18,248 research outputs found
Dispersion of tracer particles in a compressible flow
The turbulent diffusion of Lagrangian tracer particles has been studied in a
flow on the surface of a large tank of water and in computer simulations. The
effect of flow compressibility is captured in images of particle fields. The
velocity field of floating particles has a divergence, whose probability
density function shows exponential tails. Also studied is the motion of pairs
and triplets of particles. The mean square separation is fitted to
the scaling form ~ t^alpha, and in contrast with the
Richardson-Kolmogorov prediction, an extended range with a reduced scaling
exponent of alpha=1.65 pm 0.1 is found. Clustering is also manifest in strongly
deformed triangles spanned within triplets of tracers.Comment: 6 pages, 4 figure
Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., Buneman, Weibel and
other two-stream instabilities) created in collisionless shocks are responsible
for particle (electron, positron, and ion) acceleration. Using a 3-D
relativistic electromagnetic particle (REMP) code, we have investigated
particle acceleration associated with a relativistic electron-positron jet
front propagating into an ambient electron-positron plasma with and without
initial magnetic fields. We find small differences in the results for no
ambient and modest ambient magnetic fields. New simulations show that the
Weibel instability created in the collisionless shock front accelerates jet and
ambient particles both perpendicular and parallel to the jet propagation
direction. Furthermore, the non-linear fluctuation amplitudes of densities,
currents, electric, and magnetic fields in the electron-positron shock are
larger than those found in the electron-ion shock studied in a previous paper
at the comparable simulation time. This comes from the fact that both electrons
and positrons contribute to generation of the Weibel instability. Additionally,
we have performed simulations with different electron skin depths. We find that
growth times scale inversely with the plasma frequency, and the sizes of
structures created by the Weibel instability scale proportional to the electron
skin depth. This is the expected result and indicates that the simulations have
sufficient grid resolution. The simulation results show that the Weibel
instability is responsible for generating and amplifying nonuniform,
small-scale magnetic fields which contribute to the electron's (positron's)
transverse deflection behind the jet head.Comment: 18 pages, 8 figures, revised and accepted for ApJ, A full resolution
of the paper can be found at
http://gammaray.nsstc.nasa.gov/~nishikawa/apjep1.pd
Particle Acceleration in Relativistic Jets due to Weibel Instability
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., the Buneman instability,
two-streaming instability, and the Weibel instability) created in the shocks
are responsible for particle (electron, positron, and ion) acceleration. Using
a 3-D relativistic electromagnetic particle (REMP) code, we have investigated
particle acceleration associated with a relativistic jet front propagating
through an ambient plasma with and without initial magnetic fields. We find
only small differences in the results between no ambient and weak ambient
magnetic fields. Simulations show that the Weibel instability created in the
collisionless shock front accelerates particles perpendicular and parallel to
the jet propagation direction. While some Fermi acceleration may occur at the
jet front, the majority of electron acceleration takes place behind the jet
front and cannot be characterized as Fermi acceleration. The simulation results
show that this instability is responsible for generating and amplifying highly
nonuniform, small-scale magnetic fields, which contribute to the electron's
transverse deflection behind the jet head. The ``jitter'' radiation (Medvedev
2000) from deflected electrons has different properties than synchrotron
radiation which is calculated in a uniform magnetic field. This jitter
radiation may be important to understanding the complex time evolution and/or
spectral structure in gamma-ray bursts, relativistic jets, and supernova
remnants.Comment: ApJ, in press, Sept. 20, 2003 (figures with better resolution:
http://gammaray.nsstc.nasa.gov/~nishikawa/apjweib.pdf
Particle Acceleration and Radiation associated with Magnetic Field Generation from Relativistic Collisionless Shocks
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., the Buneman instability,
two-streaming instability, and the Weibel instability) created in the shocks
are responsible for particle (electron, positron, and ion) acceleration. Using
a 3-D relativistic electromagnetic particle (REMP) code, we have investigated
particle acceleration associated with a relativistic jet front propagating
through an ambient plasma with and without initial magnetic fields. We find
only small differences in the results between no ambient and weak ambient
magnetic fields. Simulations show that the Weibel instability created in the
collisionless shock front accelerates particles perpendicular and parallel to
the jet propagation direction. The simulation results show that this
instability is responsible for generating and amplifying highly nonuniform,
small-scale magnetic fields, which contribute to the electron's transverse
deflection behind the jet head. The ``jitter'' radiation from deflected
electrons has different properties than synchrotron radiation which is
calculated in a uniform magnetic field. This jitter radiation may be important
to understanding the complex time evolution and/or spectral structure in
gamma-ray bursts, relativistic jets, and supernova remnants.Comment: 4 pages, 1 figure, submitted to Proceedings of 2003 Gamma Ray Burst
Conferenc
Particle acceleration, magnetic field generation, and emission in relativistic pair jets
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., Buneman, Weibel and
other two-stream instabilities) created in collisionless shocks are responsible
for particle (electron, positron, and ion) acceleration. Using a 3-D
relativistic electromagnetic particle (REMP) code, we have investigated
particle acceleration associated with a relativistic jet front propagating into
an ambient plasma. We find that the growth times of Weibel instability are
proportional to the Lorentz factors of jets. Simulations show that the Weibel
instability created in the collisionless shock front accelerates jet and
ambient particles both perpendicular and parallel to the jet propagation
direction.Comment: 4 pages, 2 figures, submitted to Il nuovo cimento (4th Workshop
Gamma-Ray Bursts in the Afterglow Era, Rome, 18-22 October 2004
Development of a carbon fibre composite active mirror: Design and testing
Carbon fibre composite technology for lightweight mirrors is gaining
increasing interest in the space- and ground-based astronomical communities for
its low weight, ease of manufacturing, excellent thermal qualities and
robustness. We present here first results of a project to design and produce a
27 cm diameter deformable carbon fibre composite mirror. The aim was to produce
a high surface form accuracy as well as low surface roughness. As part of this
programme, a passive mirror was developed to investigate stability and coating
issues. Results from the manufacturing and polishing process are reported here.
We also present results of a mechanical and thermal finite element analysis, as
well as early experimental findings of the deformable mirror. Possible
applications and future work are discussed.Comment: Accepted by Optical Engineering. Figures 1-7 on
http://www.star.ucl.ac.uk/~sk/OEpaper_files
Thermodynamic properties of a small superconducting grain
The reduced BCS Hamiltonian for a metallic grain with a finite number of
electrons is considered. The crossover between the ultrasmall regime, in which
the level spacing, , is larger than the bulk superconducting gap, ,
and the small regime, where , is investigated analytically
and numerically. The condensation energy, spin magnetization and tunneling peak
spectrum are calculated analytically in the ultrasmall regime, using an
approximation controlled by as small parameter, where is the
number of interacting electron pairs. The condensation energy in this regime is
perturbative in the coupling constant , and is proportional to . We find that also in a large regime with
, in which pairing correlations are already rather well developed,
the perturbative part of the condensation energy is larger than the singular,
BCS, part. The condition for the condensation energy to be well approximated by
the BCS result is found to be roughly . We show how
the condensation energy can, in principle, be extracted from a measurement of
the spin magnetization curve, and find a re-entrant susceptibility at zero
temperature as a function of magnetic field, which can serve as a sensitive
probe for the existence of superconducting correlations in ultrasmall grains.
Numerical results are presented which suggest that in the large limit the
1/N correction to the BCS result for the condensation energy is larger than
.Comment: 17 pages, 7 figures, Submitted to Phys. Rev.
Evidence for Proportionate Partition Between the Magnetic Field and Hot Gas in Turbulent Cassiopeia A
We present a deep X-ray observation of the young Galactic supernova remnant
Cas A, acquired with the ROSAT High Resolution Imager. This high dynamic range
(232 ks) image reveals low-surface-brightness X-ray structure, which appears
qualitatively similar to corresponding radio features. We consider the
correlation between the X-ray and radio morphologies and its physical
implications. After correcting for the inhomogeneous absorption across the
remnant, we performed a point by point (4" resolution) surface brightness
comparison between the X-ray and radio images. We find a strong (r = 0.75)
log-log correlation, implying an overall relationship of . This is
consistent with proportionate partition (and possibly equipartition) between
the local magnetic field and the hot gas --- implying that Cas A's plasma is
fully turbulent and continuously amplifying the magnetic field.Comment: 8 pages with embedded bitmapped figures, Accepted by ApJ Letters
5/1/9
Using Stories in Coach Education
The purpose of this paper is to illustrate how storied representations of research can be used as an effective pedagogical tool in coach education. During a series of continuing professional development seminars for professional golf coaches, we presented our research in the form of stories and poems which were created in an effort to evoke and communicate the lived experiences of elite professional golfers. Following these presentations, we obtained written responses to the stories from 53 experienced coaches who attended the seminars. Analysis of this data revealed three ways in which coaches responded to the stories: (i) questioning; (ii) summarising; and (iii) incorporating. We conclude that these responses illustrate the potential of storied forms of representation to enhance professional development through stimulating reflective practice and increasing understanding of holistic, person-centred approaches to coaching athletes in high-performance sport
- …