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Haplotype analysis of disease chromosomes can help identify probable historical recombination events and
localize disease mutations. Most available analyses use only marginal and pairwise allele frequency information.
We have developed a Bayesian framework that utilizes full haplotype information to overcome various
complications such as multiple founders, unphased chromosomes, data contamination, and incomplete marker
data. A stochastic model is used to describe the dependence structure among several variables characterizing the
observed haplotypes, for example, the ancestral haplotypes and their ages, mutation rate, recombination events,
and the location of the disease mutation. An efficient Markov chain Monte Carlo algorithm was developed for
computing the estimates of the quantities of interest. The method is shown to perform well in both real data
sets (cystic fibrosis data and Friedreich ataxia data) and simulated data sets. The program that implements the
proposed method, BLADE, as well as the two real datasets, can be obtained from http://www.fas.harvard.edu/
∼ junliu/TechRept/01folder/diseq_prog.tar.gz.

In the quest to identify genes responsible for specific illnesses,
it has been observed in many cases that a large portion of the
carriers of the disease gene in the current population are de-
scendant from a small number of “founders” in whose ge-
nomes the deleterious mutation appeared some generations
ago. This translates into inhomogeneity between the allele
frequencies in the general population and those with the dis-
ease for genetic markers close to the location of the disease
gene(s). The reason is that the allele frequencies of these
markers in the disease population still reflect those originally
carried by the founder chromosome(s), with modifications
introduced by recombinations and mutations. This phenom-
enon, known as linkage disequilibrium (LD), can be exploited
to identify the location of a disease gene by measuring the
dependence between disease status and allele distributions
among a set of markers.

Simply looking at the marginal dependency between
each marker and disease status in a case/control sample of
chromosomes is clearly inefficient. For an LD mapping strat-
egy to be optimal in fine mapping, it is essential to consider
the information observed in a set of contiguous markers (i.e.,
haplotypes). The primary goal of our Bayesian analysis is the
localization of a gene responsible for the disease within the
considered set of markers. Secondary goals are the determina-
tion of ancestral haplotypes, the separation of distinct
founders of the disease, the construction of haplotypes from
unphased chromosomes, and inference on the ages of the
mutations causing the disease. Our method, like any others
based on LD, is appropriate when there are reasons to assume
the existence of a founder effect in at least a significant pro-
portion of the diseased individuals. We note that several at-
tempts along the lines of our approach have been discussed in

the literature, and we compare these methods with our ap-
proach herein.

By employing a Bayesian approach, we explicitly model
positions of the historical recombinations and mutation
events that produced the observed haplotypes from an initial
set of founders. As a result, our Bayesian LinkAge DisEquilib-
rium mapping (BLADE) algorithm produces the posterior dis-
tribution of the location of the disease mutation by account-
ing for all sources of uncertainties. A major advantage of our
approach is its flexibility in treating various complications
such as missing marker data, multiple founders, and un-
phased chromosomes. For example, the algorithm provides
not only the estimation of the mutation location but also the
haplotype construction in the case when part or all of the
disease chromosomes are unphased. Our methodology is well
suited for the fine mapping of a disease gene within a previ-
ously identified linked region. The main idea presented here
can also be extended to LD genome screens and single nucleo-
tide polymorphism (SNP) studies.

RESULTS
The BLADEalgorithm can be regarded as a specialized expert
system: It takes as input the prior knowledge such as mutation
rate, the range of founders’ ages, etc., and produces the pos-
terior distributions of the location of the disease mutation(s),
ancestral haplotypes, founder ages, cluster indicators, and
haplotypes of unphased chromosomes. All of these output
components can be inspected directly by the researcher for
further validation.

The centerpiece of the BLADE algorithm is an explicit
stochastic model describing the dependence structure among
the many variables related to the generation of the observed
disease haplotypes. This model is closely related to the hidden
Markov model employed by McPeek and Strahs (1999) and
Morris et al. (2000) but appears to be simpler and more trans-
parent. Our model assumes that the disease haplotypes can be
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grouped into k+1 clusters, corresponding to k founder chro-
mosomes in the current disease population and 1 “null” clus-
ter for all other disease chromosomes. Each non-null cluster is
characterized by an ancestral haplotype associated with a
single disease-causing mutation coalescing to a single time
point (age). These k ancestral mutations are assumed to be at
the same (or very close) location. Although BLADErelies on
the simplifying assumption that the disease haplotypes of the
current generation within each cluster are mutually indepen-
dent given the ancestral haplotype, allowing for multiple
clusters and for different founder ages alleviates the need for
a faithful (and very complex) model of the underlying gene-
alogy. A Markov chain Monte Carlo strategy was developed to
facilitate the computation needed for a proper inference on
the parameters of interest (i.e., integrating out all of the nui-
sance parameters and the missing data). Our method also al-
lows for modeling the control haplotypes as an inhomoge-
neous Markov chain, which is useful when studying closely
spaced markers.

We applied the BLADEalgorithm to two real datasets and
conducted a simulation study to test its performance and ro-
bustness. These results show that our method performed
markedly better than pairwise methods and can make correct
predictions even when the data show a substantial departure
from some key assumptions.

Cystic Fibrosis
This well-known dataset was reported in Kerem et al. (1989)
and used to fine-map the location of the gene for cystic fibro-
sis. The haplotypes in consideration have 23 RFLP markers.
The control group has 92 haplotypes and the disease group
has 94. Many disease haplotypes (39%) have missing obser-
vations at certain markers. It is known in this dataset that one
founder mutation, �F508, located between markers 17 and 18,
∼ 0.88 cM away from the leftmost marker, accounts for the
majority (67%) of disease chromosomes.

We decided to first model the data with a single founder
cluster (the null cluster for phenocopies is always present).
Because some markers in the region are very tightly spaced,
the haplotypes in the control group strongly violate the link-
age equilibrium assumption. Consequently, a first-order
Markov model was used for the markers in the control hap-
lotypes (see the Methods section). Monte Carlo draws from
the posterior distribution of the disease location � are shown
in Figure 1, with [0.82, 0.93] cM as its 95% probability interval
(PI). The algorithm also found that 71% of the disease haplo-
types belong to the founder cluster, with remaining ones be-
ing phenocopies. To better illustrate our results, we also plot
in Figure 1 a single marker measure of disequilibrium, which
is defined as

where A ranges over all of the possible alleles, D indicates the
disease population, and N the normal population. To test the
robustness of the BLADE’s missing data strategy, we also ap-
plied BLADEto the set of 57 completely observed disease hap-
lotypes. The posterior mean of � was essentially unchanged
but the posterior variance increased, with a 95% PI of
[0.79,0.94] cM. Using a Markov model for the control haplo-

types is important. If an equilibrium model is used, the 95%
PI would not cover the true location.

The good result shown in Figure 1 is somewhat surpris-
ing and counterintuitive because all but one of the disease
haplotypes with the �F508 mutation have the identical con-
figuration “0 0 1 1 0 1 0 1 0 0 1 0” for markers from 9 to 20.
Indeed, if it were known that no crossovers had occurred in
this region, the posterior distribution for � would have been
flat from 0.62cM to 0.96cM. However, the crossover events
are unobservable and there is a substantial uncertainty in in-
ferring their true locations. For example, a number of control
haplotypes (23%) have the configuration “0 0 1 1 0 1 0” for
markers from 9 to 15, of which four haplotypes also have
alleles “1” and “0” at markers 16 and 17. Thus, for some dis-
ease haplotypes, the chance that the left crossover point oc-
curred somewhere between markers 15 and 18 is nonnegli-
gible. Another reason for BLADE to put the posterior mode
between markers 16 and 19 is that the interval lengths be-
tween markers 15–16 and 19–20 are much greater than the
interval lengths between markers 16–17, 17–18, and 18–19.
By comparing the disease haplotypes with the control ones
under a coherent probabilistic framework, BLADE incorpo-
rates relevant information and provides a posterior distribu-
tion of � resulting from a weighted average over all of the
possible ways of imputing the crossover points. To confirm
our analysis, we applied BLADEto the 63 haplotypes with an
identified �F508 mutation. A result similar to that of Figure 1
was obtained, although the last haplotype (the one in Group
IIIa of Kerem et al.) was singled out as belonging to the null
cluster by the algorithm. We also did the same analysis as-
suming that the distances between adjacent markers are all
equal to 0.02cM (other values were also tested) and found that
the posterior mode was shifted leftward to between markers
15 and 17. From this analysis we noted that BLADEperformed
robustly if the ratio of physical to genetic distance is constant
in the region (we assumed that 1cM ≈ 1MB), whereas the re-
sult can be misleading if this uniformity does not hold.

We re-ran the algorithm with k = 2 (i.e., two founder

Figure 1 Histogram of a posterior sample for the location of the
disease locus for cystic fibrosis. At the bottom of the figure, the true
position of the disease-causing mutation is indicated by a small tri-
angle, and the gene that contains it is indicated with a segment. The
dots on the graph represent the �-values for each marker in the
dataset.

� =max
P�A|D� − P�A|N�

1 − P�A|N�
,
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clusters and one null cluster), which required slightly greater
CPU time but gave a posterior distribution of � almost iden-
tical to that in Figure 1 for the location of the disease muta-
tion (the same mean, variance, median, etc.). The algorithm
singled out from the previous null cluster an additional group
consisting of two haplotypes:

0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0
0 0 0 0 1 0 0 2 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1
Here “2” denotes that the marker information is missing

at that locus. When we let k = 3, the algorithm pulled out a
small group of about 8∼ 15 haplotypes (with some uncer-
tainty), mostly from the previous main founder cluster. The
central segment of the new ancestral haplotype was the same
as that of the main cluster, indicating that the new group
might be pulled out because of the genealogy. The posterior
mean of � moved slightly to the left, and its 95% PI was in-
creased to [0.76, 0.94] cM.

To partially account for the correlations among the dis-
ease haplotypes, we implemented a heuristic purging strategy.
That is, if the dataset contains ni copies of a haplotype, we
retain only ƒ(ni) of them, where f() is given by the user. For
example, we tested both ƒ(n) = n/[1 + (n� 1)cn, where cn is the
coalescence factor proposed by McPeek and Strahs (1999),
and the simple one ƒ(n) = √n. BLADEperformed robustly, giv-
ing 95% PIs of [0.83,0.96] cM and [0.82, 1.0] cM, respectively,
corresponding to the reduced disease datasets of sizes 78 and
58 for the two purging functions.

A number of LD methods have been applied to this
dataset with satisfactory results (Xiong and Guo 1997; Lazze-
roni 1998; McPeek and Strahs 1999; Morris et al. 2000).
McPeek and Strahs used a maximum likelihood method based
on a model similar to ours. They gave a confidence interval of
� with other parameters fixed. Their interval is somewhat
larger than the one we obtained, even without the coales-
cence correction. The length of the PI obtained by Morris et
al. is consistent with ours, although their interval was not able
to cover the true location before the coalescence correction.

Friedreich Ataxia
Our second LD analysis is based on previously unpublished
data concerning the localization of the gene for Friedreich
ataxia (FA), an autosomal recessive degenerative disease that
involves the central and peripheral nervous system and the
heart. The data came from the Acadian population of Louisi-
ana (Sirugo et al. 1992). Campuzano et al. (1996) identified
the gene responsible for FA and discovered that the disease is
caused by a trinucleotide repeat expansion. Our data consist
of haplotypes of 58 disease haplotypes, 69 control haplotypes,
and one pair of unphased disease chromosomes, all from the
Acadian population. There are 12 microsatellite markers span-
ning a region of 15 cM with intermarker distances of 3, 6.5,
0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, and 4.5
cM, respectively. The gene is located between the fifth and
sixth markers. In Figure 2, we again plot the single-marker LD
parameter � for the 12 markers for comparison.

We first assumed that there is only one founder respon-
sible for the disease mutation (k = 1). The program identified
an ancestral haplotype of “2 7 8 2 5 9 2 2 2 2 6 3,” and 33
disease chromosomes including one of the unphased chro-
mosomes are likely to belong this cluster. The posterior dis-
tribution of the disease gene location is given in the upper left
panel of Figure 3; it is quite flat and not clearly pointing to the
true disease location.

To explore whether there are any other ancestral muta-
tions, we re-ran the program assuming that k = 2. Since we
identified one ancestral haplotype in the first step, we used it
as the initial value for one of the two founder haplotypes. The
program identified another ancestral haplotype of “? ? 8 5 6
(2/3) 3 2 2 2 1 9,” and 7 disease chromosomes were found to
conform to this ancestral type. To find other possible founder
mutations, we ran the program with the assumption of more
ancestral mutations. The program found two more distinct
ancestral haplotypes, “? ? 7 7 3 3 3 4 2 2 7 5” and “? ? 8 7 6 3
3 2 3 3 5 ?’”, respectively, each corresponding to six disease
chromosomes. As we increased k from 1 to 4, the posterior
distribution of the disease gene location as shown in Figure 3
concentrated more and more on the true mutation location.
This was particularly the case when the fourth cluster was
included, as it was in this group that a likely nearby flanking
crossover event occurred. Analysis of just the major haplotype
group (cluster 1) dominates most single-marker methods and
leads to a misleading result.

When we ran the program with k = 5, the program
picked out “? ? 8 5 6 2 3 2 2 2 ? ?” as the fifth ancestral

Figure 2 (A) � values for all of the markers in the Friedreich ataxia
dataset. (B) � values for the markers with distances from the disease
locus less than 1 cM. The vertical lines indicate the two marker posi-
tions flanking the disease gene.
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haplotype, which is almost identical to the second most
prominent ancestral haplotype we found earlier, with a minor
difference only at the sixth marker. These two likely represent
the same original mutation, but possibly reflect the fact that
there is a mutation hotspot at marker 6 or that there was a
mutation at an early stage at that marker. In summary, our
analysis shows that these data consist of one principal muta-
tion, present in 55% of the disease chromosomes, and three
minor mutations, present in about 10% of the disease chro-
mosomes each.

A Simulation Study
We simulated 50 populations of disease haplotypes originat-
ing from a single ancestor 200 generations earlier (control
haplotypes are assumed in equilibrium). The growth rate of
the population was 1.031, except for the first eight genera-
tions where the expansion rate was doubled. These param-
eters were chosen to mimic the history of the European popu-
lation and to ensure the survival of the mutation. Each chro-
mosome had a negative binomial number of descendants. We
considered 10 microsatellite-like markers, each 0.2 cM apart
and with 16 possible alleles. We set the mutation rate for each
marker to be 0.001 per generation, which is high and can
cause difficulties for some established LD mapping methods.
When recombination occurs, a disease haplotype recombines
with a random one in equilibrium. The ancestral haplotype
consists of alleles with the following population frequencies:
(0.0625, 0.4, 0.7, 0.0625, 0.4, 0.7, 0.4, 0.0625, 0.7, 0.0625). For
each marker, the alleles not on the ancestral haplotype have
equal probabilities. The disease location is between the fifth
and sixth markers.

For each of the 50 simulated populations, we produced a
set of 200 disease haplotypes by sampling at random from the
final generation, and then we generated independently a con-
trol set of 200 normal haplotypes. We then ran our algorithm
and compared its performance with the single marker method
based on the �-value defined earlier. The single marker
method can serve as an index of the difficulty of the problem.

More precisely, the �-values for all of the markers are com-
puted, and these values are interpolated by a smoothing
spline. The point where the smoothed curve reaches its maxi-
mum is taken as a point estimate of the location of the disease
mutation. Age is estimated by an average of the method-of-
moments (MOM) estimates obtainable by each �-value. Figure
4 illustrates a success and a failure of our procedure. The re-
sults may be summarized as follows: (a) the estimated location
for the disease locus was between the two markers flanking
the true disease location in 43 cases out of 50 (compared to
26/50 with a simple use of pairwise disequilibrium); (b) the
posterior probability of the interval flanking the disease locus
was greater than 0.9 in 33 cases out of 50; (c) the root mean
square error of the location estimate was 0.0629 cM (com-
pared to 0.1534); and (d) the posterior mean of age was 233.06
(compared to 402.19 with a simple use of pairwise disequilib-
rium). When we assume that there are two clusters (k = 2) in
the disease population, the mutation location was estimated
correctly 47 times out of 50, showing that allowing for mul-
tiple founder clusters can improve the performance of the
algorithm even when only a single founder event occurred.

DISCUSSION
Since linkage disequilibrium was rediscovered as a tool for
mapping disease genes, various statistical techniques have
been developed for this purpose. Early success in utilizing LD
information has been achieved by examining the pattern of
pairwise disequilibrium between the disease gene and a set of
markers (Kerem et al. 1989; Hastbacka et al. 1992; Ozelius et
al. 1992). This simple approach can be very effective, but suf-
fers from limitations that become evident when the informa-
tion content of the data is low, for example, when missing
data, multiple founders, and unphased chromosomes, are pres-
ent. Additionally, pairwise disequilibrium measures are not
robust to (a) variation in marker allele frequencies, (b) mul-
tiple founder mutations, and (c) varying mutation rates at
markers. Likelihood methods address some of these problems
by making specific assumptions on the evolutionary history
of the disease haplotypes and using the statistical framework
of likelihood inference (see, for example, Kaplan et al. 1995;
Xiong and Guo 1997; Graham and Thompson 1998; Rannala
and Slatkin 1998). Two drawbacks of these methods are that
they require assumptions on many exogenous parameters
whose value is in fact unknown, and the likelihood functions
on which they are based are prohibitively complex. As a con-
sequence, one is effectively limited to consider pairwise dis-
equilibrium.

It is evident, however, that considering the entire hap-
lotype leads to more robust estimates. Indeed, there have
been numerous cases in which the entire haplotype informa-
tion was utilized through an ad hoc “imputation” of the re-
combination locations done by well-trained experts (Feder et
al. 1996). The literature also documents various multilocus
methods that allow the consideration of a group of markers at
the same time without, however, exploiting the complete
haplotype structure (Terwilliger 1995; Devlin et al. 1996;
Lazzeroni 1998).

True haplotype methods have been proposed only re-
cently by Service et al. (1999), McPeek and Strahs (1999), Lam
et al. (2000), Morris et al. (2000), and us. Except for ours, no
method allows for multiple ancestral haplotypes, although
the methods of both McPeek and Strahs (1999) and Morris et
al. (2000) can handle phenocopies. Because of computational

Figure 3 Histograms of the posterior samples for the location of the
Friedreich ataxia gene mutation under the assumption of one to four
clusters, respectively. The X-axis is the distance between the first
marker and the disease locus (in cM). The vertical lines indicate the
two marker positions flanking the disease gene.
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limitations, Service et al.’s method is applicable only to hap-
lotypes of small size (they have implemented it for the case of
three markers). The method proposed by Lam et al. is based
on a partial Bayesian analysis, which is conducted by first
estimating a genealogical tree for the disease haplotypes and
then deriving posterior distributions for quantities of interest
based on a certain marginal likelihood. The hidden Markov
model used by McPeek and Strahs and that used by Morris et
al. are very similar to our model, depicted in Figure 5. A fur-
ther simplification we made is to ignore the probability that a
current disease haplotype may have more than one chromo-
somal piece in the region of consideration that is identical by
descent (IBD) with the founder. This strategy seems to give us
some computational advantages without sacrificing much in
terms of sensitivity. A limitation of McPeek and Strahs’ ap-

proach is that their inference on �

has to be made conditional on a set
of nuisance parameters fixed at
their maximum likelihood esti-
mates (MLEs). Morris et al. used a
Bayesian method that properly
handles the nuisance parameters.
Unfortunately, they did not allow
for the flexibility in modeling the
control haplotypes, which is per-
haps a reason why they failed to
cover the true location of �F508 mu-
tation for the CF data (their Fig. 2).

Many previous authors have
discussed the issue of dependent
disease haplotypes due to the un-
derlying genealogy. Because of the
very high chance of including
more than a single cluster in the
real dataset, estimating a genealogi-
cal tree before the elimination of
unrelated haplotypes is inappropri-
ate. As stated in Rannala and Slat-
kin (2000), the use of a star geneal-
ogy “undoubtedly involves a
tradeoff of statistical accuracy and
efficiency for mathematical sim-
plicity and rapid computability.”
McPeek and Strahs propose to ad-
dress the problem by “powering
down” the likelihood function de-
rived from the star genealogy, and
Morris et al. follow the same strat-
egy. Their correction factor, how-
ever, is computed independent of

the observed haplotypes. Although this strategy helps one
make more a conservative confidence statement by enlarging
the confidence interval of �, it does not address the more
serious bias problem caused by the overrepresentation of cer-
tain closely related haplotypes. In comparison, we treat the
deficiency of the star genealogy by allowing for multiple an-
cestral clusters and by haplotype purging (as implemented in
the CF example). Haplotype-specific weighting schemes simi-
lar to the one used for protein sequence analysis could be
another promising route.

We have assumed that all mutations occur in the same
location of the disease gene. This assumption appeared robust
in the two examples we considered. However, in the case
where disease mutations occur in different parts of a gene
separated by one or more markers, our analysis (or any similar
analysis with the same assumption) would likely lead to a
broader confidence interval, including multiple markers.
From a positional cloning perspective, however, this should
not be a serious limitation.

In summary, the BLADE algorithm can handle various
data complications, and its output components can be di-
rectly inspected and interpreted by the researcher. The algo-
rithm reports the posterior clustering information on each
disease haplotype by providing a vector of probabilities of it
belonging to different ancestral groups. Every haplotype is
also associated with a Monte Carlo sample drawn from the
posterior distribution of the proximal recombination events.
In a way, our method mimics the “empirical process” fol-
lowed by many experienced practitioners. For these research-

Figure 4 Examples of outcomes of the first simulation. Left panels: Histograms of samples from the
posterior distribution of the disease gene for two cases of our simulation (the true location is at position
0 and the distances are in Morgans). Superimposed are the values of � corresponding to the markers
whose position is within the limits of the picture. Right panels: Histograms of samples from the posterior
distribution of the age in the same two cases.

Figure 5 A graphical representation of the haplotype model. There
are a total of k markers. Parameter � is the “recombination distance”
from the disease locus to the leftmost marker (which is equal to
�log{(1+e�2d)/2}, where d is the genetic distance). The recombina-
tion event closest to the disease locus from the left arm occurred
between markers R1 and R1+1 and that from the right arm occurred
between markers R2 and R2+1.
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ers, BLADEcan help quantify their intuitions and strengthen
their insights. The main limitation of our method is that it
uses a collection of star-trees, each characterized by an ances-
tral haplotype, to approximate the true genealogy of the dis-
ease haplotypes. This strategy may still be insufficient to re-
move all the bias and undercoverage problems caused by the
correlations among the disease haplotypes and may also lead
to a decrease in efficiency. However, our experience has
shown that from a practical perspective, the greater flexibility
inherent in our approach compared to other methods more
than compensates for this loss in efficiency.

METHODS

Data Structure and Model Specifications

Data
Our data consist of a collection of haplotypesHt of marker loci
(1,2, . . . , m). They are divided into the control group and the
disease group. The latter, corresponding to t = 1, 2, . . . , N, is
denoted by H. A chromosome is classified as a “disease” or a
“control” chromosome according to whether or not it segre-
gates with disease status. The genetic distance di (in unit of
Morgan) between markers M1 and Mi is assumed known. The
recombination probability, which can be obtained as �i = (1 �
e�2di)/2 by inverting Haldane’s map function, is known as
well. We further define �i = �log(1 � �i) so that e��i is the
probability that there is no recombination between markers
M1 and Mi. If we assume that recombinations occur as a ho-
mogeneous Poisson process in the region under study, the
probability of having no recombination between markers Mi
and Mj can be computed as e��j��i. Clearly, �i ≈ di when di is
small, say, less than 5 cM. For simplicity, in the later text we
refer to �i as the genetic distance between markers, assuming
implicitly that �i ≈ di holds true; this does not result in any loss
of generality since �i can always be calculated from the true
genetic distance as illustrated above. Although we assume a
no-interference model for simplicity, it is unlikely to have
much influence on the analysis, especially over short genetic
distances, because the multiple crossovers that have occurred
on a current chromosome are most likely the result of distinct
independent meioses.

Each haplotype Ht is a vector; that is, Ht = (Ht1, . . . , Htm),
where Htj is the allele at marker locus Mj. We assume that
there are nj different possible alleles at marker locus j, labeled
as {1, 2, . . . , nj} and associated with allele frequencies pj1,
pj2, . . . , pjnj. These frequencies can be estimated from the con-
trol group.

Model Parameters
Throughout the article, the age of a mutation refers to the
number of generations for the current sample to coalesce
(their most recent common ancestor) rather than the histori-
cal time of occurrence. Suppose k disease-predisposing muta-
tions at the disease locus have occurred in the past and sur-
vived in the current population. These mutations were most
likely located on different ancestral chromosomes and may
have occurred at different times. In our notation, A = (Aij)k�m
are the ancestral haplotypes on which the original mutations
occurred; G = (G1, G2, . . . ,Gk) are the ages of different muta-
tions; � is the genetic distance between the disease mutation
and the marker locus 1; and L is equal to max{i : �i � �}, that
is, the disease locus is between marker L and L+1 (where �0and
�m+1 = +�). We assume that � is the same for all disease mu-
tations in the sample (except for phenocopies).

Disease chromosomes in the present day could carry ei-
ther one or none of these mutations at the disease locus. In
our model, to account for locus heterogeneity, we allow for a
“null” cluster of haplotypes that doesn’t share any ancestral

mutation. Accordingly, the disease chromosomes can be sub-
divided into k+1 clusters based on the types of ancestral mu-
tations they carry. A disease chromosome is put into the null
cluster “0” if it carries none of the ancestral mutations (i.e., it
is a phenocopy).

Haplotype Generation
For each disease haplotype Ht, we introduce a cluster indicator
variable Ct, indicating to which mutation cluster Ht belongs.
We assume a priori that P(Ct = 0) = �c, where �c can be input
by the user. A default value of �0 = 0.5 was used in all the
analyses. Generally, we let �0 = �0 and �c 	 �1r

c, c > 1, for some
r < 1. If Ct = 0, then Ht is regarded as a random draw from the
normal population (with parameters estimated from the con-
trol group); whereas Ct = c 
 0 implies that the disease locus
is inherited from the founder haplotype c, and it is likely that
neighboring marker loci also inherited the alleles on the same
ancestral haplotype. The founder haplotype, however, would
have been eroded by recombinations and mutations.

In order to simplify the specification of the likelihood, it
is useful to introduce a pair of variables, Rt1 and Rt2, that iden-
tify positions of the recombination events nearest to the dis-
ease locus. In our notation, moving away from the disease
locus towards marker 1, the nearest recombination event took
place between markers R1+1 and R1; in the opposite direction,
the nearest recombination event took place between markers
R2 and R2+1. The probability distributions of R1 and R2 are
simple functions of the age of the mutation and the trans-
formed distances between markers. This model is shown as in
Figure 5.

During each meiosis, there is a small probability r for
each locus Mi to mutate. In what follows, we assume that it
has equal probability to mutate to any other allele. Although
not very accurate, this assumption is not crucial for our analy-
sis and can be easily changed to accommodate any desired
transition rule. Furthermore, we assume a priori that r follows
a distribution �0(r) defined on a given interval, say, [10�4,
10�3]. We discretized the interval so that r only takes on a
finite number of values. The simplest special case is that r is
fixed at a given value. Let r(i,G,j1,j2) be the probability of a
mutation from j1 to j2 in G generations at locus i. Then, ig-
noring the small probabilities of recurrent mutations, we have

where the approximation holds when rG is small.

Likelihood Function For a Single Haplotype
Suppose there is no interference for crossovers in the region
under investigation. Given A, G, and �, the joint probability
of (Ht, Ct, R1

t , R
2
t ) is

for c 
 0, where Ac• = (Ac,1, . . . , Ac,m) denote the ancestral
haplotype for cluster c, Ht�L is the left haplotype segment,
(Ht1,H

t
2, . . . , HtL), and Ht>Lis (HtL+1, . . . , Htm). Note that the �c

represent the a priori specification of the cluster frequencies
and that the algorithm will produce a posteriori estimates of
the same parameters. Since the probability of having at least
one recombination in G generations between two markers Ma
and Mb is 1 � e�� �b��a�G; we have

r�i,G,j1,j2� ≈ ��1 − r�G ≈ 1 − rG if j1 = j2,
�1 − �1 − r�G���ni − 1� if j1
 j2,

Pr�Ht,Ct = c,R1
t ,R2

t�A, G, �� = �cPr�Ht,R1
t ,R2

t�Ac•,Gc,�,Ct = c�

= acPr�H�L
t ,R1

t�Ac•,Gc,�,Ct = c� (1)

� Pr�HL
t ,R2

t�Ac•,Gc,�,Ct = c�,
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Likelihood of the Observed Data
At this point we assume that the coalescence process that
generates the observed disease haplotypes within each cluster
can be approximated by a star genealogy; that is, the haplo-
types in cluster c are mutually independent conditional on
the ancestral haplotype. This assumption represents a great
simplification of the actual genealogy structure and is desir-
able because it allows us to construct a procedure that deals
with a variety of other complications such as the missing
marker data, unknown phases, multiple disease predisposing
mutations, and locus heterogeneity. The correlations among
the disease haplotypes are partially accounted for by allowing
for multiple founder haplotypes with different ages. For ex-
ample, if a few closely related haplotypes are present in the
disease sample, our method automatically clusters them,
treating them as if they had a founder haplotype independent
of all others. Additionally, for the founder mutations in our
study, the initial generations are likely to be characterized by
rapid growth conditional on the survival of the mutation.
This scenario, where a substantial amount of diversity is in-
troduced early on, can be approximated by a collection of star
trees reasonably well.

Under the conditional independence assumption, the
likelihood of the observed disease haplotypes can be obtained
by the multiplication of the single-observation likelihood:

Although the explicit form of the observed-data likeli-
hood is not very difficult to write down as in (4), finding the
MLE of A, G, and � from it presents a challenge. Additionally,
the information on G from the haplotype data is usually very
limited, and very strong prior knowledge regarding it is often

available. Equipped with Markov chain Monte Carlo (MCMC)
computational tools, a Bayesian estimation method seems to
be a more reasonable choice for this problem than the maxi-
mum likelihood approach.

Prior Distributions
A Bayesian procedure requires us to specify prior distributions
for all of the parameters. For the ease of interpretation and
justification, we limit ourselves to very simple choices. Firstly,
� is uniformly distributed in the region (�1,�m) a priori. Simi-
larly, Gc takes values x,x+d, . . . ,x+nd with equal probability
for c from 1 to k. We assume that the ancestral haplotype Ac<
for cluster c is a random draw from the normal population
whose parameters can be estimated by the control group. For
example, if the linkage equilibrium is assumed, then

where pij is the allele frequency of marker Mi in the control
group. The mutation rate for each marker is assumed to be
identical and is uniformly distributed on finite possible val-
ues. Note that this assumption is purely for simplicity of pre-
sentation and is not essential. All the parameters are indepen-
dent a priori.

There are several complications that can cause difficul-
ties for our basic model. The first complication is the missing
data problem. Part of the marker information may be missing
for some individuals, or, only the marker genotypes are ob-
served, whereas the phases of the two chromosomes are un-
known. The second problem is that sometimes the genetic
markers are so close to each other that linkage equilibrium
cannot be assumed even for the control chromosomes.
Hence, treating the marker data in the control group as if they
were in linkage equilibrium (i.e., independent) can give mis-
leading results. A Markov model for the control group is often
helpful. The third problem regards our assumption that the
subjects in our study are mutually independent (or unrelated)
once their common ancestral haplotype is given. Although
we can alleviate the dependence problem of the disease hap-
lotypes by using multiple clusters, it is of interest to quantify
the information loss due to our approximation. A related
problem is the determination of k, the number of clusters.
These issues will be addressed in the last part of this section.

The Basic Algorithm
Based on the probabilistic model described in the previous
section, inferences on the unknowns are based on the poste-
rior distribution Pr(A, G, �|H). However, it is much easier to
work with its augmented version Pr(A, G, �, R1, R2, C|H),
which is proportional to the product of the complete-data
likelihood and prior distributions, that is, Pr(A, G, �, R1, R2,
C|H) 	 Pr(H, R1, R2|C, A, G, �) Pr(C, A, G, �). Since the dis-
tribution Pr(A, G, �, R1, R2, C|H) is a high-dimensional and
nonstandard function, we use an MCMC algorithm to sample
from it and base our inference on the obtained Monte Carlo
samples.

TheBLADEalgorithmis a combinationof theMetropolis
algorithm (Metropolis et al. 1953) and the conditional sam-
pling method. Because of the special structures of the vari-
ables in our problem (e.g., a high correlation between the
recombination locations and the disease locus), special care is
needed for speeding up the convergence of the sampler.
For a simple presentation, in the following text we use
[X|Y, . . . , Z] to denote the conditional distribution of X given
Y, . . . , Z under the target posterior distribution. Since our
Bayesian analysis is always conditional on the observations,
the notation H is omitted in the conditioning in all of the

P�Ac• = �a1, . . . , am�� = �
i=1

m

piai,

Pr�H�L
t ,R1

t�Ac•,Gc,�,Ct = C� = �1 − e−�rR1
t+1−�R1

t �Gc�e−��−�R1
t+1�Gc

(2)

�
j�R1

t

pjHj
t �
R1
t

�j�L

r�j,Gc,Ac,j,Hj
t�,

and

Pr�HL
t ,R2

t�Ac•,Gc,�,Ct = c� = �1 − e−�rR2
t+1−�R2

t �Gc�e−��R2
t−��Gc

�
jR2

t

pjHj
t �
L�j�R2

t

r�j,Gc,Ac,j,Hj
t�.

When Ct = 0, we have P(Ht, Ct = 0| A, G, �) = �0∏m
j=1 pjHtj

(a Markov model can be used when the control haplotypes are
not in equilibrium). If we think of Ct, Rt1, and Rt2 as missing
data, then the foregoing expressions represent the “complete-
data likelihood“ of a single disease haplotype. Marginalizing
out Rt1 and Rt2, we have

Pr�Ht,Ct = c�A, G, �� =

�
a0 �j=1

m pjH
j
t if c = 0

ac�R
1
t�L Pr�H�L

t ,R1
t�A, G, �,Ct = C�

��R
2
tL Pr�HL

t ,R2
t�A, G, �,Ct = c� if c 
 0.

(3)

Hence, Pr�Ht� A, G, �� = �
c=0

k

Pr�Ht, Ct = c� A, G, ��.

Pr�H� A, G, �� = �
t=1

N

Pr�Ht� A, G, ��. (4)
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following formulas. The algorithm iterates through the fol-
lowing Monte Carlo sampling steps.

1. Draw G from [G|A, �, C, R1 ,R2 ]. Given A, �, C, R1, R2 , we
are able to compute the posterior probability of Gc, which
is of the form

�Gc = g� A, �, C, R1, R2� 	 �
t: Ct=c

Pr�Ht,Ct,R1
t ,R2

t �Gc = g,Ac•,��.

We draw a new g from this distribution to replace the pre-
vious Gc.

2. Draw disease locus � from [�|A, G]. Since the value of � is
highly correlated with the recombination positions Rt1 and
Rt2, we need to sum out all the R’s and c’s in order to speed
up the algorithm. Hence, we draw � from [�|A, G] via a
Metropolis-Hastings step (Metropolis et al. 1953; Hastings
1970) rather than from the more convenient one, [�|A, G,
C, R1, R2 ], as in the usual Gibbs sampling. More precisely,
a candidate �� is first generated from the distribution:

q������ = �1��2s� if��� − ��< s and �1 + s < � < �m − s
1��� + s� if��� − ��< s and � − s < �1

1���m − � + s� if��� − ��< s and � + s > �m

This candidate is accepted with probability

���,��� = min�1,
Pr�A,G,���q������

Pr�A,G,���q�������,

where

Pr�A,G,�� = �
t=1

N

Pr�Ht�A,G,�� = �
t=1

N

�
c=0

k

Pr�Ht,Ct = c�A,G,��

is computed from (3).
3. Draw Ct from [C|A,G,�] for t = 1,…,N. Given A,G, and �, it

is simple to compute and to sample from the posterior
distribution of Ct according to (3).

4. Draw R t1 and Rt2 from [R1
t ,R

2
t | A,G,�,Ct] for t = 1,…,N.Given

A,G, �, and Ct 
 0, we compute Pr(Rt1 | A,G,�,Ct,Ht) and
Pr(Rt2 |A,G,�,Ct,Ht) from (1). Then Rt1 and Rt2 are updated by
sampling from these two distributions, respectively.

5. For c = 1,…,k, we update the ancestral haplotype Ac• =
(Ac,1,…,Ac,m) one locus at a time. That is, we draw from
[Ac,i| A[c,i],G,�,C] for i = 1,…,m and c = 1,…,k, where A[c,i]

consists of all of A but Aci. Given A[c,i],G,H,C, and �, the
posterior probability of Ac,i = j is proportional to

pij �
t:Ct = c

Pr�Ht,Ct| Gc,Ac�i�,��

where Ac,[i] = Ac•\ Ac,i. We update all Ac,i where c and i are
chosen in a specified order, by sampling from the above
distribution.

6. Draw a new mutation rate r from [r| G,R1, R2, A, C]. Based
on formulas in (1), we see that the likelihood of r given all
the rest of the variables can be written as

L�r� 	 �
t=1

n

�
R1
t <j�R2

t

r�j, Gct, Act,j, Hjt� 	 rM�
c

�1 − rGc�nc −mc,

where mc is the total number of mutations in cluster group c,
M = �cmc, and nc = �Nt=1I[Ct=c](R

t
2 � Rt1) is the total number of

“original alleles” in cluster c. Thus, when combined with the

prior distribution �0(r), we sample r from �(r) 	 �0(r)L(r). In
practice, we assume a priori that r is equally likely to take one
of a few possible values.
7. The algorithm terminates when the likelihood value does

not improve after k0 steps.

Handling Practical Complications

Phase Unknown and Other Missing Data
For some chromosomes, the phase may be unknown. The
data are of the form

��J1t,1J1t,2�, �J1
t,1

J2
t,2�, . . . , �Jmt,1Jmt,2��,

from which we can form 2m�1 possible haplotypes. Let (Ht,1,
Ht,2) be a consistent pair of these haplotypes, which is unob-
servable and is imputed by the algorithm. More precisely, we
update (Ht,1, Ht,2) iteratively in the following manner. Each
marker locus Mi is visited in some specified order. Condi-
tioned on the realized phase of other marker loci, there are
two possible haplotypes, (Ht,1, Ht,2) and (H̃t,1, H̃t,2), deter-
mined by the two possible phases of Mi, where (Ht,1, Ht,2) and
(H̃t,1, H̃t,2) differ only at locus Mi by a switch between Ji

t,1 and
Ji
t,2. Then, given A, G, �, and Ct,1, Ct,2, we can compute, as-
suming random mating,

Pr�Ht,1,Ht,2�A, G, �,Ct,1,Ct,2� =

Pr�Ht,1�A, G, �,Ct,1�Pr�Ht,2�A, G, �,Ct,2�
and

Pr�H̃t,1,H̃t,2�A, G, �,Ct,1,Ct,2� =

Pr�H̃t,1�A, G, �,Ct,1�Pr�H̃t,2�A, G, �,Ct,2�.

So a Metropolis step (Metropolis et al. 1953) can be imple-
mented for updating the haplotype.

Another type of missing information results from a few
untyped or mistyped markers for some haplotypes in the dis-
ease population. We can practically ignore these missing data
and use recombination distances based on the actual observed
markers. More precisely, in evaluating quantities

Pr�H�L,R1�Ac•,Gc,�,C� and Pr�HL,R2�Ac•,Gc,�,C�
for formula (1), we only need to consider the observed mark-
ers. For example, the quantity

�
j�R1

pjHj �
R1�j�L

r�j, Gc, Ac,j, Hj�

involves only the product over the observed marker loci Mj.

Control Data Not in Linkage Equilibrium
When the markers on control chromosomes are not in link-
age equilibrium, a simple solution is to use a first-order
Markov model to describe haplotype frequencies. Thus, for-
mula (1) has to be modified. For example, (2) is changed to

Pr�H�L,R1�Ac•,Gc,�,C� = �1 − e−��R1+1−�R1
�Gc�e−��−�R1+1�Gc

Pr�H�R1
� �
R1�j�L

r�j,Gc,Ac,j,Hj�,

where Pr(H�R1
) is computed based on a Markov model. This

modification of the algorithm handles the Cystic fibrosis data
(see the Results section) very well. An intrinsic difficulty with
this approach is that there are usually too many parameters to

Bayesian Analysis for LD Mapping

Genome Research 1723
www.genome.org



estimate when the number of alleles at each locus is large. So
far the Markov approach is most appropriate for haplotypes
with biallelic markers. Alternatively, haplotype frequencies in
the control population can be estimated prior to analyzing
disease chromosomes. Further studies on more delicate mod-
eling of marker correlations are needed (see Lam et al. 2000
for another approach).

Determining the Number of Clusters
Using a number k slightly greater than the actual number of
clusters is often a good strategy since it helps alleviate the bias
and under-coverage problem caused by the correlations
among the disease haplotypes. Operationally, we can start
with k = 1 and repeat the computation with k = 2, 3 and so on.
The best result is selected according to the maximum a poste-
riori (MAP) criterion; that is, we choose k that maximizes

log Pr�H� Â, Ĝ, �̂� + log Pr�Â� + log Pr�Ĝ� + log Pr��̂�.

In most cases, however, one can easily tell what might be
a correct number for k by examining the output files: When k
is greater than needed, some of the ancestral haplotypes
would look very similar to each other and the estimated lo-
cation of the disease mutation does not change much. It is
also observed that increasing the number of clusters sequen-
tially and using the result for k clusters as the starting point
for k+1 clusters speeds the convergence of the algorithm.
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