128 research outputs found
Citrus black spot detection using hyperspectral image analysis
A recently discovered fungal disease called citrus black spot, is threatening the Florida citrus industry. The fungal disease, which causes cosmetic lesions on the rind of the fruit and can cause a tree to drop its fruit prematurely, could possibly lead to a ban on sales of fresh Florida citrus in other citrus-producing states. The objective of this research is to develop a multispectral imaging algorithm to detect citrus black spots based on hyperspectral image data. Hyperspectral images of citrus fruits (Valencias) were collected in the wavelength range of 480 nm to 950 nm. Five surface conditions were examined, citrus black spot, greasy spot, melanose, wind scar, and normal one. The first part of the image analysis determined the optimal wavelengths using correlation analysis based on the wavelength ratio (l1/l2) and wavelength difference (l1 - l2). Four wavelengths were identified, 493 nm, 629 nm, 713 nm, and 781 nm. In the second part, pattern recognition approaches namely linear discriminant classifier and artificial neural networks were developed using the four selected wavelengths as the input. Both pattern recognition approaches had an overall accuracy of 92%. The detection accuracy was improved to 96% by using the NDVI band ratio method of 713 nm and 781 nm. The multispectral image algorithm developed in this study haspotential to be adopted by a real-time multispectral imaging system for citrus black spot detection. Keywords: activation energy, effective diffusivity, foam-mat drying, foam characteristics, modeling, Shrim
Nutrient Management Impacts on HLB-affected ‘Valencia’ Citrus Tree Growth, Fruit Yield, and Postharvest Fruit Quality
Since the first occurrence of Huanglongbing (HLB) in the Florida commercial citrus industry in 2004, fruit yield and yield components of HLB-affected citrus have declined in endemically affected citrus tree groves. Optimal fertilization is thus critical for improving tree performance because nutrients are vital for tree growth and development, and play a significant role in tree disease resistance against various biotic and abiotic stresses. The objective of the current study was to determine whether leaf nutrient concentration, tree growth, yield, and postharvest quality of HLB-affected citrus trees were improved by the split application of nutrients. The four micronutrient application rates were used as fixed factors and the three nitrogen (N) rates were used as random factors for leaf nutrient analyses, tree growth, fruit yield, and postharvest analyses. Significant leaf manganese (Mn) and zinc (Zn) concentrations were detected when trees received foliar and soil-applied micronutrients regardless of the N rates. There was a strong regression analysis of leaf Mn and Zn nutrient concentration and nutrient rates with R2: 0.61 and 0.59, respectively. As a result, a significant leaf area index associated with foliar and soil-applied micronutrient rates had a positive correlation with leaf area index and soil pH with R2: 0.58 and 0.63 during the spring and summer seasons, respectively. Trees that received a moderate (224 kg·ha−1) N rate showed the least fruit decay percentage and total soluble solids (TSS) of 8% more than the lowest (168 kg·ha−1) and highest (280 kg·ha−1) N rates, even though fruit yield variations were barely detected as these micronutrients promoted vegetative growth. Moreover, the TSS to titratable acidity (TA) ratio of foliar and soil-applied micronutrient-treated trees showed 2% and 7% greater values than the foliar-only treated and control trees, respectively. Although micronutrients exacerbated stem-end rind breakdown (SERB), these nutrients significantly improved fruit storage when the fruits were stored for extended periods (8–11 weeks). Thus, moderate N rate, foliar (1×), and soil-applied (1×) micronutrient treatments improved tree growth, fruit postharvest, and fruit storage characteristics
New quality index based on dry matter and acidity proposed for Hayward kiwifruit
Researchers from various countries have proposed using dry matter at harvest as a worldwide quality index for Hay-ward kiwifruit, because it includes both soluble (sugars and acids) and insoluble (structural carbohydrates and starch) solids and doesn't change during post-harvest handling. Our consumer tests in 1999 and 2008 indicated that dry matter and ripe titratable acidity are related to in-store consumer acceptance of kiwifruit. In most California seasons, when ripe titratable acidity was less than 1.2%, only a dry matter greater than or equal to 15.1% was required for consumer acceptability. Our 6-year quality attribute survey of California kiwifruit at harvest and from cold storage demonstrated that dry matter and ripe soluble solids concentration were highly variable among vineyards and seasons, but ripe titratable acidity values varied more among seasons than between vineyards. Our results provide strong evidence that dry matter would be a reliable quality index candidate for California kiwifruit, especially if ripe titratable acidity were factored in
Anthocyanin management in fruits by fertilization
Anthocyanins are water-soluble vacuolar plant pigments that are mainly synthesized in epidermal layers and the flesh of fruits such as apples, cherries, grapes, and other berries. Because of their attractive red to purple coloration and their health-promoting potential, anthocyanins are significant determinants for the quality and market value of fruits and fruit-derived products. In crops, anthocyanin accumulation in leaves can be caused by nutrient deficiency which is usually ascribed to insufficient nitrogen or phosphorus fertilization. However, it is a little-known fact that the plant’s nutrient status also impacts anthocyanin synthesis in fruits. Hence, strategic nutrient supply can be a powerful tool to modify the anthocyanin content and consequently the quality and market value of important agricultural commodities. Here we summarize the current knowledge of the influence of plant nutrients on anthocyanin synthesis in fruits of major global market value and discuss the underlying cellular processes that integrate nutrient signaling with fruit anthocyanin formation. It is highlighted that fertilization that is finely tuned in amount and timing has the potential to positively influence the fruit quality by regulating anthocyanin levels. We outline new approaches to enrich plant based foods with health-promoting anthocyanins
Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology
A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel
Gold and silver diffusion in germanium: a thermodynamic approach
Diffusion properties are technologically important in the understanding of semiconductors for the efficent formation of defined nanoelectronic devices. In the present study we employ experimental data to show that bulk materials properties (elastic and expansivity data) can be used to describe gold and silver diffusion in germanium for a wide temperature range (702–1177 K). Here we show that the so-called cBΩ model thermodynamic model, which assumes that the defect Gibbs energy is proportional to the isothermal bulk modulus and the mean volume per atom, adequately metallic diffusion in germanium
Pharmacological Management of Idiopathic Pulmonary Fibrosis
Idiopathic pulmonary fibrosis (IPF) is a common interstitial lung disease (ILD) caused by environmental exposures, infections, or traumatic injuries and subsequent epithelial damage. Since IPF is a progressively fatal disease without remission, treatment is both urgent and necessary. The two medications indicated solely for treatment include the tyrosine kinase inhibitor nintedanib (Ofev®) and the anti-fibrotic agent pirfenidone (Esbriet®). This chapter discusses in detail the current treatment options for clinical management of IPF, specifically the mentioned two pharmacotherapeutic agents that decrease physiological progression and likely improve progression-free survival. The chapter also discusses the evolution of drug therapy in IPF management and the drawbacks and limitations learned throughout historical trials and observational studies
- …