243 research outputs found
Results of the NEMO3 experiment
The purpose of the NEMO3 experiment is to detect neutrinoless double beta
decay in order to determine the nature of neutrino and its absolute mass. We
analysed the 389 effective days of data from the kg of Mo and
kg of Se and obtained the following limits on the half-life for
the \bb process: years (Mo) and
years (Se). The corresponding
limits on the neutrino effective mass are 0.7 - 2.8 eV (Mo) and
1.7 - 4.9 eV (Se) at 90% Confident Level. We also performed a
detailled analysis on the double beta decay of Mo into the excited
states , of Ru. The results are: years,
years,
years,
years.Comment: 4 pages, 5 figures, Proceeding of the Moriond 2006 EW conferenc
Measurement of double beta decay of ¹⁰⁰Mo to excited states in the NEMO 3 experiment
The double beta decay of ¹⁰⁰Mo to the 0_{1}^{+} and 2_{1}^{+} excited states of ¹⁰⁰Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of ¹⁰⁰Mo to the excited 0_{1}^{+} state is measured to be T_{1/2}^{2v} = [5.7_{-0.9}^{+1.3} (stat.) ± 0.8 (syst.)] x 10²⁰ y. The signal-to-background ratio is equal to 3. Information about energy and angular distributions of emitted electrons is also obtained. No evidence for neutrinoless double beta decay to the excited 0_{1}^{+} state has been found. The corresponding half-life limit is T_{1/2}^{0v} (0⁺→0_{1}^{+}) > 8.9 x 10²² y (at 90% C.L.). The search for the double beta decay to the 2_{1}^{+} excited state has allowed the determination of limits on the half-life for the two neutrino mode T_{1/2}^{0v} (0⁺→2_{1}^{+}) > 1.1 x 10²¹ y (at 90% C.L.) and for the neutrinoless mode T_{1/2}^{0v} (0⁺→2_{1}^{+}) > 1.6 x 10²³ y (at 90% C.L.)
Search for the Invisible Decay of Neutrons with KamLAND
The Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) is used in a
search for single neutron or two neutron intra-nuclear disappearance that would
produce holes in the -shell energy level of C nuclei. Such holes
could be created as a result of nucleon decay into invisible modes (),
e.g. or . The de-excitation of the corresponding
daughter nucleus results in a sequence of space and time correlated events
observable in the liquid scintillator detector. We report on new limits for
one- and two-neutron disappearance: years
and years at 90% CL. These results
represent an improvement of factors of 3 and over previous
experiments.Comment: 5 pages, 3 figure
Measurement of the 8B Solar Neutrino Flux with the KamLAND Liquid Scintillator Detector
We report a measurement of the neutrino-electron elastic scattering rate from
8B solar neutrinos based on a 123 kton-day exposure of KamLAND. The
background-subtracted electron recoil rate, above a 5.5 MeV analysis threshold
is 1.49+/-0.14(stat)+/-0.17(syst) events per kton-day. Interpreted as due to a
pure electron flavor flux with a 8B neutrino spectrum, this corresponds to a
spectrum integrated flux of 2.77+/-0.26(stat)+/-0.32(syst) x 10^6 cm^-2s^-1.
The analysis threshold is driven by 208Tl present in the liquid scintillator,
and the main source of systematic uncertainty is due to background from
cosmogenic 11Be. The measured rate is consistent with existing measurements and
with Standard Solar Model predictions which include matter enhanced neutrino
oscillation.Comment: 6 pages, 3 figure
Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND
Radioactive isotopes produced through cosmic muon spallation are a background
for rare-event detection in detectors, double--decay experiments,
and dark-matter searches. Understanding the nature of cosmogenic backgrounds is
particularly important for future experiments aiming to determine the pep and
CNO solar neutrino fluxes, for which the background is dominated by the
spallation production of C. Data from the Kamioka liquid-scintillator
antineutrino detector (KamLAND) provides valuable information for better
understanding these backgrounds, especially in liquid scintillators, and for
checking estimates from current simulations based upon MUSIC, FLUKA, and
GEANT4. Using the time correlation between detected muons and neutron captures,
the neutron production yield in the KamLAND liquid scintillator is measured to
be . For other isotopes,
the production yield is determined from the observed time correlation related
to known isotope lifetimes. We find some yields are inconsistent with
extrapolations based on an accelerator muon beam experiment.Comment: 16 pages, 20 figure
Measurement of Neutrino Oscillation with KamLAND: Evidence of Spectral Distortion
We present results of a study of neutrino oscillation based on a 766 ton-year
exposure of KamLAND to reactor anti-neutrinos. We observe 258 \nuebar\
candidate events with energies above 3.4 MeV compared to 365.2 events expected
in the absence of neutrino oscillation. Accounting for 17.8 expected background
events, the statistical significance for reactor \nuebar disappearance is
99.998%. The observed energy spectrum disagrees with the expected spectral
shape in the absence of neutrino oscillation at 99.6% significance and prefers
the distortion expected from \nuebar oscillation effects. A two-neutrino
oscillation analysis of the KamLAND data gives \DeltaMSq =
7.9 eV. A global analysis of data from KamLAND
and solar neutrino experiments yields \DeltaMSq =
7.9 eV and \ThetaParam =
0.40, the most precise determination to date.Comment: 5 pages, 4 figures; submitted to Phys.Rev.Letter
Improved FIFRELIN de-excitation model for neutrino applications
The precise modeling of the de-excitation of Gd isotopes is of great interest
for experimental studies of neutrinos using Gd-loaded organic liquid
scintillators. The FIFRELIN code was recently used within the purposes of the
STEREO experiment for the modeling of the Gd de-excitation after neutron
capture in order to achieve a good control of the detection efficiency. In this
work, we report on the recent additions in the FIFRELIN de-excitation model
with the purpose of enhancing further the de-excitation description.
Experimental transition intensities from EGAF database are now included in the
FIFRELIN cascades, in order to improve the description of the higher energy
part of the spectrum. Furthermore, the angular correlations between {\gamma}
rays are now implemented in FIFRELIN, to account for the relative anisotropies
between them. In addition, conversion electrons are now treated more precisely
in the whole spectrum range, while the subsequent emission of X rays is also
accounted for. The impact of the aforementioned improvements in FIFRELIN is
tested by simulating neutron captures in various positions inside the STEREO
detector. A repository of up-to-date FIFRELIN simulations of the Gd isotopes is
made available for the community, with the possibility of expanding for other
isotopes which can be suitable for different applications.Comment: Corrected typos on author names on arXiv metadat
Interpreting Reactor Antineutrino Anomalies with STEREO data
Anomalies in past neutrino measurements have led to the discovery that these
particles have non-zero mass and oscillate between their three flavors when
they propagate. In the 2010's, similar anomalies observed in the antineutrino
spectra emitted by nuclear reactors have triggered the hypothesis of the
existence of a supplementary neutrino state that would be sterile i.e. not
interacting via the weak interaction. The STEREO experiment was designed to
study this scientific case that would potentially extend the Standard Model of
Particle Physics. Here we present a complete study based on our full set of
data with significantly improved sensitivity. Installed at the ILL (Institut
Laue Langevin) research reactor, STEREO has accurately measured the
antineutrino energy spectrum associated to the fission of 235U. This
measurement confirms the anomalies whereas, thanks to the segmentation of the
STEREO detector and its very short mean distance to the core (10~m), the same
data reject the hypothesis of a light sterile neutrino. Such a direct
measurement of the antineutrino energy spectrum suggests instead that biases in
the nuclear experimental data used for the predictions are at the origin of the
anomalies. Our result supports the neutrino content of the Standard Model and
establishes a new reference for the 235U antineutrino energy spectrum. We
anticipate that this result will allow to progress towards finer tests of the
fundamental properties of neutrinos but also to benchmark models and nuclear
data of interest for reactor physics and for observations of astrophysical or
geo-neutrinos.Comment: 21 pages, 13 figure
Probing New Physics Models of Neutrinoless Double Beta Decay with SuperNEMO
The possibility to probe new physics scenarios of light Majorana neutrino
exchange and right-handed currents at the planned next generation neutrinoless
double beta decay experiment SuperNEMO is discussed. Its ability to study
different isotopes and track the outgoing electrons provides the means to
discriminate different underlying mechanisms for the neutrinoless double beta
decay by measuring the decay half-life and the electron angular and energy
distributions.Comment: 17 pages, 14 figures, to be published in E.P.J.
- …