7 research outputs found
Construction of Chimeric Dual-Chain Avidin by Tandem Fusion of the Related Avidins
BACKGROUND: Avidin is a chicken egg-white protein with high affinity to vitamin H, also known as D-biotin. Many applications in life science research are based on this strong interaction. Avidin is a homotetrameric protein, which promotes its modification to symmetrical entities. Dual-chain avidin, a genetically engineered avidin form, has two circularly permuted chicken avidin monomers that are tandem-fused into one polypeptide chain. This form of avidin enables independent modification of the two domains, including the two biotin-binding pockets; however, decreased yields in protein production, compared to wt avidin, and complicated genetic manipulation of two highly similar DNA sequences in the tandem gene have limited the use of dual-chain avidin in biotechnological applications. PRINCIPAL FINDINGS: To overcome challenges associated with the original dual-chain avidin, we developed chimeric dual-chain avidin, which is a tandem fusion of avidin and avidin-related protein 4 (AVR4), another member of the chicken avidin gene family. We observed an increase in protein production and better thermal stability, compared with the original dual-chain avidin. Additionally, PCR amplification of the hybrid gene was more efficient, thus enabling more convenient and straightforward modification of the dual-chain avidin. When studied closer, the generated chimeric dual-chain avidin showed biphasic biotin dissociation. SIGNIFICANCE: The improved dual-chain avidin introduced here increases its potential for future applications. This molecule offers a valuable base for developing bi-functional avidin tools for bioseparation, carrier proteins, and nanoscale adapters. Additionally, this strategy could be helpful when generating hetero-oligomers from other oligomeric proteins with high structural similarity
Sustainability challenges of residential reinforced-concrete panel buildings
Quite similar large-panel prefabrication technologies were used for residential buildings in East-Europe and some countries in Northern-Europe, e.g. Finland. Even if technologically similar, the fate of the building stocks is different in the two regions, with buildings functioning sustainably in Finland. Hence, one could adapt the maintenance and renovation experiences to the building stock in other countries, creating opportunities for communities and business. The paper presents technological, economical, and institutional/policy aspects in the two environments, and discusses them in the larger framework of European sustainability targets. For major renovation, as targeted in the paper, methods of change management should be applied, entailing thoughtful planning and sensitive implementation and above all, consultation/involvement of the people affected. If the presented interventions would be used in a systematic and planned way, improvements can be achieved for social sustainability targets like e.g. adaptability and visual comfort, while maintaining the safety and security. Finally, the limitations of the approach in light of the institutional setting and ownership structure are discussed, highlighting how different ownership models are favoring or hindering major retrofit interventions. The paper offers ways on strengthening the role of key stakeholders to support major renovation interventions on the panel building stock
Structural characterization of core-bradavidin in complex with biotin
<div><p>Bradavidin is a tetrameric biotin-binding protein similar to chicken avidin and bacterial streptavidin, and was originally cloned from the nitrogen-fixing bacteria <i>Bradyrhizobium diazoefficiens</i>. We have previously reported the crystal structure of the full-length, wild-type (wt) bradavidin with 138 amino acids, where the C-terminal residues Gly129-Lys138 (“Brad-tag”) act as an intrinsic ligand (<i>i</i>.<i>e</i>. Gly129-Lys138 bind into the biotin-binding site of an adjacent subunit within the same tetramer) and has potential as an affinity tag for biotechnological purposes. Here, the X-ray structure of core-bradavidin lacking the C-terminal residues Gly114-Lys138, and hence missing the Brad-tag, was crystallized in complex with biotin at 1.60 Å resolution [PDB:4BBO]. We also report a homology model of rhodavidin, an avidin-like protein from <i>Rhodopseudomonas palustris</i>, and of an avidin-like protein from <i>Bradyrhizobium sp</i>. Ai1a-2, both of which have the Brad-tag sequence at their C-terminus. Moreover, core-bradavidin V1, an engineered variant of the original core-bradavidin, was also expressed at high levels in <i>E</i>. <i>coli</i>, as well as a double mutant (Cys39Ala and Cys69Ala) of core-bradavidin (CC mutant). Our data help us to further engineer the core-bradavidin–Brad-tag pair for biotechnological assays and chemical biology applications, and provide deeper insight into the biotin-binding mode of bradavidin.</p></div