46 research outputs found

    Neurophysiological signatures of Alzheimer's disease and frontotemporal lobar degeneration : pathology versus phenotype

    Get PDF
    The disruption of brain networks is characteristic of neurodegenerative dementias. However, it is controversial whether changes in connectivity reflect only the functional anatomy of disease, with selective vulnerability of brain networks, or the specific neurophysiological consequences of different neuropathologies within brain networks. We proposed that the oscillatory dynamics of cortical circuits reflect the tuning of local neural interactions, such that different pathologies are selective in their impact on the frequency spectrum of oscillations, whereas clinical syndromes reflect the anatomical distribution of pathology and physiological change. To test this hypothesis, we used magnetoencephalography from five patient groups, representing dissociated pathological subtypes and distributions across frontal, parietal and temporal lobes: amnestic Alzheimer's disease, posterior cortical atrophy, and three syndromes associated with frontotemporal lobar degeneration. We measured effective connectivity with graph theory-based measures of local efficiency, using partial directed coherence between sensors. As expected, each disease caused large-scale changes of neurophysiological brain networks, with reductions in local efficiency compared to controls. Critically however, the frequency range of altered connectivity was consistent across clinical syndromes that shared a likely underlying pathology, whilst the localization of changes differed between clinical syndromes. Multivariate pattern analysis of the frequency-specific topographies of local efficiency separated the disorders from each other and from controls (accuracy 62% to 100%, according to the groups' differences in likely pathology and clinical syndrome). The data indicate that magnetoencephalography has the potential to reveal specific changes in neurophysiology resulting from neurodegenerative disease. Our findings confirm that while clinical syndromes have characteristic anatomical patterns of abnormal connectivity that may be identified with other methods like structural brain imaging, the different mechanisms of neurodegeneration also cause characteristic spectral signatures of physiological coupling that are not accessible with structural imaging nor confounded by the neurovascular signalling of functional MRI. We suggest that these spectral characteristics of altered connectivity are the result of differential disruption of neuronal microstructure and synaptic physiology by Alzheimer's disease versus frontotemporal lobar degeneration.Peer reviewe

    Regional expression of the MAPT gene is associated with loss of hubs in brain networks and cognitive impairment in Parkinson disease and progressive supranuclear palsy.

    Get PDF
    Abnormalities of tau protein are central to the pathogenesis of progressive supranuclear palsy, whereas haplotype variation of the tau gene MAPT influences the risk of Parkinson disease and Parkinson's disease dementia. We assessed whether regional MAPT expression might be associated with selective vulnerability of global brain networks to neurodegenerative pathology. Using task-free functional magnetic resonance imaging in progressive supranuclear palsy, Parkinson disease, and healthy subjects (n = 128), we examined functional brain networks and measured the connection strength between 471 gray matter regions. We obtained MAPT and SNCA microarray expression data in healthy subjects from the Allen brain atlas. Regional connectivity varied according to the normal expression of MAPT. The regional expression of MAPT correlated with the proportionate loss of regional connectivity in Parkinson's disease. Executive cognition was impaired in proportion to the loss of hub connectivity. These effects were not seen with SNCA, suggesting that alpha-synuclein pathology is not mediated through global network properties. The results establish a link between regional MAPT expression and selective vulnerability of functional brain networks to neurodegeneration.Medical Research Council (Grant IDs: G1100464, MR/K020706/1, G0700503), Wellcome Trust (Grant ID: 103838), National Institute for Health Research Cambridge Biomedical Research Centre, Beverley Sackler fellowship scheme, NARSAD Young Investigator Award, Isaac Newton TrustThis is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.neurobiolaging.2016.09.00

    In vivo rate-determining steps of tau seed accumulation in Alzheimer's disease.

    Get PDF
    [Figure: see text].We acknowledge funding from Sidney Sussex College Cambridge (GM) and the European Research Council Grant Number 669237 (to D.K.) and the Royal Society (to D.K.). The Cambridge Brain Bank is supported by the NIHR Cambridge Biomedical Research Centre

    Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks.

    Get PDF
    Human functional magnetic resonance imaging (fMRI) brain networks have a complex topology comprising integrative components, e.g. long-distance inter-modular edges, that are theoretically associated with higher biological cost. Here, we estimated intra-modular degree, inter-modular degree and connection distance for each of 285 cortical nodes in multi-echo fMRI data from 38 healthy adults. We used the multivariate technique of partial least squares (PLS) to reduce the dimensionality of the relationships between these three nodal network parameters and prior microarray data on regional expression of 20 737 genes. The first PLS component defined a transcriptional profile associated with high intra-modular degree and short connection distance, whereas the second PLS component was associated with high inter-modular degree and long connection distance. Nodes in superior and lateral cortex with high inter-modular degree and long connection distance had local transcriptional profiles enriched for oxidative metabolism and mitochondria, and for genes specific to supragranular layers of human cortex. In contrast, primary and secondary sensory cortical nodes in posterior cortex with high intra-modular degree and short connection distance had transcriptional profiles enriched for RNA translation and nuclear components. We conclude that, as predicted, topologically integrative hubs, mediating long-distance connections between modules, are more costly in terms of mitochondrial glucose metabolism.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.PEV is supported by an MRC Bioinformatics Research Fellowship (MR/K020706/1). Functional MRI data acquisition was supported by a strategic award from the Wellcome Trust to the University of Cambridge (IMG, PBJ, ETB) and University College London (RJD, PF): the Neuroscience in Psychiatry Network (NSPN). Additional support was provided by the NIHR Cambridge Biomedical Research Centre. Access to gene expression data was provided by the Allen Institute for Brain Sciences Website: © 2015 Allen Institute for Brain Science. Allen Human Brain Atlas [Internet]. Available from: http://human.brain-map.org. FV is supported by a Gates Cambridge PhD studentship. KW is supported by the University of Cambridge MB/PhD Programme and the Wellcome Trust. We thank Gita Prabu, Roger Tait, Cinly Ooi, John Suckling and Becky Inkster for fMRI data collection and storage. ETB is employed half-time by the University of Cambridge and half-time by GlaxoSmithKline(GSK).This is the final version of the article. It first appeared from Royal Society Publishing via http://dx.doi.org/10.1098/rstb.2015.036

    Longitudinal Synaptic Loss in Primary Tauopathies: An In Vivo [11 C]UCB-J Positron Emission Tomography Study

    Get PDF
    BACKGROUND: Synaptic loss is characteristic of many neurodegenerative diseases; it occurs early and is strongly related to functional deficits. OBJECTIVE: In this longitudinal observational study, we determine the rate at which synaptic density is reduced in the primary tauopathies of progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), and we test the relationship with disease progression. METHODS: Our cross-sectional cohort included 32 participants with probable PSP and 16 with probable CBD (all amyloid-negative corticobasal syndrome), recruited from tertiary care centers in the United Kingdom, and 33 sex- and age-matched healthy control subjects. Synaptic density was estimated by positron emission tomography imaging with the radioligand [11 C]UCB-J that binds synaptic vesicle 2A. Clinical severity and cognition were assessed by the PSP Rating Scale and the Addenbrooke's cognitive examination. Regional [11 C]UCB-J nondisplaceable binding potential was estimated in Hammersmith Atlas regions of interest. Twenty-two participants with PSP/CBD had a follow-up [11 C]UCB-J positron emission tomography scan after 1 year. We calculated the annualized change in [11 C]UCB-J nondisplaceable binding potential and correlated this with the change in clinical severity. RESULTS: We found significant annual synaptic loss within the frontal lobe (-3.5%, P = 0.03) and the right caudate (-3.9%, P = 0.046). The degree of longitudinal synaptic loss within the frontal lobe correlated with the rate of change in the PSP Rating Scale (R = 0.47, P = 0.03) and cognition (Addenbrooke's Cognitive Examination-Revised, R = -0.62, P = 0.003). CONCLUSIONS: We provide in vivo evidence for rapid progressive synaptic loss, correlating with clinical progression in primary tauopathies. Synaptic loss may be an important therapeutic target and outcome variable for early-phase clinical trials of disease-modifying treatments. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Network connectivity and structural correlates of survival in progressive supranuclear palsy and corticobasal syndrome

    Get PDF
    There is a pressing need to understand the factors that predict prognosis in progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), with high heterogeneity over the poor average survival. We test the hypothesis that the magnitude and distribution of connectivity changes in PSP and CBS predict the rate of progression and survival time, using datasets from the Cambridge Centre for Parkinson-plus and the UK National PSP Research Network (PROSPECT-MR). Resting-state functional MRI images were available from 146 participants with PSP, 82 participants with CBS, and 90 healthy controls. Large-scale networks were identified through independent component analyses, with correlations taken between component time series. Independent component analysis was also used to select between-network connectivity components to compare with baseline clinical severity, longitudinal rate of change in severity, and survival. Transdiagnostic survival predictors were identified using partial least squares regression for Cox models, with connectivity compared to patients' demographics, structural imaging, and clinical scores using five-fold cross-validation. In PSP and CBS, between-network connectivity components were identified that differed from controls, were associated with disease severity, and were related to survival and rate of change in clinical severity. A transdiagnostic component predicted survival beyond demographic and motion metrics but with lower accuracy than an optimal model that included the clinical and structural imaging measures. Cortical atrophy enhanced the connectivity changes that were most predictive of survival. Between-network connectivity is associated with variability in prognosis in PSP and CBS but does not improve predictive accuracy beyond clinical and structural imaging metrics

    Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome.

    Get PDF
    How does human brain structure mature during adolescence? We used MRI to measure cortical thickness and intracortical myelination in 297 population volunteers aged 14-24 y old. We found and replicated that association cortical areas were thicker and less myelinated than primary cortical areas at 14 y. However, association cortex had faster rates of shrinkage and myelination over the course of adolescence. Age-related increases in cortical myelination were maximized approximately at the internal layer of projection neurons. Adolescent cortical myelination and shrinkage were coupled and specifically associated with a dorsoventrally patterned gene expression profile enriched for synaptic, oligodendroglial- and schizophrenia-related genes. Topologically efficient and biologically expensive hubs of the brain anatomical network had greater rates of shrinkage/myelination and were associated with overexpression of the same transcriptional profile as cortical consolidation. We conclude that normative human brain maturation involves a genetically patterned process of consolidating anatomical network hubs. We argue that developmental variation of this consolidation process may be relevant both to normal cognitive and behavioral changes and the high incidence of schizophrenia during human brain adolescence.This study was supported by the Neuroscience in Psychiatry Network, a strategic award by the Wellcome Trust to the University of Cambridge and University College London. Additional support was provided by the NIHR Cambridge Biomedical Research Centre and the MRC/Wellcome Trust Behavioural & Clinical Neuroscience Institute. PEV is supported by the MRC (MR/K020706/1). We used the Darwin Supercomputer of the University of Cambridge High Performance Computing Service provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council.This is the author accepted manuscript. This is the author accepted manuscript. The final version is available from the National Academy of Sciences via https://doi.org/10.1073/pnas.160174511

    In vivo 18F-flortaucipir PET does not accurately support the staging of progressive supranuclear palsy

    Get PDF
    Progressive Supranuclear Palsy (PSP) is a neurodegenerative disorder characterised by neuro-glial tau pathology. A new staging system for PSP pathology at post-mortem has been described and validated. We used a data-driven approach to test whether post-mortem pathological staging in PSP can be reproduced in vivo with 18F-flortaucipir PET. Methods: N=42 patients with probable PSP and N=39 controls underwent 18F-flortaucipir PET. Conditional inference tree analyses on regional binding potential values identified absent/present pathology thresholds to define in vivo staging. Following the staging system for PSP pathology, the combination of absent/present values across all regions was evaluated to assign each participant to in vivo stages. Analysis of variance was applied to analyse differences among means of disease severity between stages. In vivo staging was compared with post-mortem staging in N=9 patients who also had post-mortem confirmation of the diagnosis and stage. Results: Stage assignment was estimable in 41 patients: N=10 patients were classified in stage I/II, N=26 in stage III/IV, N=5 in stage V/VI, while N=1 was not classifiable. An explorative sub-staging identified N=2 patients in stage I, N=8 in stage II, N=9 in stage III, N=17 in stage IV and N=5 in stage V. However, the nominal 18F-flortaucipir derived stage was not associated with clinical severity and was not indicative of pathology staging at post-mortem. Conclusion: 18F-flortaucipir PET in vivo does not correspond to neuropathological staging in PSP. This analytic approach, seeking to mirror in vivo the neuropathology staging with PET-to-autopsy correlational analyses might enable in vivo staging with next-generation PET tracers for tau, but further evidence and comparison with post-mortem data are needed.This study was co-funded by the Cambridge University Centre for Parkinson-Plus (RG95450); the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre (BRC-1215-20014), including their financial support for the Cambridge Brain Bank; the PSP Association (“MAPT-PSP” award); the Alzheimer’s Research UK East-Network pump priming grant; the Wellcome trust (220258); the Medical Research Council (MR/P01271X/1; G1100464); the Association of British Neurologists, Patrick Berthoud Charitable Trust (RG99368); Alzheimer’s Society (443 AS JF 18017); the Evelyn Trust (RG84654), and RCUK/UKRI (via a Research Innovation Fellowship awarded by the Medical Research Council to CHWG - MR/R007446/1); the Guarantors of Brain (G101149). The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care
    corecore