1,704 research outputs found

    Heavy Quark Fluorescence

    Get PDF
    Heavy hadrons containing heavy quarks (for example, Upsilon-mesons) feature a scale separation between the heavy quark mass (about 4.5 GeV for the b-quark) and the QCD scale (about 0.3 GeV}) that controls effective masses of lighter constituents. Therefore, as in ordinary molecules, the de-excitation of the lighter, faster degrees of freedom leaves the velocity distribution of the heavy quarks unchanged, populating the available decay channels in qualitatively predictable ways. Automatically an application of the Franck-Condon principle of molecular physics explains several puzzling results of Upsilon(5S) decays as measured by the Belle collaboration, such as the high rate of Bs*-anti Bs* versus Bs*-anti Bs production, the strength of three-body B-anti B + pion decays, or the dip in B momentum shown in these decays. We argue that the data is showing the first Sturm-Liouville zero of the Upsilon(5S) quantum mechanical squared wavefunction, and providing evidence for a largely b-anti b composition of this meson.Comment: 4 pages, 4 figures, Figure 2 updated and some typos corrected. To be published in Physical Review Letter

    Minimum of η/s\eta/s and the phase transition of the Linear Sigma Model in the large-N limit

    Get PDF
    We reexamine the possibility of employing the viscosity over entropy density ratio as a diagnostic tool to identify a phase transition in hadron physics to the strongly coupled quark-gluon plasma and other circumstances where direct measurement of the order parameter or the free energy may be difficult. It has been conjectured that the minimum of eta/s does indeed occur at the phase transition. We now make a careful assessment in a controled theoretical framework, the Linear Sigma Model at large-N, and indeed find that the minimum of eta/s occurs near the second order phase transition of the model due to the rapid variation of the order parameter (here the sigma vacuum expectation value) at a temperature slightly smaller than the critical one.Comment: 22 pages, 19 figures, v2, some references and several figures added, typos corrected and certain arguments clarified, revised for PR

    A Nonlinear Heat Equation with Temperature-Dependent Parameters

    Get PDF
    Abstract A nonlinear partial differential equation of the following form is considered: which arises from the heat conduction problems with strong temperature-dependent material parameters, such as mass density, specific heat and heat conductivity. Existence, uniqueness and asymptotic behavior of initial boundary value problems under appropriate assumptions on the material parameters are established. Both one-dimensional and two-dimensional cases are considered
    • …
    corecore