4,144 research outputs found
Ligand regulation of the quaternary organization of cell surface M3 muscarinic acetylcholine receptors analyzed by fluorescence resonance energy transfer (FRET) imaging and homogenous time-resolved FRET
Flp-In T-REx 293 cells expressing a wild type human M muscarinic acetylcholine receptor construct constitutively and able to express a Receptor Activated Solely by Synthetic Ligand (RASSL) form of this receptor on demand maintained response to the muscarinic agonist carbachol but developed response to clozapine-N-oxide only upon induction of the RASSL. The two constructs co-localized at the plasma membrane and generated strong ratiometric fluorescence resonance energy transfer (FRET) signals consistent with direct physical interactions. Increasing levels of induction of the FRET-donor RASSL did not alter wild type receptor FRET-acceptor levels substantially. However, ratiometric FRET was modulated in a bell-shaped fashion with maximal levels of the donor resulting in decreased FRET. Carbachol, but not the antagonist atropine, significantly reduced the FRET signal. Cell surface homogenous time-resolved FRET, based on SNAP-tag technology and employing wild type and RASSL forms of the human M receptor expressed stably in Flp-In TREx 293 cells, also identified cell surface dimeric/oligomeric complexes. Now, however, signals were enhanced by appropriate selective agonists. At the wild type receptor large increases in FRET signal to carbachol and acetylcholine were concentration-dependent with EC values consistent with the relative affinities of the two ligands. These studies confirm the capacity of the human M muscarinic acetylcholine receptor to exist as dimeric/oligomeric complexes at the surface of cells and demonstrate that the organization of such complexes can be modified by ligand binding. However, conclusions as to the effect of ligands on such complexes may depend on the approach used
Spatial intensity distribution analysis: studies of G Protein-coupled receptor oligomerization
Spatial intensity distribution analysis (SpIDA) is a recently developed approach for determining quaternary structure information on fluorophore-labelled proteins of interest in situ. It can be applied to live or fixed cells and native tissue. Using confocal images, SpIDA generates fluorescence intensity histograms that are analysed by super-Poissonian distribution functions to obtain density and quantal brightness values of the fluorophore-labelled protein of interest. This allows both expression level and oligomerisation state of the protein to be determined. We describe the application of SpIDA to investigate the oligomeric state of G protein-coupled receptors (GPCRs) at steady state and following cellular challenge, and consider how SpIDA may be used to explore GPCR quaternary organisation in pathophysiology and to stratify medicines
Dynamic regulation of quaternary organization of the M1 muscarinic receptor by subtype-selective antagonist drugs
Although rhodopsin-like G protein-coupled receptors can exist as both monomers and non-covalently associated dimers/oligomers, the steady-state proportion of each form and whether this is regulated by receptor ligands is unknown. Herein we address these topics for the M1 muscarinic acetylcholine receptor, a key molecular target for novel cognition enhancers, by employing Spatial Intensity Distribution Analysis. This method can measure fluorescent particle concentration and assess oligomerization states of proteins within defined regions of living cells. Imaging and analysis of the basolateral surface of cells expressing some 50 molecules.microm-2 of the human muscarinic M1 receptor identified an ~75/25 mixture of receptor monomers and dimers/oligomers. Both sustained and shorter-term treatment with the selective M1 antagonist pirenzepine resulted in a large shift in the distribution of receptor species to favor the dimeric/oligomeric state. Although sustained treatment with pirenzepine also resulted in marked upregulation of the receptor, simple mass-action effects were not the basis for ligand-induced stabilization of receptor dimers/oligomers. The related antagonist telenzepine also produced stabilization and enrichment of the M1 receptor dimer population but the receptor subtype non-selective antagonists atropine and N-methylscopolamine did not. In contrast, neither pirenzepine nor telenzepine altered the quaternary organization of the related M3 muscarinic receptor. These data provide unique insights into the selective capacity of receptor ligands to promote and/or stabilize receptor dimers/oligomers and demonstrate that the dynamics of ligand regulation of the quaternary organization of G protein-coupled receptors is markedly more complex than previously appreciated. This may have major implications for receptor function and behavior
A molecular basis for selective antagonist destabilization of dopamine D3 receptor quaternary organization
The dopamine D3 receptor (D3R) is a molecular target for both first-generation and several recently-developed antipsychotic agents. Following stable expression of this mEGFP-tagged receptor, Spatial Intensity Distribution Analysis indicated that a substantial proportion of the receptor was present within dimeric/oligomeric complexes and that increased expression levels of the receptor favored a greater dimer to monomer ratio. Addition of the antipsychotics, spiperone or haloperidol, resulted in re-organization of D3R quaternary structure to promote monomerization. This action was dependent on ligand concentration and reversed upon drug washout. By contrast, a number of other antagonists with high affinity at the D3R, did not alter the dimer/monomer ratio. Molecular dynamics simulations following docking of each of the ligands into a model of the D3R derived from the available atomic level structure, and comparisons to the receptor in the absence of ligand, were undertaken. They showed that, in contrast to the other antagonists, spiperone and haloperidol respectively increased the atomic distance between reference α carbon atoms of transmembrane domains IV and V and I and II, both of which provide key interfaces for D3R dimerization. These results offer a molecular explanation for the distinctive ability of spiperone and haloperidol to disrupt D3R dimerization
Spatial intensity distribution analysis quantifies the extent and regulation of homodimerization of the secretin receptor
Previous studies have indicated that the G protein-coupled secretin receptor is present as a homo-dimer, organized through symmetrical contacts in transmembrane domain IV, and that receptor dimerization is critical for high potency signalling by secretin. However, whether all of the receptor exists in the dimeric form or if this is regulated, is unclear. We used measures of quantal brightness of the secretin receptor tagged with monomeric enhanced green fluorescent protein (mEGFP) and Spatial Intensity Distribution Analysis to assess this. Calibration using cells expressing plasma membrane-anchored forms of mEGFP initially allowed demonstration that the Epidermal Growth Factor receptor is predominantly monomeric in the absence of ligand and whilst wild type receptor was rapidly converted to a dimeric form by ligand, a mutated form of this receptor remained monomeric. Equivalent studies showed that at moderate expression levels the secretin receptor exists as a mixture of monomeric and dimeric forms, with little evidence of higher-order complexity. However, sodium butyrate induced up-regulation of the receptor resulted in a shift from monomeric towards oligomeric organization. By contrast, a form of the secretin receptor containing a pair of mutations on the lipid-facing side of transmembrane domain IV was almost entirely monomeric. Down-regulation of the secretin receptor-interacting G protein Gαs did not alter receptor organization, indicating that dimerization is defined specifically by direct protein-protein interactions between copies of the receptor polypeptide, whilst short term treatment with secretin had no effect on organization of the wild type receptor but increased the dimeric proportion of the mutated receptor variant
Using the past to restore the future: Quantifying historical vegetation to assist in tidal freshwater wetland restoration
Wetlands have been providing humans with critical natural ecosystem services throughout our time on Earth. Nevertheless, these invaluable ecosystems have been habitually altered as a cost of human progression. Two of the most common alterations to wetlands are hydrologic, in the form of damming, and filling. Both occurred along Kimages Creek in Charles City County, VA during the 19th and 20th centuries. In 2010 the Lake Charles dam was partially removed, restoring the creek’s tidal communication with the James River and beginning tidal forested freshwater wetland restoration. Upon the recession of the body of water, numerous woody stumps were revealed
Distributed computing system with dual independent communications paths between computers and employing split tokens
This is a distributed computing system providing flexible fault tolerance; ease of software design and concurrency specification; and dynamic balance of the loads. The system comprises a plurality of computers each having a first input/output interface and a second input/output interface for interfacing to communications networks each second input/output interface including a bypass for bypassing the associated computer. A global communications network interconnects the first input/output interfaces for providing each computer the ability to broadcast messages simultaneously to the remainder of the computers. A meshwork communications network interconnects the second input/output interfaces providing each computer with the ability to establish a communications link with another of the computers bypassing the remainder of computers. Each computer is controlled by a resident copy of a common operating system. Communications between respective ones of computers is by means of split tokens each having a moving first portion which is sent from computer to computer and a resident second portion which is disposed in the memory of at least one of computer and wherein the location of the second portion is part of the first portion. The split tokens represent both functions to be executed by the computers and data to be employed in the execution of the functions. The first input/output interfaces each include logic for detecting a collision between messages and for terminating the broadcasting of a message whereby collisions between messages are detected and avoided
Energy-effcient master-slave edge-router upgrade paths in active remote nodes of next-generation optical access
Our design rules offers maximally energy-efficient Gb/s -> Tb/s edge-router upgrade paths. One path assumes 10% average traffic intensity with 68% energy-efficiency gains over 5 upgrades, while 30% traffic load enables 45% energy-efficiency gains over 9 generations
- …
