2 were associated with more positive health at age 10. The absence of internalizing behaviors at age 10 was associated with better global child health and better cognitive function at age 15. The absence of communication deficits at age 10 was associated with better cognitive function at age 15. The absence of parent job loss was associated with better global child health at age 15.ConclusionAmong individuals born extremely preterm, child health and cognitive outcomes might be improved by timely interventions to address child behavioral symptoms and the impact of adverse life events in the family.ImpactThe absence of child behavioral and communication disorders, and adverse family events, were associated with more positive health, higher global health, and better cognitive function among youth born extremely preterm.Interventions to address behavioral disorders in early childhood, and to reduce the impact of adverse life events on the family, might promote improved health and developmental outcomes for adolescents born extremely preterm

    The Interaction of N-Acylhomoserine Lactone Quorum Sensing Signaling Molecules with Biological Membranes: Implications for Inter-Kingdom Signaling

    Get PDF
    The long chain N-acylhomoserine lactone (AHL) quorum sensing signal molecules released by Pseudomonas aeruginosa have long been known to elicit immunomodulatory effects through a process termed inter-kingdom signaling. However, to date very little is known regarding the exact mechanism of action of these compounds on their eukaryotic targets.The use of the membrane dipole fluorescent sensor di-8-ANEPPS to characterise the interactions of AHL quorum sensing signal molecules, N-(3-oxotetradecanoyl)-L-homoserine lactone (3-oxo-C14-HSL), N-(3-oxododecanoyl)homoserine-L-lactone (3-oxo-C12-HSL) and N-(3-oxodecanoyl) homoserine-L-lactone (3-oxo-C10 HSL) produced by Pseudomonas aeruginosa with model and cellular membranes is reported. The interactions of these AHLs with artificial membranes reveal that each of the compounds is capable of membrane interaction in the micromolar concentration range causing significant modulation of the membrane dipole potential. These interactions fit simple hyperbolic binding models with membrane affinity increasing with acyl chain length. Similar results were obtained with T-lymphocytes providing the evidence that AHLs are capable of direct interaction with the plasma membrane. 3-oxo-C12-HSL interacts with lymphocytes via a cooperative binding model therefore implying the existence of an AHL membrane receptor. The role of cholesterol in the interactions of AHLs with membranes, the significance of modulating cellular dipole potential for receptor conformation and the implications for immune modulation are discussed.Our observations support previous findings that increasing AHL lipophilicity increases the immunomodulatory activity of these quorum compounds, while providing evidence to suggest membrane interaction plays an important role in quorum sensing and implies a role for membrane microdomains in this process. Finally, our results suggest the existence of a eukaryotic membrane-located system that acts as an AHL receptor

    ASCR/HEP Exascale Requirements Review Report

    Full text link
    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio

    On the Role of Attention in Binocular Rivalry: Electrophysiological Evidence

    Get PDF
    During binocular rivalry visual consciousness fluctuates between two dissimilar monocular images. We investigated the role of attention in this phenomenon by comparing event-related potentials (ERPs) when binocular-rivalry stimuli were attended with when they were unattended. Stimuli were dichoptic, orthogonal gratings that yielded binocular rivalry and dioptic, identically oriented gratings that yielded binocular fusion. Events were all possible orthogonal changes in orientation of one or both gratings. We had two attention conditions: In the attend-to-grating condition, participants had to report changes in perceived orientation, focussing their attention on the gratings. In the attend-to-fixation condition participants had to report changes in a central fixation target, taking attention away from the gratings. We found, surprisingly, that attending to rival gratings yielded a smaller ERP component (the N1, from 160–210 ms) than attending to the fixation target. To explain this paradoxical effect of attention, we propose that rivalry occurs in the attend-to-fixation condition (we found an ERP signature of rivalry in the form of a sustained negativity from 210–300 ms) but that the mechanism processing the stimulus changes is more adapted in the attend-to-grating condition than in the attend-to-fixation condition. This is consistent with the theory that adaptation gives rise to changes of visual consciousness during binocular rivalry
    • …
    corecore