399 research outputs found

    Categorization of humans in biomedical research: genes, race and disease

    Get PDF
    A debate has arisen regarding the validity of racial/ethnic categories for biomedical and genetic research. Some claim 'no biological basis for race' while others advocate a 'race-neutral' approach, using genetic clustering rather than self-identified ethnicity for human genetic categorization. We provide an epidemiologic perspective on the issue of human categorization in biomedical and genetic research that strongly supports the continued use of self-identified race and ethnicity

    A large multi-ethnic genome-wide association study identifies novel genetic loci for intraocular pressure.

    Get PDF
    Elevated intraocular pressure (IOP) is a major risk factor for glaucoma, a leading cause of blindness. IOP heritability has been estimated to up to 67%, and to date only 11 IOP loci have been reported, accounting for 1.5% of IOP variability. Here, we conduct a genome-wide association study of IOP in 69,756 untreated individuals of European, Latino, Asian, and African ancestry. Multiple longitudinal IOP measurements were collected through electronic health records and, in total, 356,987 measurements were included. We identify 47 genome-wide significant IOP-associated loci (P < 5 × 10-8); of the 40 novel loci, 14 replicate at Bonferroni significance in an external genome-wide association study analysis of 37,930 individuals of European and Asian descent. We further examine their effect on the risk of glaucoma within our discovery sample. Using longitudinal IOP measurements from electronic health records improves our power to identify new variants, which together explain 3.7% of IOP variation

    Ancestry-related assortative mating in Latino populations

    Get PDF
    Examination of ancestry-informative genetic markers shows that Puerto Rican and Mexican populations have shown strong assortative mating that continues to this day

    Structure analysis of vitusite glass–ceramic waste forms using extended X-ray absorption fine structures

    Get PDF
    Vitusite glass–ceramic waste forms were developed and the local environments of the Nd3+ ions in the waste forms were analyzed using extended X-ray absorption fine structure (EXAFS) spectroscopy. A second shell was observed in the Fourier transform (FT) of the EXAFS Nd LIII-edge spectra with the formation of vitusite crystals in the glass matrix. This second shell was attributed to the presence of the Nd–P and Nd–Na ion pairs constituting the vitusite crystal. The preferred incorporation of Nd3+, P5+, and Na+ inside the crystalline phases surrounded by the glass matrix increased the chemical durability of the glass–ceramics

    Failure to replicate an association of SNPs in the oxidized LDL receptor gene (OLR1) with CAD

    Full text link
    Abstract Background The lectin-like oxidized LDL receptor LOX-1 (encoded by OLR1) is believed to play a key role in atherogenesis and some reports suggest an association of OLR1 polymorphisms with myocardial infarction (MI). We tested whether single nucleotide polymorphisms (SNPs) in OLR1 are associated with clinically significant CAD in the Atherosclerotic Disease, VAscular FuNction, & Geneti C Epidemiology (ADVANCE) study. Methods ADVANCE is a population-based case-control study of subjects receiving care within Kaiser Permanente of Northern California including a subset of participants of the Coronary Artery Risk Development in Young Adults (CARDIA) study. We first resequenced the promoter, exonic, and splice site regions of OLR1 and then genotyped four single nucleotide polymorphisms (SNPs), including a non-synonymous SNP (rs11053646, Lys167Asn) as well as an intronic SNP (rs3736232) previously associated with CAD. Results In 1,809 cases with clinical CAD and 1,734 controls, the minor allele of the coding SNP was nominally associated with a lower odds ratio (OR) of CAD across all ethnic groups studied (minimally adjusted OR 0.8, P = 0.007; fully adjusted OR 0.8, P = 0.01). The intronic SNP was nominally associated with an increased risk of CAD (minimally adjusted OR 1.12, p = 0.03; fully adjusted OR 1.13, P = 0.03). However, these associations were not replicated in over 13,200 individuals (including 1,470 cases) in the Atherosclerosis Risk in Communities (ARIC) study. Conclusion Our results do not support the presence of an association between selected common SNPs in OLR1 and the risk of clinical CAD.http://deepblue.lib.umich.edu/bitstream/2027.42/112726/1/12881_2008_Article_317.pd

    An Extremes of outcome strategy provides evidence that multiple sclerosis severity is determined by alleles at the <i>HLA-DRB1</i> locus

    Get PDF
    Multiple sclerosis (MS) is a common inflammatory disease of the central nervous system unsurpassed for variability in disease outcome. A cohort of sporadic MS cases (n=63), taken from opposite extremes of the distribution of long-term outcome, was used to determine the role of the HLA-DRB1 locus on MS disease severity. Genotyping sets of benign and malignant MS patients showed that HLA-DRB1*01 was significantly underrepresented in malignant compared with benign cases. This allele appears to attenuate the progressive disability that characterizes MS in the long term. The observation was doubly replicated in (i) Sardinian benign and malignant patients and (ii) a cohort of affected sibling pairs discordant for HLA-DRB1*01. Among the latter, mean disability progression indices were significantly lower in those carrying the HLA-DRB1*01 allele compared with their disease-concordant siblings who did not. The findings were additionally supported by similar transmission distortion of HLA-DRB1*04 subtypes closely related to HLA-DRB1*01. The protective effect of HLA-DRB1*01 in sibling pairs may result from a specific epistatic interaction with the susceptibility allele HLA-DRB1*1501. A high-density (&gt;700) SNP examination of the MHC region in the benign and malignant patients could not identify variants differing significantly between the two groups, suggesting that HLA-DRB1 may itself be the disease-modifying locus. We conclude that HLA-DRB1*01, previously implicated in disease resistance, acts as an independent modifier of disease progression. These results closely link susceptibility to long-term outcome in MS, suggesting that shared quantitative MHC-based mechanisms are common to both, emphasizing the central role of this region in pathogenesis
    corecore