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Abstract  

Drug release from mesoporous silica systems has been widely investigated in vitro using USP 

Type II (paddle) dissolution apparatus. However, it is not clear if the observed enhanced in 

vitro dissolution can forecast drug bioavailability in vivo. In this study, the ability of different 

in vitro dissolution models to predict in vivo oral bioavailability in a pig model was 

examined. The fenofibrate-loaded mesoporous silica formulation was compared directly to 

a commercial reference product, Lipantil Supra®. Three in vitro dissolution methods were 

considered; USP Type II (paddle) apparatus, USP Type IV (flow-through cell) apparatus and a 

USP IV Transfer model (incorporating a SGF to FaSSIF-V2 media transfer). In silico modelling, 

using a physiologically based pharmacokinetic modelling and simulation software package 

(Gastroplus™), to generate in vitro/in vivo relationships was also investigated. The study 

demonstrates that the in vitro dissolution performance of a mesoporous silica formulation 

varies depending on the dissolution apparatus utilised and experimental design. The 

findings show that the USP IV transfer model was the best predictor of in vivo bioavailability. 

The USP Type II (paddle) apparatus was not effective at forecasting in vivo behaviour. This 

observation is likely due to hydrodynamic differences between the two apparatus and the 

ability of the transfer model to better simulate gastrointestinal transit. The transfer model is 

advantageous in forecasting in vivo behaviour for formulations which promote drug 

supersaturation and as a result are prone to precipitation to a more energetically 

favourable, less soluble form. The USP IV transfer model could prove useful in future 

mesoporous silica formulation development. In silico modelling has the potential to assist in 

this process. However, further investigation is required to overcome the limitations of the 

model for solubility enhancing formulations. 
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1. Introduction 

Recent developments in drug discovery have increased the number of BCS Class II drug 

candidates. These drug molecules pose significant challenges in terms of oral drug delivery 

and biopharmaceutics [1, 2]. Drug loading onto a mesoporous silica substrate using various 

novel loading approaches (including solvent methods, supercritical fluid and microwave 

irradiation), has been considered as a possible formulation strategy to improve drug 

aqueous solubility [3-6]. Drug molecules are stabilized on the silica surface and within silica 

pores in an amorphous state, which enhances the drug’s dissolution rate [7, 8]. However, 

further research is required to fully understand the behaviour of these mesoporous silica 

formulations in vitro and in vivo.  

Van Speybroeck et al published two in vivo studies which investigated the impact of 

supersaturation and precipitation on release from these formulations [9, 10]. However, the 

total number of mesoporous silica in vivo studies published in the literature is limited [11-

13]. The majority of in vitro dissolution experiments conducted involving mesoporous silica 

formulations have utilised traditional methods: USP Type II apparatus and sink conditions 

with simple buffer solutions as the dissolution medium [14-18].  There are limitations 

associated with this traditional approach to dissolution which are of particular relevance to 

poorly water-soluble drug candidates [19]. Augustijns et al recommended that non-sink in 

vitro dissolution conditions are required for silica-based formulations to provide meaningful 

data that can be correlated with in vivo studies [20]. Furthermore, as the simple buffer 

solutions used in most in vitro experiments do not represent all aspects of the fluid 

composition of the gastrointestinal (GI) tract, it is preferable to use biorelevant media that 

better simulate physiological fluids [21]. The Type IV dissolution apparatus offers the ability 
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to change the dissolution medium during an experiment, which results in conditions that 

more closely reflect the pH gradient associated with transit through the GI tract [22]. It has 

been reported that the Type IV dissolution apparatus is a better simulator of in vivo 

hydrodynamics than the paddle apparatus [23]. However, the number of studies which 

utilise this model are limited and published data with regards to the superiority of the Type 

IV flow-through cell over the Type II apparatus is not in agreement [24, 25]. 

In this study, we compared the ability of in vitro dissolution methods to predict in vivo 

performance of an oral mesoporous silica drug delivery system. Type II and Type IV 

dissolution apparatus were employed to investigate the release of a poorly water-soluble 

drug, fenofibrate, from this formulation. This study is the first to our knowledge to use the 

Type IV apparatus to assess dissolution of a BCS Class II drug-loaded mesoporous silica 

system. Fenofibrate was chosen as the model compound in this study. Fenofibrate is a 

neutral, lipophilic drug (log p = 5.2), which is practically insoluble in water [26]. The in vivo 

performance of the mesoporous silica formulation was assessed following oral 

administration in a fasted pig model and compared to the commercial fenofibrate  

formulation, Lipantil Supra® (which utilises NanoCrystal® technology) [27].  

In vitro/in vivo correlations (IVIVC) and in vitro/in vivo relationships (IVIVR) are being 

increasing used as part of the formulation ‘toolbox’ to build on knowledge from in vitro data 

and forecast formulation effects. The best candidates for in vitro/in vivo correlations are 

drugs where dissolution is the rate-limiting step to drug absorption and biorelevant 

dissolution models are used in the experimental design [28]. In this study, data from the in 

vitro and in vivo experiments was analysed using a physiologically-based pharmacokinetic 
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modelling and simulation software package (Gastroplus™) to generate IVIVR. The potential 

benefits and limitations of this in silico modelling approach are discussed.  

 

2. Material and Methods 

2.1. Materials 

Fenofibrate was purchased from Kemprotec Ltd. (United Kingdom). SBA-15 was obtained 

from Glantreo Ltd. (Ireland). Liquid carbon dioxide was supplied by Irish Oxygen Ltd. 

(Ireland). Fenofibric acid, sodium taurocholate (>95%) and pepsin (from porcine gastric 

mucosa, 800-2500 units/mg protein) were obtained from Sigma Aldrich (Ireland). Lecithin 

(Lipoid E PC S, >98% pure) was kindly donated by Lipoid GmbH, Germany. All other 

chemicals and solvents were of analytical grade or HPLC grade, and purchased from Sigma-

Aldrich (Ireland). Lipantil® Supra 145mg film-coated tablets were sourced through a local 

community pharmacy.  

2.2. Preparation of Fenofibrate-Loaded Silica Formulation 

Fenofibrate loaded SBA-15 was prepared according to the method previously described by 

Ahern et al [14]. The drug and mesoporous silica (2 g) at a drug:silica mass ratio of 2:3 were 

combined in a BC 316 high-pressure reactor (High Pressure Equipment Company, USA) and 

stirred using a magnetic stirring. The reactor was heated to 40 °C using heating tape and 

maintained at this temperature for the duration of the experiment. Temperature was 

monitored using a temperature monitor (Horst GmbH, Germany). The reactor cell was filled 

with liquid CO2 and a high pressure pump (D Series Syringe Pump 260D, Teledyne ISCO, USA) 

was used to pump additional CO2 to a final processing pressure (27.58 MPa). After 12 h, the 
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cell was depressurised rapidly by venting the CO2. The processed material was collected 

from the cell and stored in a desiccator prior to analysis.  

2.3. Drug Content Quantification 

The fenofibrate content of the silica formulation was determined by thermogravimetric 

analysis (TGA), using a TGA 500 instrument (TA Instruments Ltd., United Kingdom). Samples 

in the weight range 2–10 mg were loaded onto tared platinum pans and heated from 

ambient temperature to 900 °C, at a heating rate of 10 °C/min under an inert 

N2 atmosphere.  Samples were analysed in triplicate. The drug quantity was calculated 

based on the weight loss between 100 and 900 °C, corrected for the weight loss over the 

same temperature range for a silica (SBA-15) reference sample [4]. TGA thermograms were 

analysed using Universal Analysis 2000 software (TA Instruments Ltd., United Kingdom). 

Drug-loading efficiency was calculated using Equation 1: 

                             
                        

                             
        (Equation 1) 

The theoretical drug-loading was based on mass fraction of drug and silica used to prepare 

samples. 

2.4. Solubility Measurements 

Solubility studies were carried out by the addition of excess fenofibrate to biorelevant 

media using a standardised shake-flask method with a shake time of 24 h at 37 °C [29]. 

Simulated gastric fluid (SGF) was prepared as outlined in the USP NF 26 [30]. FaSSIF-V2 was 

prepared as outlined in the literature [21]. Samples (2 ml volume) were removed at 24 h and 

centrifuged at 16,500 g for 13 min using a Hermle z233M-2 fixed angle rotor centrifuge, 
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(HERMLE Labortechnik GmbH, Germany). The supernatant was removed and centrifuged 

again under the same conditions. The resultant supernatant was analysed using HPLC 

following dilution with acetonitrile.  

2.5. In Vitro Dissolution Experiments 

USP Type II (Paddle) Apparatus: Dissolution studies were carried out in triplicate with an 

Erweka® DT600 dissolution test system (Erweka GmbH, Germany). Tests were performed in 

500 ml of SGF or FaSSIF-V2 at 37 ± 0.5 oC at a paddle rotation of 75 rpm. Drug-loaded silica 

samples equivalent to 50 mg fenofibrate were placed in the dissolution medium. The dose 

of 50 mg fenofibrate in the release media corresponded to a theoretical concentration of 

100 µg/ml following complete dissolution which represents a supersaturated state in SGF 

and FaSSIF-V2 (see fenofibrate solubility values in section 3.2). Samples of 4 ml volume were 

withdrawn at 1, 5, 10, 15, 30, 60 and 120 min intervals (with additional samples taken from 

the FaSSIF-V2 media at 180 and 240min). Samples were immediately replaced with an equal 

volume of fresh, pre-warmed medium. The withdrawn samples were filtered through a 0.20 

µm PES membrane filter (Filtropur S0.2, Sarstedt AG & Co., Germany). Samples were diluted 

with acetonitrile prior to analysis by HPLC.  

USP Type IV (Flow-Through Cell) Apparatus: Dissolution studies were carried out in triplicate 

with an Erweka® flow-through apparatus (DFZ 720 with HKP 720 piston pump) equipped 

with 22.6 mm diameter cells. The temperature of the water bath was maintained at 37 oC. 

The dissolution medium of either 100 ml SGF or FaSSIF-V2, recirculated in closed loop model 

at a flow rate of 4 ml/min. A glass ball (5mm) and 1 g of glass beads (1mm) were placed in 

the bottom of the cone to ensure laminar flow of the jet of fluid entering the cell. 

Formulation samples equivalent to 10 mg fenofibrate were placed on top of the glass beads. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

9 
 

Undissolved fenofibrate particles were retained in the sample holder using a glass fibre filter 

located in the top of the cone. The dose of fenofibrate in the release media thus 

corresponded to a theoretical concentration of 100 µg/ml which represents a 

supersaturated state in SGF and FaSSIF-V2 (see fenofibrate solubility values in section 3.2). 

Samples of 1 ml volume were withdrawn at 1, 5, 10, 15, 30, 60 and 120 min intervals (with 

additional samples taken from the FaSSIF-V2 media at 180 and 240 min). Samples were 

immediately replaced with an equal volume of fresh, pre-warmed medium. The withdrawn 

samples were filtered through a 0.20 µm PES membrane filter (Filtropur S0.2, Sarstedt AG & 

Co., Germany). Samples were diluted with acetonitrile and analysed by HPLC. In addition to 

conducting individual dissolution experiments using the Type IV apparatus employing either 

SGF or FaSSIF-V2, a dissolution experiment involving a SGF to FaSSIF-V2 transfer method 

was conducted. Samples were removed as described above for the initial SGF stage of the 

experiment up to the 120 min time point. The SGF dissolution medium supply beaker was 

then removed and replaced with a beaker containing 100 ml of FaSSIF-V2 medium. 

Subsequent sampling time points were taken at 1, 5, 10, 15, 30, 60 and 120, 180 and 240 

min) following transfer from SGF to FaSSIF-V2 medium.  

2.6. In vivo oral bioavailability study 

The study was carried out under licences issued by the department of Health, Ireland as 

directed by the Cruelty to Animals Act Ireland and EU Statutory Instructions. Local university 

ethical committee approval was also obtained. The data from this intravenous study has 

been previously used for the calculation of fenofibrate clearance in pigs to allow absolute 

bioavailability to be determined in separate studies [31, 32]. Female landrace pigs (17–19 

kg) housed at the University College Cork’s Biological Services Unit were used for these 
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experiments. Animals were fasted for 16 h before experimentation. On day 1, an indwelling 

intravenous catheter was inserted in the jugular vein, under general anaesthesia, as 

previously described [33]. Following recovery, pigs were returned to their pens and allowed 

access to food and water.   

On day 2 (following an overnight fast), the oral formulations containing a dose of 67 mg 

fenofibrate were administered in gelatin capsules with the aid of a dosing gun.  After dosing 

the pigs received 50 ml of water via an oral syringe. Blood samples (5 ml) were withdrawn 

from the jugular line at time zero (pre-dosing) and at 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12 and 24 h 

intervals post dosing. Water was available ad libitum throughout the study period and the 

animals were fed 8 h post-dose. For the intravenous treatment (i.v.), animals were 

administered 25 mg fenofibrate by slow infusion, over 2 min, via 3 ml of a solution 

containing 8.33 mg/ml fenofibrate in 80 %w/w ethanol and 20 %w/v physiological saline 

into an ear vein. Blood sampling was performed as outlined above. All blood samples were 

collected in heparinised tubes (Sarstedt, Germany) and centrifuged immediately after 

withdrawal at 3220 g for 5 minutes at 4 °C. Plasma samples were stored at −80 °C prior to 

HPLC assay.  

2.7. Quantitative Analysis of Fenofibrate 

HPLC analysis of the in vitro dissolution samples was performed using an Agilent 1200 series 

HPLC system with an UV/Vis detector (Agilent Technologies, USA). A reversed-phase column 

(Kinetex C-18, 150 × 4 mm x 2.6 µm, Phenomenex Ltd. UK), mobile phase of acetronitrile 

and water (80:20) at a flow rate of 1 ml/min and injection volume of 20 µl were employed. 

The wavelength for fenofibrate detection was set at 286 nm and retention time was 4.5 

min. 
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In vivo plasma samples were quantified for fenofibric acid (the major active metabolite of 

fenofibrate). Based on a method by Griffin et al [32], a volume of 0.5 ml plasma was spiked 

with 50 µl of internal standard (sulindac) and vortexed. Proteins were precipitated through 

the addition of 0.5 ml of 25 %w/v NaCl solution and 1 ml of 1 %w/v H3PO4 in methanol with 

thorough mixing. Samples were centrifuged at 11,500 g for 9 min using a Hermle z233M-2 

fixed angle rotor centrifuge (HERMLE Labortechnik GmbH, Germany). The supernatant (20 

µl) was injected onto a Synergi C18 reversed phase column (250 x 4.6 x 2.6 µm, 

Phenomenex Ltd. UK) using the Agilent system described above. The mobile phase consisted 

of acetronitrile and water (80:20) adjusted to pH 2.5. The flow rate was set at 1 ml/min 

resulting in elution of fenofibric acid and fenofibrate at 6.5 and 10.5 min, respectively. The 

concentration of drug was determined at 286 nm.  

2.8. In vitro and in vivo data analysis 

 The extent of fenofibrate release was calculated as area under the dissolution curve (AUC) 

using Prism (ver. 5, GraphPad Software Inc., USA.). Peak fenofibrate concentrations (Cmax) 

and the time for their occurrence (Tmax) were noted directly from the individual dissolution 

profiles. Intravenous pharmacokinetic parameters were fitted to a two compartment model 

using the PKPlus™ module in Gastroplus™ (ver. 8.6, Simulations Plus Inc., USA). AUC for 

fenofibric acid after oral administration of both formulations was calculated for 24 h post-

dosing using Prism. The peak plasma concentrations (Cmax) and the time for their occurrence 

(Tmax) were noted directly from the individual plasma concentration vs. time profiles. 

Absolute bioavailability (Fabs) was calculated according to Equation 2:  

       
        

        
     

         

         
   (Equation 2) 
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Relative bioavailability was calculated as the ratio of AUC0→24 obtained after oral 

administration of the silica and Lipantil Supra® formulations. The relative extent of 

fenofibrate release from both formulations in the three different dissolution models was 

calculated as the ratio of AUC values.  Results are reported as mean ± standard deviation.  

In vitro dissolution data comparing the two formulations was tested for significance 

(p < 0.05) using a two-tailed, independent sample t-test, assuming Gaussian distribution and 

equal variance. Statistical analysis of the Cmax and AUC values from the dissolution profile for 

both formulations were performed using a one-way analysis of variance (ANOVA) and post 

hoc Tukey’s multiple comparisons test. P-values of <0.05 were considered significant. 

Paired t-tests were used to determine the statistical significance (p < 0.05) of calculated in 

vivo bioavailability and pharmacokinetic results, as each animal acted as its own control in 

this crossover study. All statistical analyses were performed using GraphPad Prism Version5, 

USA. 

2.9. In Silico Predictive Modelling 

In silico modelling was conducted using GastroPlus™ (ver. 9.0, Simulations Plus, USA.). The 

ADMET Predictor™ module was used to estimate fenofibrate physiochemical characteristics. 

Predictive mathematical models were generated using the IVIVCPlus™ component of the 

software. In this study, the Loo-Riegelman two-compartment method was implemented to 

deconvolute the in vivo oral plasma concentration profiles using intravenous data as 

previously published [31, 32]. An IVIVR was generated by correlating the fraction of drug 

absorbed in vivo with the fraction of drug dissolved in vitro (for the initial period of 

fenofibrate dissolution i.e. time points up to Tmax). The data was then convoluted to 

generate a predicted plasma concentration-time profile, which was compared with the 
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observed in vivo data. The software displayed Cmax and AUC for the observed and predicted 

profiles. It also generated the prediction error between the two profiles which can be used 

to evaluate the predictability of the correlation as described by the FDA [34]. The FDA 

require an average absolute percentage error (%PE) of 10 % or less for AUC and Cmax for 

internal predictability. The %PE for each formulation should not exceed 15 %. 

3. Results 

3.1. Drug Content Quantification 

Fenofibrate loading onto SBA-15 was 251.3mg drug/g silica (25.13 % ± 0.68). The low 

variability observed in the drug loading for this SC-CO2 process is indicative of a 

homogeneous drug distribution on the silica surface [5]. The drug loading efficiency, 

calculated using Eq. 1, was 62.83%. The loading technique converted the fenofibrate to a 

non-crystalline solid phase as previously reported by Ahern et al [14].  

3.2. Fenofibrate Solubility  

Fenofibrate solubility in SGF was determined as 0.17 ± 0.05 µg/ml.  Fenofibrate solubility in 

FaSSIF-V2 (3.64 ± 0.62 µg/ml) was significantly enhanced, which indicates that fenofibrate is 

solubilised in the micelles of simulated intestinal fluid [29].  

3.3. In Vitro Dissolution  

3.3.1. USP Type II (Paddle) Apparatus 

Dissolution experiments using the USP Type II (paddle) method were conducted under 

supersaturated conditions (580 times drug saturated solubility in SGF and 27 times the 

saturated solubility in FaSSIF-V2). There was no detectable release of fenofibrate from the 
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silica formulation in SGF. This could be explained by the mechanism of drug release 

previously published for mesoporous silica systems in vitro [35, 36]. These reported 

dissolution profiles involve an initial burst release (where the majority of loaded drug is 

released) followed by a sustained secondary release [37]. As a result of the drug’s low 

solubility in conditions of low pH and the absence of additional excipients to enhance 

solubility or stabilise dissolution, the release of fenofibrate was not quantifiable (the limit of 

quantification was 200 ng/ml). Fenofibrate dissolution from the Lipantil Supra® formulation 

resulted in a sustained supersaturation (Fig. 1). Drug release increased over the first 15 mins 

(Cmax 2.79 ± 0.70 µg/ml), before reaching a plateau for the remainder of the experiment. The 

supersaturation ratio during this plateau phase (defined as C/Cs, where Cs is the saturated 

solubility) was 15.49. This marked solubility increase is most likely due to the composition of 

the Lipantil Supra® formulation which contains surfactants, sodium lauryl sulfate (SLS) and 

sodium docusate. SLS has been previously shown to significantly increase the solubility and 

dissolution rate of fenofibrate through a combination of wetting, micellar solubilisation and 

deflocculation [38, 39].  
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Fig 1. Fenofibrate release profiles for Lipantil Supra® in SGF at 37oC; () indicates Type IV 

apparatus, () indicates Type II (paddle) apparatus. Dotted line indicates equilibrium 

solubility of fenofibrate in SGF. (n=3, Y error bars indicate standard deviation) 

 

Compared to SGF, fenofibrate release from both formulations was significantly higher in 

FaSSIF-V2 due to the greater amount of physiologically relevant surfactants in the medium. 

FaSSIF-V2 allows for increased micellar solubilisation of the drug (Fig. 2). However, the 

extent of release from the commercial product was significantly higher than release from 

the silica formulation (p<0.001). Fenofibrate release from the silica formulation in FaSSIF-V2 

media exhibited the classic ‘burst release’ profile characteristic of silica formulations [35, 

36]. Drug dissolution maintained supersaturation levels for the first 30 min of the 

experiment (Cmax = 5.76 ± 0.28 µg/ml, supersaturation ratio of 1.58). However, at 60 min, 

release had dropped below fenofibrate thermodynamic solubility levels. Fenofibrate release 

from the Lipantil Supra® formulation demonstrates high levels of supersaturation (Cmax = 

53.68 ± 2.73 µg/ml, peaking at a supersaturation ratio of 14.74). Drug dissolution decreases 
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after 30 min for the remainder of the experiment but never drops below supersaturation 

levels over the 4 h experiment.  

 

Fig. 2 Fenofibrate release profiles from mesoporous silica formulation () and Lipantil 

Supra® (◆) in FaSSIF-V2 media at 37oC for Type II (paddle) apparatus. Dotted line indicates 

fenofibrate solubility in FaSSIF-V2 media. (n=3, Y error bars indicate standard deviation) 

 

A summary of the in vitro release parameters are detailed in Table 1. The high levels of 

release observed in this dissolution experiment with FaSSIF-V2 alone might not be indicative 

of in vivo performance. In vivo, the formulation will experience the low pH of the stomach 

initially (where the drug has extremely low solubility), which may cause significant 

precipitation. Precipitation to a lower energetically favourable, less water-soluble form can 

have a dramatic effect on drug release following transit to the small intestine environment 

mimicked by FaSSIF-V2. In vitro experiments simulating this transition were hence 

conducted and are described in the section 3.3.3.   
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Table 1. Summary of in vitro dissolution parameters. Mean values +/- standard deviation are 

provided (n=3)  

Type II (Paddle) Apparatus 

Formulation C
max FASSIF

 (µg/ml) AUC
240min

 
FASSIF 

(µg/ml.min) T
max 

(min) 

Mesoporous Silica 5.76±0.28 631±9 10±0 

Lipantil Supra® 53.68±2.73 7493±1177 20±8.7 

Type IV (Flow Through Cell) Apparatus 

Formulation C
max FASSIF

 (µg/ml) AUC
240min

 
FASSIF 

(µg/ml.min) T
max 

(min) 

Mesoporous Silica 2.96±0.79 398±81 20±8.7 

Lipantil Supra® 4.45±0.29 924±36 15±0 

Transfer Model 

Formulation C
max FASSIF

 (µg/ml) AUC
240min

 
FASSIF 

(µg/ml.min) T
max 

(min) 

Mesoporous Silica 1.49±0.07 322±18 160±69.3 

Lipantil Supra® 2.04±0.06 364±30 240±0 

 

3.3.2. USP Type IV (Flow-Through Cell) Apparatus 

Non-sink conditions in the Type IV model were equivalent to those employed for USP II 

apparatus (580 times drug equilibrium solubility in SGF and 27 times the saturated solubility 

in FaSSIF-V2). Similar to results observed for the Type II model, fenofibrate release from the 

mesoporous silica formulation in SGF was not quantifiable. Fenofibrate release from Lipantil 

Supra® in SGF reached supersaturation levels for the first 30 min of the experiment (Cmax = 

0.41 ± 0.09µg/ml) but at 60 min release had fallen to the drug’s equilibrium solubility (Fig. 

1). As illustrated in Fig. 1, the Cmax level and the extent of fenofibrate release was 

significantly higher using the Type II apparatus compared to the Type IV flow through cell (p 

< 0.005). This indicates that hydrodynamic differences between the two model apparatus 
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have a significant impact on the dissolution process and the final dissolution profile.  This is 

discussed in more detail in Section 4.  

Similar to the Type II apparatus, both formulations exhibit enhanced drug release in the 

FaSSIF-V2 media using the Type IV apparatus. The extent of release from Lipantil Supra® was 

significantly higher than that of the silica formulation (p < 0.001, Fig. 3). However, release 

from the SBA-15 system does not reach supersaturation levels in the Type II apparatus. 

Fenofibrate release from the Lipantil Supra® formulation peaks at 15 min (Cmax = 4.45 ± 

0.29µg/ml, supersaturation ratio of 1.22), then drops to remain at the thermodynamic 

solubility level for the duration of the four hour experiment. A summary of in vitro release 

parameters is provided in Table 1. 

 

 

Fig. 3 Fenofibrate release profiles from mesoporous silica formulation () and Lipantil 

Supra® (◆) in FaSSIF-V2 media at 37oC for Type IV (flow through cell) apparatus. Dotted line 

indicates fenofibrate solubility in FaSSIF-V2 media. (n=3, Y error bars indicate standard 

deviation) 
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3.3.3. Transfer Model in USP Type IV (Flow-Through Cell) Apparatus 

In the Type IV transfer model, samples were first exposed to SGF for 120 min followed by 

FaSSIF-V2 media for 240 min, to simulate GI transit in the dissolution model. As described in 

section 3.3.2, the Lipantil Supra® formulation reached supersaturation levels in the SGF,  

whereas release from the mesoporous silica system was unquantifiable (Fig. 4). The shape 

of the dissolution profile for the silica formulation in the transfer model (FaSSIF-V2 stage) is 

different from that of the Type II or Type IV FaSSIF-V2 profiles (Fig. 4). The classic ‘burst’ 

release in FaSSIF-V2 media was not evident using the transfer model and neither 

formulation reached supersaturation levels in the FaSSIF-V2 media (Cmax = 2.04 ± 0.06 µg/ml 

for Lipantil Supra® and Cmax= 1.49 ± 0.07 µg/ml for the silica formulation). It is probable that 

the reduction in the extent of dissolution in FaSSIF-V2 is due to fenofibrate precipitation 

upon exposure to SGF media for both formulations. While Cmax for Lipantil Supra® was 

significantly higher than for the silica system (p < 0.001), there was no significant difference 

in the overall extent of fenofibrate release over the duration of the experiment (p > 0.1). 

This is in contrast to the differences in the extent of fenofibrate release for both 

formulations in FaSSIF-V2 media alone in USP Type II and USP Type IV apparatus (Table 1). 
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Fig. 4 Fenofibrate release profiles from mesoporous silica formulation () and Lipantil 

Supra® (◆) in USP IV Transfer Model at 37oC (incorporating SGF to FaSSIF-V2 transfer). 

Dotted line indicates fenofibrate solubility in SGF and FaSSIF-V2 media. (n=3, Y error bars 

indicate standard deviation) 

3.4. In Vivo Oral Bioavailability  

The plasma concentration profiles obtained following oral administration of 67 mg of 

fenofibrate, in the form of either Lipantil Supra® or the silica formulation, to fasted pigs are 

displayed in Fig. 5. A maximum plasma concentration of 3.96 ± 1.29 µg/ml was observed for 

Lipantil Supra® at 5.0 ± 2.4 h. The absorption of fenofibrate from the silica formulation was 

slower with a Cmax of 2.34 ± 1.23 µg/ml at Tmax  9.5 ± 3.0 h. A summary of the in vivo 

parameters for both formulations is provided in Table 2. The classical ‘burst’ release of the 

silica formulation, observed during both dissolution experiments conducted in FaSSIF-V2 

alone was not evident in the in vivo pig model. No corresponding sharp onset of fenofibrate 

absorption was observed for the silica formulation. A slower rate of drug absorption was 

noted which indicates a slower release profile as noted in the transfer model FaSSIF-V2 
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phase. This indicates that the transfer model better simulates how the formulation will 

perform in vivo.  

 

 

Fig. 5 Plasma concentration of fenofibric acid vs. time profiles after oral administration of 67 

mg fenofibrate to fasted pigs, () indicates mesoporous silica formulation, (◆) indicates 

Lipantil Supra®, () indicates intravenous preparation. (n=4, Y error bars indicate standard 

deviation 

Table 2. Summary of in vivo pig model parameters. Mean values +/- standard deviation are 

provided (n=4). (*) denotes values which are significantly different (p<0.05). 

Formulation Cmax (µg/ml) AUC0→24h Tmax Fabs0→24h 

Mesoporous Silica 2.34±1.23* 26502±11377 9.5±3 54.55±23.42 

Lipantil Supra® 3.96±1.29* 34536±12527 5±2.4 71.08±25.78 
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Absolute bioavailability was determined for both formulations relative to an intravenous 

control. An absolute bioavailability of 54.55 ± 23.42% was observed for the silica 

formulation which was not significantly different to that of the commercial product, 71.08 ± 

25.78% (p > 0.1). This confirms the potential of the silica system to enhance the 

bioavailability of fenofibrate. However the silica formulation has a slower onset of release 

when compared with the Lipantil Supra® (Tmax of 5.0 ± 2.4h and 9.5 ± 3.0h, respectively). The 

relative bioavailability in vivo of the silica formulation versus Lipantil Supra® was 73.33 ± 

17.07%.  

To enable comparison of the in vitro dissolution and the in vivo bioavailability results, the 

ratio of extent of drug release (as a ratio of the silica formulation to Lipantil Supra® AUC) for  

the Type II, Type IV and USP IV transfer methods were plotted adjacent to the relative 

bioavailability of both formulations in vivo (Fig. 6). Fig. 6 highlights the differences between 

the extent of release from both formulations using the Type II (A) and Type IV (B) apparatus 

and similarity using the Type IV Transfer Model (C) and oral bioavailability in the in-vivo pig 

model (D). To facilitate further quantitative comparison, the ratio of extent of release of the 

silica vs. commercial formulation were calculated (Fig. 7). The ratios of extent of release 

determined for the Type II and Type IV dissolution data were 8.55±1.28% and 43.32±10.50% 

respectively. In contrast, the ratio of extent of fenofibrate release from the Type IV transfer 

method data was 89.16±12.49%. This ratio did not significantly differ from the relative in 

vivo oral bioavailability of these formulations (p > 0.05, Fig.7).  This indicates that the USP IV 

transfer method was a superior predictor of in vivo performance compared to USP II and IV 

with FaSSIF-V2 alone.  
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A       B 
 

 

 

 

 

 

 
C       D 

 

Fig. 6 Extent of release (AUC) and oral bioavailability of fenofibrate from a mesoporous silica 

and Lipantil Supra® formulations. A = extent of release using Type II apparatus, B = extent of 

release using FaSSIF-V2 media in a Type IV apparatus, C = extent of release using Type IV 

Transfer model, D = oral bioavailability determined using an in vivo pig model. Graphs show 

AUC over 240 min for Type II and Type IV, 360 min for Transfer and 24 hours for in vivo pig 

model). (n=3 for in vitro dissolution models, n=4 for in vivo pig bioavailability model, Y error 

bars indicate standard deviation) 
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Fig 7. Ratio of extent of release of fenofibrate from the silica formulation vs. the commercial 

product, Lipantil Supra®, for the in vitro dissolution experiments and the in vivo pig study. 

Graphs show ratio of AUC release of silica formulation: Lipantil Supra® over 240 min for 

Type II and Type IV, 360 min for Transfer and 24 hours for in vivo pig model). (n=3 for in vitro 

dissolution models, n=4 for in vivo pig bioavailability model, Y error bars indicate standard 

deviation) 

3.5. In Silico of IVIVR Modelling  

The IVIVRs for the two formulations were generated using Gastroplus™ software. Previously 

published intravenous data was used to deconvolute the in vivo oral plasma concentration 

profiles using the Loo-Riegelman model [31, 32]. This two compartment model was chosen 

over a single compartment model as it has been reported that it is not possible to perform a 

rigorous pharmacokinetic analysis of an absorption process from oral data, unless the 

parameters of the model have first been derived from a separate intravenous experiment 

[40-42]. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

25 
 

No quantitative IVIVR could be established with the dissolution profiles from the Type II 

apparatus. IVIVRs could be generated for the Type IV (FaSSIF-V2) and the Type IV transfer 

Model (Fig. 8 and Fig. 9 respectively). Deconvolution of the Type IV data produced a linear 

best-fit correlation between the fraction of in vitro release and the fraction of absolute 

bioavailability (R2 = 0.883 for the silica formulation and R2 = 0.802 for the Lipantil Supra®).   

 

Fig. 8 Plasma concentration profiles for observed data (designated by the markers – () 

indicates mesoporous silica formulation, (◆) indicates Lipantil Supra®) and predicted 

plasma concentration-time profiles based on Type IV apparatus (designated by the solid 

lines - SBA-15 formulation (grey) and Lipantil Supra® (black))  

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

0 5 10 15 20 25 

P
la

s
m

a
 C

o
n

c
 (

u
g

/m
l)

 

Time (h) 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

26 
 

 

Fig. 9 Plasma concentration profiles for observed data (designated by the markers – () 

indicates mesoporous silica formulation, (◆) indicates Lipantil Supra®) and predicted 

plasma concentration-time profiles based on USP IV Transfer model (designated by the solid 

lines - SBA-15 formulation (grey) and Lipantil Supra® (black))  

The mean absolute prediction error (MAE) was 5.18% for Cmax and 12.14% for AUC (this falls 

outside the FDA limit of 10% error). The full list of validation statistics is shown in Table 3. 

Optimisation of the deconvoluted transfer model data produced a second-order polynomial 

best-fit correlation (R2=0.771 for the SBA-15 formulation and R2=0.569 for the Lipantil 

Supra®). The MAE was 16.02% for Cmax and 15.55% for AUC, indicating the correlation is not 

as powerful as the Type IV model using FaSSIF-V2 media alone. The IVIVRs generated using 

Gastroplus™ software identify the Type IV apparatus as more effective at forecasting in vivo 

performance than the traditional paddle apparatus. However, it also suggests that the Type 
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IV dissolution, using FaSSIF-V2 alone, is the best prediction model. This is in contrast to data 

generated based on the extent of release discussed in section 3.4, which identified the Type 

IV Transfer model as the superior in vitro dissolution model. 
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Table 3. Summary of in vitro/in vivo relationship parameters.  Observed and predicted Cmax and AUC values and the correlation (R2) between 

the observed and predicted plasma profiles generated by the Gastroplus™ IVIVCPlus® software are shown 

 

 

 

 

 

 

 

 

 

 

Cmax (µg/ml) AUC (µg/ml.h) Reconstructed Plasma 
Concentration-Time Profile 

from Convolution Tab (R
2

) Observed Predicted 
% Prediction 

Error 
Observed Predicted 

% Prediction 
Error 

Type IV Apparatus 

Mesoporous Silica  
Formulation 

1.854 1.993 -7.497 24.31 26.45 -8.803 0.883 

Lipantil Supra® 2.973 2.888 2.859 31.87 26.94 15.47 0.802 

USP IV Transfer Model 

Mesoporous Silica  
Formulation 

1.854 1.858 -0.216 24.31 28.97 -19.17 0.771 

Lipantil Supra® 2.973 2.027 31.82 31.87 28.07 11.92 0.569 
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4. Discussion 

To date mesoporous silica drug formulations have been widely investigated in vitro using 

USP Type II dissolution methods. There have been limited studies to determine whether the 

enhanced dissolution observed during these in vitro dissolutions tests are capable of 

forecasting their oral in vivo bioavailability. This study demonstrates that the in vitro 

dissolution performance of a mesoporous silica fenofibrate formulation varies depending on 

dissolution apparatus and experiment design. The findings show that a USP IV dissolution 

method incorporating a SGF to FaSSIF-V2 media transfer was the best predictor of in vivo 

oral bioavailability in a pig model.  

The study showed that the Cmax and AUC0→240min of both the commercial, Lipantil Supra®, 

and silica formulations in FaSSIF-V2 was significantly higher in the Type II compared to the 

Type IV apparatus. This observation is most likely due to hydrodynamic differences between 

the two dissolution models. The hydrodynamic properties of the Type II apparatus have 

been studied in detail and significant limitations have been recognised [19, 43-45]. The USP 

IV has the potential to operate at lower agitation rates than the paddle apparatus, resulting 

in lower fluid velocities considered to be more biorelevant [23, 46]. In vivo studies have 

shown that oral dosage forms can be exposed to small volumes of fluid in the gastro-

intestinal tract, which can also be modelled using the Type IV apparatus [47]. This is the first 

study, to our knowledge, which has used the Type IV flow-through apparatus to investigate 

release from drug-loaded mesoporous silica systems. It is also the first to compare the Type 

IV and the Type II apparatus directly to study the dissolution behaviour of this formulation 

approach. The similarity between the relative bioavailability of the silica formulation versus 

Lipantil Supra®, and the relative AUC (extent of release) of the formulations determined 
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using the USP IV transfer method, suggests that the USP IV is a more biorelevant in vitro test 

for these formulations. These results indicate that a supersaturation/precipitation process 

plays a significant role in the dissolution process of these systems and is best simulated 

using a transfer model.  

The advantages of using a transfer model to investigate formulation approaches which 

promote drug supersaturation, and are therefore prone to precipitation, have been 

reported by other groups [48-50].  Both formulations in this study utilise a supersaturation 

formulation strategy to enhance the oral bioavailability of fenofibrate [51]. The transfer 

model is a two compartment dissolution method to simulate GI transit from the stomach to 

the intestine. Fenofibrate release from the mesoporous formulation in SGF was below the 

HPLC assay detection limit. In contrast, fenofibrate release to supersaturation levels from 

Lipantil Supra® was evident in the gastric component of the transfer model. The exposure of 

the formulations to the acidic component in the transfer model affected their subsequent 

release profile in FaSSIF-V2 media. This is evident in the significant decrease in Cmax for both 

formulations in the Type IV transfer model compared to the Type IV FaSSIF-V2 only model. 

The exposure of high energy amorphous drug forms to an aqueous environment where it 

has very limited solubility is reported to promote recrystallization of the drug to a lower 

energy less soluble form [50]. Partial recrystallization and precipitation of drug in the silica 

formulation would explain the reduction in Cmax and AUC0→240min upon exposure to FaSSIF-V2 

media. 

The importance of controlling supersaturation in mesoporous silica formulations has been 

investigated by Van Speybroeck et al [9, 10]. Although supersaturation has been explored 

intensively in vitro, there is little evidence to support what occurs in the in vivo 
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environment. A recent study investigated the impact of gastrointestinal dissolution, 

supersaturation and precipitation of posoconazole in humans [52]. After administration of 

the formulations, gastric and duodenal fluids were aspirated and blood samples were 

collected in parallel. Supersaturation followed by significant intestinal precipitation was 

reported. This is in contrast to a study which reported limited duodenal precipitation for 

ketoconazole and dipyridamole in a human study [53]. In this study, previously reported in 

vitro dissolution dipyridamole data over-estimated the subsequent in vivo observations [48]. 

This indicates that drug supersaturation/precipitation is a complex process which can 

depend on the physiochemical properties of the drug, the formulation and physiological 

variables [50].  

The relationship between dosage form and physiological variables, such as the fed and 

fasted state warrant discussion. In the study, in-vitro dissolution studies were performed in 

FASSIF-V2 media designed to mimic the fastest state and pigs were dosed following an 

overnight fast, with food administered 8 hours post dose. The oral bioavailability of poorly 

water-soluble drugs, such as fenofibrate, is limited by their poor solubility within 

gastrointestinal fluid [54] and oral bioavailability can be variable depending on the food 

effect [55]. Formulation strategies have be shown to enhance bioavailability by reducing or 

eliminating the food effect [29, 31, 56]. For example, the commercial micronized fenofibrate 

formulation, Lipantil Micro®, displays food dependent bioavailability while the Lipantil® 

Supra formulation, encompassing NanoCrystal® technology, enables food independent 

administration and dose reduction [57]. These findings emphasise the need for studies of 

this nature which use in vivo reference data to optimize in vitro dissolution models and 

inform the development of bio-enabling formulation strategies.  
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The IVIVRs generated using the Gastroplus™ software support the relationships observed 

between the relative bioavailability of the formulations and their relative AUC (extent of 

release) determined from raw dissolution profiles. IVIVRs were determined for the Type IV 

FaSSIF-V2 model and the Type IV transfer model. No quantitative IVIVR could be determined 

for the Type II (paddle) apparatus. Correlations suggest that the Type IV apparatus with 

FaSSIF-V2 alone was better at forecasting in vivo performance than the transfer model. This 

finding can be explained by outlining the mechanism in which the model is generated and 

hence model assumption. The initial part of the dissolution profile (time points up to Cmax) 

was used to generate the IVIVR. The assumption of the model was that the second part of 

the dissolution profile, which corresponded to a reduction in drug concentration due to 

drug precipitation, may be an artefact of the in vitro dissolution model, particularly in the 

absence of an absorption sink. The initial dissolution phase was correlated with the 

deconvoluted in-vivo plasma profile and then re-convoluted to generate a predicted plasma 

profile.  

The IVIVR generated for the Type IV transfer model revealed significant limitations of the 

model; the MAE was 16.02% for Cmax and 15.55% for AUC and a large prediction error for 

the Lipantil Supra® Cmax of 31.82% was noted (more than double the FDA approved error 

limit of 15% for an individual formulation). This error can be attributed to the raw 

dissolution data for the Lipantil Supra®, specifically the concentration of fenofibrate at the 

fourth and fifth time point. This reduction (dip) in the release profile, while not statistically 

significant (p > 0.5) did significantly affected the in vitro/in vivo correlation simulated by the 

Gastroplus™ software. This sensitivity is a limitation of the current multi-step approach of 

deconvolution and correlation when comparing a small number of immediate release 
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formulations. Removal of fifth time point from the analysis improved the correlation but 

consequently reduced the power of the Type IV FaSSIF-V2 transfer model model IVIVR.  

In silico modelling requires further investigation to overcome the limitations outlined above. 

To date, modified release formulations have proved the most successful as regards 

development of effective IVIVR [58]. Work to improve in silico modelling for formulations 

which employ supersaturation to improve the bioavailability of poorly water-soluble drugs 

will be of significant benefit in their development.  

5. Conclusion 

This study demonstrates that the dissolution performance of a fenofibrate mesoporous 

silica formulation varies depending on the dissolution apparatus and the dissolution 

experimental design. The findings show that a USP IV transfer dissolution model was best at 

forecasting in vivo performance. This observation is most likely due to hydrodynamic 

differences between the two apparatus and the ability of the transfer model to better 

simulate GI transit. This is advantageous in forecasting in vivo behaviour for formulations 

which promote drug supersaturation and as a result are prone to precipitation. As this drug 

supersaturation/precipitation process is complex and depends on both formulation and 

physiological variables, studies which relate in vitro to in vivo data can help optimise in vitro 

models used in formulation development. Future work should focus on investigating the 

effect of silica formulation additives and dissolution media composition on in-vitro 

dissolution and the oral bioavailability of these systems. In silico modelling has the potential 

to assist in this process. However, further development is required to overcome the 

limitations outlined in this study for solubility enhancing formulations.  
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