459 research outputs found

    A large multi-ethnic genome-wide association study identifies novel genetic loci for intraocular pressure.

    Get PDF
    Elevated intraocular pressure (IOP) is a major risk factor for glaucoma, a leading cause of blindness. IOP heritability has been estimated to up to 67%, and to date only 11 IOP loci have been reported, accounting for 1.5% of IOP variability. Here, we conduct a genome-wide association study of IOP in 69,756 untreated individuals of European, Latino, Asian, and African ancestry. Multiple longitudinal IOP measurements were collected through electronic health records and, in total, 356,987 measurements were included. We identify 47 genome-wide significant IOP-associated loci (P < 5 × 10-8); of the 40 novel loci, 14 replicate at Bonferroni significance in an external genome-wide association study analysis of 37,930 individuals of European and Asian descent. We further examine their effect on the risk of glaucoma within our discovery sample. Using longitudinal IOP measurements from electronic health records improves our power to identify new variants, which together explain 3.7% of IOP variation

    The synergistic response of primary production in grasslands to combined nitrogen and phosphorus addition is caused by increased nutrient uptake and retention

    Get PDF
    Background and aims A synergistic response of aboveground plant biomass production to combined nitrogen (N) and phosphorus (P) addition has been observed in many ecosystems, but the underlying mechanisms and their relative importance are not well known. We aimed at evaluating several mechanisms that could potentially cause the synergistic growth response, such as changes in plant biomass allocation, increased N and P uptake by plants, and enhanced ecosystem nutrient retention. Methods We studied five grasslands located in Europe and the USA that are subjected to an element addition experiment composed of four treatments: control (no element addition), N addition, P addition, combined NP addition. Results Combined NP addition increased the total plant N stocks by 1.47 times compared to the N treatment, while total plant P stocks were 1.62 times higher in NP than in single P addition. Further, higher N uptake by plants in response to combined NP addition was associated with reduced N losses from the soil (evaluated based on soil δ15N) compared to N addition alone, indicating a higher ecosystem N retention. In contrast, the synergistic growth response was not associated with significant changes in plant resource allocation. Conclusions Our results demonstrate that the commonly observed synergistic effect of NP addition on aboveground biomass production in grasslands is caused by enhanced N uptake compared to single N addition, and increased P uptake compared to single P addition, which is associated with a higher N and P retention in the ecosystem

    The synergistic response of primary production in grasslands to combined nitrogen and phosphorus addition is caused by increased nutrient uptake and retention

    Get PDF
    Background and aimsA synergistic response of aboveground plant biomass production to combined nitrogen (N) and phosphorus (P) addition has been observed in many ecosystems, but the underlying mechanisms and their relative importance are not well known. We aimed at evaluating several mechanisms that could potentially cause the synergistic growth response, such as changes in plant biomass allocation, increased N and P uptake by plants, and enhanced ecosystem nutrient retention.MethodsWe studied five grasslands located in Europe and the USA that are subjected to an element addition experiment composed of four treatments: control (no element addition), N addition, P addition, combined NP addition.ResultsCombined NP addition increased the total plant N stocks by 1.47 times compared to the N treatment, while total plant P stocks were 1.62 times higher in NP than in single P addition. Further, higher N uptake by plants in response to combined NP addition was associated with reduced N losses from the soil (evaluated based on soil delta N-15) compared to N addition alone, indicating a higher ecosystem N retention. In contrast, the synergistic growth response was not associated with significant changes in plant resource allocation.ConclusionsOur results demonstrate that the commonly observed synergistic effect of NP addition on aboveground biomass production in grasslands is caused by enhanced N uptake compared to single N addition, and increased P uptake compared to single P addition, which is associated with a higher N and P retention in the ecosystem

    Failure to replicate an association of SNPs in the oxidized LDL receptor gene (OLR1) with CAD

    Full text link
    Abstract Background The lectin-like oxidized LDL receptor LOX-1 (encoded by OLR1) is believed to play a key role in atherogenesis and some reports suggest an association of OLR1 polymorphisms with myocardial infarction (MI). We tested whether single nucleotide polymorphisms (SNPs) in OLR1 are associated with clinically significant CAD in the Atherosclerotic Disease, VAscular FuNction, & Geneti C Epidemiology (ADVANCE) study. Methods ADVANCE is a population-based case-control study of subjects receiving care within Kaiser Permanente of Northern California including a subset of participants of the Coronary Artery Risk Development in Young Adults (CARDIA) study. We first resequenced the promoter, exonic, and splice site regions of OLR1 and then genotyped four single nucleotide polymorphisms (SNPs), including a non-synonymous SNP (rs11053646, Lys167Asn) as well as an intronic SNP (rs3736232) previously associated with CAD. Results In 1,809 cases with clinical CAD and 1,734 controls, the minor allele of the coding SNP was nominally associated with a lower odds ratio (OR) of CAD across all ethnic groups studied (minimally adjusted OR 0.8, P = 0.007; fully adjusted OR 0.8, P = 0.01). The intronic SNP was nominally associated with an increased risk of CAD (minimally adjusted OR 1.12, p = 0.03; fully adjusted OR 1.13, P = 0.03). However, these associations were not replicated in over 13,200 individuals (including 1,470 cases) in the Atherosclerosis Risk in Communities (ARIC) study. Conclusion Our results do not support the presence of an association between selected common SNPs in OLR1 and the risk of clinical CAD.http://deepblue.lib.umich.edu/bitstream/2027.42/112726/1/12881_2008_Article_317.pd

    Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe

    Get PDF
    Soil microorganisms are critical to ecosystem functioning and the maintenance of soil fertility. However, despite global increases in the inputs of nitrogen (N) and phosphorus (P) to ecosystems due to human activities, we lack a predictive understanding of how microbial communities respond to elevated nutrient inputs across environmental gradients. Here we used high-throughput sequencing of marker genes to elucidate the responses of soil fungal, archaeal, and bacterial communities using an N and P addition experiment replicated at 25 globally distributed grassland sites. We also sequenced metagenomes from a subset of the sites to determine how the functional attributes of bacterial communities change in response to elevated nutrients. Despite strong compositional differences across sites, microbial communities shifted in a consistent manner with N or P additions, and the magnitude of these shifts was related to the magnitude of plant community responses to nutrient inputs. Mycorrhizal fungi and methanogenic archaea decreased in relative abundance with nutrient additions, as did the relative abundances of oligotrophic bacterial taxa. The metagenomic data provided additional evidence for this shift in bacterial life history strategies because nutrient additions decreased the average genome sizes of the bacterial community members and elicited changes in the relative abundances of representative functional genes. Our results suggest that elevated N and P inputs lead to predictable shifts in the taxonomic and functional traits of soil microbial communities, including increases in the relative abundances of faster-growing, copiotrophic bacterial taxa, with these shifts likely to impact belowground ecosystems worldwide

    Incorporating multiple sets of eQTL weights into gene-by-environment interaction analysis identifies novel susceptibility loci for pancreatic cancer.

    Get PDF
    It is of great scientific interest to identify interactions between genetic variants and environmental exposures that may modify the risk of complex diseases. However, larger sample sizes are usually required to detect gene-by-environment interaction (G × E) than required to detect genetic main association effects. To boost the statistical power and improve the understanding of the underlying molecular mechanisms, we incorporate functional genomics information, specifically, expression quantitative trait loci (eQTLs), into a data-adaptive G × E test, called aGEw. This test adaptively chooses the best eQTL weights from multiple tissues and provides an extra layer of weighting at the genetic variant level. Extensive simulations show that the aGEw test can control the Type 1 error rate, and the power is resilient to the inclusion of neutral variants and noninformative external weights. We applied the proposed aGEw test to the Pancreatic Cancer Case-Control Consortium (discovery cohort of 3,585 cases and 3,482 controls) and the PanScan II genome-wide association study data (replication cohort of 2,021 cases and 2,105 controls) with smoking as the exposure of interest. Two novel putative smoking-related pancreatic cancer susceptibility genes, TRIP10 and KDM3A, were identified. The aGEw test is implemented in an R package aGE.We thank the two anonymous reviewers for their constructive comments. This research was supported by the National Institutes of Health (NIH) grant R01CA169122; P.W. was supported by NIH grants R01HL116720 and R21HL126032. S.H.O. was supported by NIH grant P30CA008748. R.E.N. and the Queensland Pancreatic Cancer Study were funded by the Australian National Health and Medical Research Council. The authors thank Ms. Jessica Swann and the National Institute of Statistical Sciences writing workshop for editorial assistance and suggestions. The authors acknowledge the Texas Advanced Computing Center at The University of Texas at Austin for providing computing resources. The authors alone are responsible for the views expressed in this article and they do not necessarily represent the views, decisions or policies of the institutions with which they are affiliated. The authors declare that there is no conflict of interest

    Rand Patents and Exclusion Orders: Submission of 19 Economics and Law Professors to the International Trade Commission

    Get PDF
    In this comment to ITC Investigation 337-TA-745 (Certain Wireless Communication Devices, Motorola v. Apple) we, as teachers and scholars of economics, antitrust and intellectual property, remedies, administrative, and international intellectual property law, former Department of Justice lawyers and chief economists, a former executive official at the Patent and Trademark Office, a former counsel at the ITC Office of the General Counsel, and a former Member of the President’s Council of Economic Adviser take the position that ITC exclusion orders generally should not be granted under § 1337(d)(1) on the basis of patents subject to obligations to license on “reasonable and non-discriminatory” (RAND) terms. Doing so would undermine the significant pro-competitive and pro-consumer benefits that RAND promises produce and the investments they enable. A possible exception may arise if district court jurisdiction is lacking, the patent is valid and infringed, and the public interest favors issuing an exclusion order. We explain our position in the comment

    Menstrual And Reproductive Factors, Hormone Use, And Risk Of Pancreatic Cancer: Analysis From The International Pancreatic Cancer Case-control Consortium (Panc4)

    Get PDF
    Objectives: We aimed to evaluate the relation between menstrual and reproductive factors, exogenous hormones, and risk of pancreatic cancer (PC). Methods: Eleven case-control studies within the International Pancreatic Cancer Case-control Consortium took part in the present study, including in total 2838 case and 4748 control women. Pooled estimates of odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated using a 2-step logistic regression model and adjusting for relevant covariates. Results: An inverse OR was observed in women who reported having had hysterectomy (ORyesvs.no, 0.78; 95% CI, 0.67-0.91), remaining significant in postmenopausal women and never-smoking women, adjusted for potential PC confounders. A mutually adjusted model with the joint effect for hormone replacement therapy (HRT) and hysterectomy showed significant inverse associations with PC in women who reported having had hysterectomy with HRT use (OR, 0.64; 95% CI, 0.48-0.84). Conclusions: Our large pooled analysis suggests that women who have had a hysterectomy may have reduced risk of PC. However, we cannot rule out that the reduced risk could be due to factors or indications for having had a hysterectomy. Further investigation of risk according to HRT use and reason for hysterectomy may be necessary

    Nitrogen Increases Early-Stage and Slows Late-Stage Decomposition Across Diverse Grasslands

    Get PDF
    To evaluate how increased anthropogenic nutrient inputs alter carbon cycling in grasslands, we conducted a litter decomposition study across 20 temperate grasslands on three continents within the Nutrient Network, a globally distributed nutrient enrichment experiment We determined the effects of addition of experimental nitrogen (N), phosphorus (P) and potassium plus micronutrient (Kμ) on decomposition of a common tree leaf litter in a long-term study (maximum of 7 years; exact deployment period varied across sites). The use of higher order decomposition models allowed us to distinguish between the effects of nutrients on early- versus late-stage decomposition. Across continents, the addition of N (but not other nutrients) accelerated early-stage decomposition and slowed late-stage decomposition, increasing the slowly decomposing fraction by 28% and the overall litter mean residence time by 58%. Synthesis. Using a novel, long-term cross-site experiment, we found widespread evidence that N enhances the early stages of above-ground plant litter decomposition across diverse and widespread temperate grassland sites but slows late-stage decomposition. These findings were corroborated by fitting the data to multiple decomposition models and have implications for N effects on soil organic matter formation. For example, following N enrichment, increased microbial processing of litter substrates early in decomposition could promote the production and transfer of low molecular weight compounds to soils and potentially enhance the stabilization of mineral-associated organic matter. By contrast, by slowing late-stage decomposition, N enrichment could promote particulate organic matter (POM) accumulation. Such hypotheses deserve further testing
    corecore