196 research outputs found

    Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks

    Get PDF
    In this work a sliding mode control method for a non-holonomic mobile robot using an adaptive neural network is proposed. Due to this property and restricted mobility, the trajectory tracking of this system has been one of the research topics for the last ten years. The proposed control structure combines a feedback linearization model, based on a nominal kinematic model, and a practical design that combines an indirect neural adaptation technique with sliding mode control to compensate for the dynamics of the robot. A neural sliding mode controller is used to approximate the equivalent control in the neighbourhood of the sliding manifold, using an online adaptation scheme. A sliding control is appended to ensure that the neural sliding mode control can achieve a stable closed-loop system for the trajectory-tracking control of a mobile robot with unknown non-linear dynamics. Also, the proposed control technique can reduce the steady-state error using the online adaptive neural network with sliding mode control; the design is based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling mobile robots with large dynamic uncertaintiesFil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentin

    Adaptive 3D Visual Servoing of a Scara Robot Manipulator with Unknown Dynamic and Vision System Parameters

    Get PDF
    In the present work, we develop an adaptive dynamic controller based on monocular vision for the tracking of objects with a three-degrees of freedom (DOF) Scara robot manipulator. The main characteristic of the proposed control scheme is that it considers the robot dynamics, the depth of the moving object, and the mounting of the fixed camera to be unknown. The design of the control algorithm is based on an adaptive kinematic visual servo controller whose objective is the tracking of moving objects even with uncertainties in the parameters of the camera and its mounting. The design also includes a dynamic controller in cascade with the former one whose objective is to compensate the dynamics of the manipulator by generating the final control actions to the robot even with uncertainties in the parameters of its dynamic model. Using Lyapunov’s theory, we analyze the two proposed adaptive controllers for stability properties, and, through simulations, the performance of the complete control scheme is shown.Fil: Sarapura, Jorge Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Roberti, Flavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentin

    Neural network-based compensation control of mobile robots with partially known structure

    Get PDF
    This study proposes an inverse non-linear controller combined with an adaptive neural network proportional integral (PI) sliding mode using an on-line learning algorithm. The neural network acts as a compensator for a conventional inverse controller in order to improve the control performance when the system is affected by variations on their dynamics and kinematics. Also, the proposed controller can reduce the steady-state error of a non-linear inverse controller using the on-line adaptive technique based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling dynamic systems with unexpected large uncertainties.Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Adaptive neural dynamic compensator for mobile robots in trajectory tracking control

    Get PDF
    In the present paper, it will be reported original results concerning the application of Neural Networks (NN) in mobile robot in trajectory tracking control. This work combines a feedback linearization based on a nominal model and an NN adaptive dynamic compensation. In mobile robot with uncertain dynamic parameters, two controllers are implemented separately: a kinematic controller and an inverse dynamic controller. The uncertainty in the nominal dynamic model is compensated by a neural adaptive feedback controller. The resulting adaptive controller is efficient and robust in the sense that it succeeds to achieve a good tracking performance with a small computational effort. The learning laws were deduced by Lyapunovs stability analysis. Finally, the performance of the control system is verified through experiments.Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentin

    Control Servo-Visual de un Robot Manipulador Planar Basado en Pasividad

    Get PDF
    En este trabajo se diseña un controlador servo visual basado en la propiedad de pasividad del sistema visual. Se propone un regulador con ganancias de control variables, de tal manera que se evita la saturacion de los actuadores y al mismo tiempo presenta la capacidad de corregir errores de pequena magnitud. Asimismo el diseno se hace teniendo en cuenta el desempeno L2, a fin de darle capacidad de seguimiento de objetos en movimiento, con un error de control pequeno. Se muestran resultados experimentales realizados en un robot manipulador industrial tipo planar para verificar el cumplimiento de los objetivos del controlador propuesto

    Homography-based pose estimation to guide a miniature helicopter during 3D-trajectory tracking

    Get PDF
    This work proposes a pose-based visual servoing control, through using planar homography, to estimate the position and orientation of a miniature helicopter relative to a known pattern. Once having the current flight information, the nonlinear underactuated controller presented in one of our previous works, which attends all flight phases, is used to guide the rotorcraft during a 3Dtrajectory tracking task. In the sequel, the simulation framework and the results obtained using it are presented and discussed, validating the proposed controller when a visual system is used to determine the helicopter pose information.Fil: Brandão, Alexandre . Universidade Federal Do Espirito Santo. Centro Tecnologico. Departamento de Ingenieria Electrica; BrasilFil: Sarapura, Jorge Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina. Universidad Nacional de San Juan; ArgentinaFil: Sarcinelli Filho, Mario . Universidade Federal Do Espirito Santo. Centro Tecnologico. Departamento de Ingenieria Electrica; BrasilFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina. Universidad Nacional de San Juan; Argentin
    • …
    corecore