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Abstract: This study proposes an inverse non-linear controller combined with an adaptive neural network proportional integral
(PI) sliding mode using an on-line learning algorithm. The neural network acts as a compensator for a conventional inverse
controller in order to improve the control performance when the system is affected by variations on their dynamics and
kinematics. Also, the proposed controller can reduce the steady-state error of a non-linear inverse controller using the on-line
adaptive technique based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling
dynamic systems with unexpected large uncertainties.

Nomenclature

V linear velocity of the mobile robot
ω angular velocity of the mobile robot
rx, ry Cartesian coordinates of the robot

(point y) in the XY plane
x velocity vector of the mobile robot
y point of interest with coordinate rx, ry in

the XY plane
G centre of mass of the mobile robot
C position of the castor wheel
ϑ parameters vector of the mobile robot
ϑi elements of the parameters vector, where

i = 1, . . . , 6
α orientation of the mobile robot
δ uncertainties vector of the robot model
a distance between the point of interest

and the central point of the virtual
axis of the traction wheels

h(x) vector of smooth scalar fields on R
2x1

(kinematic model of the mobile robot)
h̃(x) vector of disturbances and non-modelled

kinematics
f (x) smooth vector field on R

2x1 (dynamic
model of mobile robot)

f̃ (x) vector of disturbances and non-modelled
dynamics

c∗ optimal centres
η∗ optimal widths
w output weights vector of the RBF neural

network
w̃ error of weights of the output layer
w∗ optimal weights vector of the output

layer

ξi(.) RBF functions
ξT

(.) vector of RBF functions
vN output vector of the RBF networks
u output vector of the inverse

controller (uv, uω)T

Lfhi(x) Lgjhi(x) Lie derivatives of the system
without disturbances

�Lfhi(x) �Lgjhi(x) Lie derivatives corresponding to
disturbances and non-model
structure

ex,y output error, for rx and ry,
respectively

e vector of position error
kx,y error gain
t time
tS the time required to hit S

1 Introduction

Mobile robots are highly non-linear dynamic systems with
unmodelled dynamics and uncertainties that are commonly
used such as load transportation, multi-robot cooperation
and accurate positioning systems. In these applications,
they are expected to move quickly from one place to
another or follow the desired trajectories while maintaining
good dynamic performance. However, the disturbances,
uncertainties and non-modelled structure in mobile robots
make the design of ideal controllers for such systems a
challenge task for control researchers.

Several studies have been published regarding the design
of controllers to guide mobile robots during trajectory
tracking. Most of the controllers designed so far are based
only on the kinematics of the mobile robot, like the
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controllers presented in [1–4]. To perform tasks requiring
high speed movements and/or heavy load transportation, it
is important to consider the robot dynamics, as well as its
kinematics. No matter the uncertainties or changes in its
dynamics, the tasks must be performed with precision.
As an example, in the case of load transportation, the
dynamics characteristics such as mass, centre of mass
and inertia, change when the robot is loaded. Then, to
keep a good performance, the controller should be capable
of adapting itself to this kind of changes. This adaptive
capability is also important whenever it is difficult to
model the system exactly, even without dynamic changes
from task to task. Some works present the design of
controllers that compensate the robot dynamics. Fukao
et al. [5] propose the design of an adaptive trajectory
tracking controller to generate torques based on a dynamic
model whose parameters are unknown. In this work, only
simulation results are shown. Other types of trajectory
tracking controllers assuming uncertainty in the robot
dynamics are developed by Shojaei and Shahri [6], Dong
and Guo [7] and Dong and Guo [8], with the performance
shown just by means of simulations. Das and Kar [9]
show an adaptive fuzzy logic-based controller where the
system uncertainty, which includes mobile robot parameters
variation and unknown non-linearities, is estimated by a
fuzzy logic system and its parameters are tuned on-line.
In [10] two controllers are designed. They are based on
polar coordinates, which are called position controller and
heading controller. The former ensures position tracking and
the latter is activated when the tracking error is small enough
and the tracking reference does not change its position.
This reduces the error over the mobile-robot orientation
at the end of the path. Bugeja et al. [11] present the
use of a radial base function (RBF)–NN for mobile robot
dynamics approximation, in which the weights are estimated
stochastically in real-time. The authors show simulation
results.

A global time-varying universal controller to achieve
stabilisation and tracking simultaneously in mobile robots
with saturated inputs is proposed by Do and Pan [12].
The controller synthesis is based on Lyapunov’s direct
method and backstepping technique. The control results are
based in numerical simulations to validate the effectiveness
of the proposed controller. Oliveira et al. [13] present a
kinematics control loop based on sliding modes technique
and a dynamic control loop based on a neural network
technique. Simulation and experiments results are included
to demonstrate the effectiveness of the proposed control
approach.

Hamerlain et al. [14] considers the presence of sliding
effects that violate the non-holonomic constraints and the
unicycle robot is modelled as a dynamic system which is
referenced to the trajectory to be tracked. The proposed
dynamic model becomes time varying and nonlinear which
impose the use of a robust stabilising control. The efficiency
of this control proposed is based on simulations. Based on
the differential geometry theory in [15], the exact feedback
linearisation on the kinematic error model of a mobile robot
is realised. The trajectory-tracking controllers are designed
by pole-assignment approach and simulation results show
their effectiveness.

The work [16] presents an adaptive neural sliding
mode controller for non-holonomic wheeled mobile robots
with model uncertainties and external disturbances. This
work considers a dynamic model with uncertainties and
the kinematic model represented by polar coordinates.

Self-recurrent wavelet neural networks are used for
approximating arbitrary model uncertainties and external
disturbances in dynamics of the mobile robot. To
demonstrate the robustness and performance of the proposed
control system, it shows computer simulations.

In [17] it is presented a linear parameterisation of a
unicycle-like mobile robot and the design of a trajectory
tracking controller based on its complete known model.
One advantage of their controller is that its parameters are
directly related to the robot parameters. However, if the
parameters are not correctly identified or change with time
due, for example, to load variation, the performance of the
controller will be severely affected.

In [18] a robust neural network (NN)-based sliding
mode controller (NNSMC) is used. The NNSMC algorithm
can effective and coordinately control the omnidirectional
mobile platform and the mounted manipulator with different
dynamics. The stability of the closed-loop system, the
convergence of the NN weight-updating process and the
boundedness of the NN weight estimation errors are all
strictly guaranteed. In this paper the NNSMC controller must
learn the whole dynamic structure and the sliding surface
cancels out some system uncertainties, the results are based
only on simulation studies.

Kim et al. [19] has proposed a robust adaptive controller
for a mobile robot divided in two parts. The first one is
based on robot kinematics and is responsible of generating
references for the second one, which compensates for the
modelled dynamics. However, the adapted parameters are
not real parameters of the robot, and no experimental
results are presented. Additionally, the control actions are
given in terms of torques, whereas usual commercial robots
accept velocity commands. In similar form, Rossomando
et al. [20] present an approach to adaptive trajectory tracking
of mobile robots which combines a feedback linearisation
based on a nominal model and an RBF–NN adaptive
dynamic compensation. The design of the controllers is
based on discrete time and the stability analysis is based
on linear parameterisation of a unicycle-like mobile robot
formulated by De La Cruz and Carelli [17]. This work shows
experimental results. Similar studies are shown in [21],
where a hybrid control algorithm has been proposed based
on a NN–RBF dynamic control and an inverse kinematics
control. The algorithm was applied on a non-holonomic
mobile robot and the kinematics controller designs suppose
perfect velocity tracking.

In the works [11, 16, 21], it is assumed that the
perturbations occur only in the robot dynamics. Most of
the papers present controllers to learn the whole structure
of the dynamics system, which usually require a network
previously trained with on-line adjustment or an adaptive
controller for this purpose. Moreover, in the works that have
neural compensation, this is done only on the dynamics of
the system.

In this work the main scientific contribution is the
development of a neural compensator which acts on the
entire system structure (dynamic and kinematics of the
robot). This compensator does not need to learn the entire
system structure and can be applied to a conventional
control. In this case an inverse controller is designed based
on a nominal model and a RBF–NN controller with the
capacity to compensate the difference between the nominal
model and the actual robot kinematics and dynamics. An
analysis is done in order to study the effects of the RBF–
NN approximation error on the control error when the
whole control system. In a tracking control task, the inverse
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Fig. 1 Mobile Robot parameters

controller and the adaptive neural compensator working
together, are applied.

The paper is organised as follows: Sections 2 and 3
presents a system overview and shows the mathematical
representation of the complete unicycle-type robot model.
The inverse and neural controllers are discussed, respectively,
in Sections 4 and 5 and the corresponding error analysis
is included in Section 6. Finally, Section 7 presents
some experimental results to show the performance of
the adaptive controller, and brief conclusions are given in
Section 8.

2 Robot model

In this section, the dynamic model of the unicycle-like
mobile robot presented in Fig. 1, is reviewed. This figure
depicts the mobile robot, with the parameters and variables
of interest. There, v and ω are the linear and angular
velocities developed by the robot, respectively; G is the
centre of mass of the robot, c is the position of the castor
wheel, E is the tool location, y is the point of interest
with coordinate rx, ry in the XY plane, ψ is the robot
orientation, a is the distance between the point of interest
and the central point of the virtual axis linking the traction
wheels.

The mathematical representation of the complete model
[17], is given by the

Kinematic model⎛
⎝ṙx(t)

ṙy(t)

ψ̇(t)

⎞
⎠ =

(
cos ψ(t) −a sin ψ(t)
sin ψ(t) a cos ψ(t)

0 1

)(
v(t)
ω(t)

)
+
(

δrx(t)
δry(t)

0

)

(1)
Dynamic model

(
v(t)
ω̇(t)

)
=

⎛
⎜⎜⎝

ϑ3

ϑ1
ω2(t) − ϑ4

ϑ1
v(t)

−ϑ5

ϑ2
v(t)ω(t) − ϑ6

ϑ2
ω(t)

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

1

ϑ1
0

0
1

ϑ2

⎞
⎟⎟⎠
(

uv ref (t)
uω ref (t)

)
+
(

δv(t)
δω(t)

)
(2)

The vector of identified parameters and the vector of
uncertainties parameters associated to the mobile robot are

ϑ = [
ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6

]T

δ = [
δrx δry 0 δv δω

]T
(3)

respectively, where δrx y δry are functions of slip velocities
and robot orientation, δv y δω are functions of physical
parameters as mass, inertia, wheel and tires diameters,
motor and its servos parameters, forces on the wheels and
others (Table 1). These are considered as disturbances.

The robot’s model presented in (1) and (2) is split in a
kinematics and a dynamics part, respectively, as shown in
Fig. 2. Therefore two controllers are implemented, based on
feedback linearisation, for both the kinematic and dynamic
models of the robot.

3 Problem formulation

Considering the parameters uncertainties and non-modelled
structure of systems (1) and (2), these can be expressed in
compact form as

ẏ = (h(x) + h̃(x))

ẋ = (f(x) + f̃(x)) + (g + g̃)u
(4)

Assumption 1: Dynamic variations on (1) and (2) produce
other smooth vector fields represented by f̃(x), g̃ and h̃(x).
These are composed by non-linear unknown functions. (For
purposes of control ψ is not considered in this work.)

ẏ =
(

ṙx(t)
ṙy(t)

)
; h(x) =

(
v(t) cos ψ(t) − ω(t)a sin ψ(t)
v(t) sin ψ(t) + ω(t)a cos ψ(t)

)
;

h̃(x) =
(

δrx(t)
δry(t)

)

Table 1 Mobile robot parameters

Parameters Pioneer 3DX Pioneer 2DX Pioneer 2DX with load (4 Kg) Units

ϑ1 0.24089 0.3037 0.1992 s
ϑ2 0.2424 0.2768 0.13736 s
ϑ3 −9.3603e−4 −4.018e−4 −1.954e−3 s.m/rad2

ϑ4 0.99629 0.9835 0.9907
ϑ5 −3.7256e−3 −3.818e−3 −1.554e−2 s/m
ϑ6 1.0915 1.0725 0.9866
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Fig. 2 Control structure

and

ẋ =
(

v̇(t)
ω̇(t)

)
, f(x) =

⎛
⎜⎜⎝

ϑ3

ϑ1
ω2(t) − ϑ4

ϑ1
v(t)

−ϑ5

ϑ2
v(t)ω(t) − ϑ6

ϑ2
ω(t)

⎞
⎟⎟⎠ ,

g =
⎛
⎜⎝

1

ϑ1
0

0
1

ϑ2

⎞
⎟⎠, u =

(
uv ref (t)
uω ref (t)

)
, f̃(x) + g̃u =

(
δv(t)
δω(t)

)

where: x is a R
2x1, vector of state variables (output

velocities); u is a R
2x1 vector of manipulated input variables

(reference velocities); y is a R
2x1 vector of controlled output

variables (instantaneous position); f (x) is a smooth vector
field on R

2x1; g is matrix of non-linear functions a R
2 → R

2;
and h(x) is a vector of smooth scalar fields on R

2x1.

Assumption 2: The desired trajectories rj ref ; j = x; y and
their time derivatives up to the nth order, are continuous
and bounded.

Assumption 3: The input signals ui; i = v; ω, are continuous
and bounded.

4 Inverse control design

For this analysis, a multiple input and multiple output
(MIMO) non-linear system from (4), without uncertainties,
is considered

ẏ = h(x)

ẋ = f(x) + gu
(5)

For ease of manipulation, the case of exact input–output
linearisation, in which the number of inputs is equal to
the number of outputs, is considered in [22]. Then, each
individual output equation, ri, is differentiated with respect
to time

d

dt
ri = Lf hi(x) +

ω∑
j=v

Lgjhi(x)uj, i = x, y (6)

or

d

dt
y = d

dt

(
rx

ry

)
=
(

Lf hx(x)
Lf hy(x)

)
+

⎛
⎜⎜⎜⎜⎝

ω∑
j=v

Lgjhx(x)uj

ω∑
j=v

Lgjhy(x)uj

⎞
⎟⎟⎟⎟⎠

=
(

Lf hx(x)
Lf hy(x)

)
+
(

Lgvhx(x) Lgωhx(x)
Lgvhy(x) Lgωhy(x)

)(
uv

uω

)
(7)

where Lf hi(x) is the ith Lie derivative of the function h(x)
with respect to the vectorial field f (x). Owing to relative
degree of the all outputs is one, then for each output ri the
terms Lg,jhi(x) will be non-zero and the input uj appears in
the derivative of the output y. Defining the output tracking
error as

e = y − yr =
(

rx

ry

)
−
(

rx ref

ry ref

)
=
(

ex

ey

)
(8)

5 Design of adaptive neural sliding mode
compensation

The control objective is to design an adaptive neural
controller which guarantee boundedness of all variables for
the closed-loop system and tracking of a given bounded
reference signal vector yr .

The neural feedback linearisation method which is based
on the NN-RBF model can solve this kind of control
problem [22]. The state tracking error is defined as e(t) =
y(t) − yr(t) and the control objective is to find a control law
such that the state x of the closed-loop system will follow
the desired state yr , in other words, the tracking error should
converge to zero.

A sliding surface for MIMO system can be defined in the
error state S(t), from (8).

S(t) =

⎛
⎜⎜⎝
(

d

dt
+ kx

)
0

0

(
d

dt
+ ky

)
⎞
⎟⎟⎠

∫ t

0

e(τ )dτ

=

⎛
⎜⎜⎝

ex(t) + kx

∫ t

0

ex(τ ) dτ

ey(t) + ky

∫ t

0

ey(τ ) dτ

⎞
⎟⎟⎠ (9)
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The derivate of sliding surface S(t) is

Ṡ(t) = d

dt

⎛
⎜⎜⎝

ex(t) + kx

∫ t

0

ex(τ ) dτ

ey(t) + ky

∫ t

0

ey(τ ) dτ

⎞
⎟⎟⎠ =

(
ėx + kxex

ėy + kyey

)

=
⎛
⎜⎝

d

dt
(rx − rx ref ) + kxex

d

dt
(ry − ry ref ) + kyey

⎞
⎟⎠ (10)

In order to make the system state tracks remain on the
sliding surface, let Ṡ, (see (11))

Rearranging (16)(
Lgvhx(x) Lgωhx(x)
Lgvhy(x) Lgωhy(x)

)(
uv

uω

)

=
⎛
⎜⎝−Lf hx(x) + d

dt
rx ref − kxex

−Lf hy(x) + d

dt
ry ref − kyey

⎞
⎟⎠ (12)

the corresponding equivalent control law u(t) is as follows

(
uv

uω

)
=
(

Lgvhx(x) Lgωhx(x)
Lgvhy(x) Lgωhy(x)

)−1

×
⎛
⎜⎝−Lf hx(x) + d

dt
rx ref − kxex

−Lf hy(x) + d

dt
ry ref − kyey

⎞
⎟⎠ (13)

Now, the problem of controlling the uncertain non-linear
system (7), defining a control law u∗ that guarantees
the sliding condition treated in [23], is composed by an
equivalent control (13) and a discontinuous term uS =
−� sign(S) defined by (see (14))

where �i is a given positive constant and sign(Si) is
defined by

sign(Si) =
⎧⎨
⎩

1, for Si > 0
0, for Si = 0
−1, for Si < 0

(15)

Considering the Lyapunov function candidate defined as

V =
∑
i=x,y

1

2
(S2

i ) (16)

Differentiating (16) with respect to time V̇ along the system
trajectory as

V̇ =
∑
i=x,y

SiṠi =
∑
i=x,y

Si

(
d

dt
ei(t) + kiei(t)

)

=
∑
i=x,y

Si

(
d

dt
(riy − ri ref ) + kiei(t)

)

=
∑
i=x,y

Si

(
Lf hi(x) +

ω∑
j=v

Lgjhi(x)uj − d

dt
ri ref + kiei(t)

)

(17)

replacing (14) in (17).

V̇ =
∑
i=x,y

SiṠi =
∑
i=x,y

Si(−�i sgn(Si)) ≤ −
∑
i=x,y

�i|Si| (18)

Then, dividing every term in (18) by |Si| and integrating
both sides over the interval 0 ≤ t ≤ tS , where tS is the time
required to hit S, we obtain
∫ tS

0

(
Si

|Si| Ṡi

)
dt ≤ −

∫ tS

0

�i dt ⇒ |Si(tS)| − |Si(0)| ≤ −�itS

(19)
In this way, noting that Si (tS) = 0, one has

tS ≤ |Si(0)|
�i

(20)

and consequently, the finite time convergence to sliding
surface S.

Now, considering the model indicated in (4) with
parameter uncertainties, the non-modelled structure and
external disturbances can be expressed as

d

dt

(
rx

ry

)
=
(

Lf hx(x) + �Lf hx(x)
Lf hy(x) + �Lf hy(x)

)

+

⎛
⎜⎜⎜⎜⎝

ω∑
j=v

Lgjhx(x)uj +
ω∑

j=v

�Lgjhx(x)uj

ω∑
j=v

Lgjhy(x)uj +
ω∑

j=v

�Lgjhy(x)uj

⎞
⎟⎟⎟⎟⎠ (21)

The relation between, f̃(x), g̃(x), h̃(d) �Lfhi(x) and �Lgj

hi(x) are indicated by

�Lf hi(x) = ∂ h̃i(x)

∂x
f (x) + ∂hi(x)

∂x
f̃ (x) + ∂ h̃i(x)

∂x
f̃ (x)

�Lgjhi(x) = ∂ h̃i(x)

∂x
gj + ∂hi(x)

∂x
g̃j + ∂ h̃i(x)

∂x
g̃j (22)

Ṡ(t) =

⎛
⎜⎜⎝
(

Lf hx(x) + Lgvhx(x)uv + Lgωhx(x)uω − d

dt
rx ref

)
+ kxex(

Lf hy(x) + Lgvhy(x)uv + Lgωhy(x)uω − d

dt
ry ref

)
+ kyey

⎞
⎟⎟⎠ =

(
0
0

)
(11)

(
uv

uω

)
=
(

Lgvhx(x) Lgωhx(x)
Lgvhy(x) Lgωhy(x)

)−1

×
⎡
⎢⎣
⎛
⎜⎝−Lf hx(x) + d

dt
rx ref − kxex

−Lf hy(x) + d

dt
ry ref − kyey

⎞
⎟⎠ −

(
�x 0
0 �y

)(
sign (Sx)

sign
(
Sy

))
⎤
⎥⎦ (14)
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Fig. 3 Mobile robot Pioneer 2DX

Replacing the control action proposed in (14) in (21).
(see (23))

The sliding mode control is generally used to improve
the closed-loop robustness when the system is subjected
to bounded external disturbance and residual modelling
uncertainties. Since mobile robots are electromechanical
devices, chattering at the control action is undesiderable
because it could excite mechanical resonance Fig. 3. To
overcome this problem, it must be introduced an adaptive
term viN(t) in the control law in order to compensate the
uncertainties and disturbances of the system, reducing the
chattering effect. From (22), the adaptive sliding control
compensation is indicated as (see (24))

where viN is a compensation variable and can be
approximated by radial basis function–neural network
(RBF–NN), the parameters are tuned on-line

v∗
iN = w∗T

ij ξ∗
j (x, c∗, η∗) +

ω∑
j=v

ϕ∗
ijξ

∗
j (x, c∗

j , η∗
j )uj + εin i = x, y

(25)

where w∗(5 × 2), ϕ∗(5 × 2) and ξ∗
(5 × 1) are optimal

parameter vectors of weights w, input weights vector ϕ and
radial basis functions ξ, respectively; c∗ and η∗ are optimal
parameter vectors of centres c and widths η, respectively;
and εn is the approximation error.

Assumption 4: , �Lfhi(x) and �Lgj
hi(x) functions can be

approximated by the output of a RBF-NN [24] with the

approximation error bounded by∣∣∣∣∣�Lf hi(x) +
ω∑

j=v

�Lg jhi(x)uj − w∗T
i ξ∗

(x, c∗, η∗)

+
ω∑

j=v

ϕ∗
ijξ

∗
j (x, c∗

j , η∗
j )uj

∣∣∣∣∣ ≤ εin ∀x ∈ R
2 (26)

where x is the input vector to the RBF-NN, εMax ≥ εin > 0
is the bound of the approximation error, w∗ and ϕ∗, are the
output optimal weight vector, l > 1 is the number of the NN
nodes and ξ(x) = [ξ1(x), ξ2(x), . . . , ξl(x)]T is defined by

ξ ∗
i (x, c∗, η∗) = exp[−η∗2

i (x − c∗
i )

T(x − c∗
i )

T] (27)

with c∗ = [, c∗ = [, c∗
1, c∗

2, . . . , c∗
n]T in the centre of the

receptive field and η∗ the width of the Gaussian function.

Assumption 5: Function approximation weights w and ϕ are
bounded.

wMax = sup
t∈	+

‖w(t)‖ ϕMax = sup
t∈	+

‖ϕ(ts)‖ (28)

The optimal parameters of (28) are unknown, so it is
necessary to estimate the values. Defining an estimated
function

v̂iN = ŵT
i ξ̂(x, ĉ, η̂) +

ω∑
j=v

ϕ̂ij ξ̂j(x, ĉj, η̂j)uj + εin, i = x, y

(29)

where ŵ ξ̂ and ϕ̂ and are estimated parameter vectors of w,
ξ and ϕ, respectively; and cˆ and ηˆ are estimated parameter
vectors of c and η, respectively.

Defining w̃ = w∗ − ŵ, ξ̃ = ξ∗ − ξ̂ and ϕ̃ = ϕ∗ − ϕ̂, the
neural compensation v̂N may be written as

v̂iN = ŵT
i ξ̂(x, ĉ, η̂) + w̃T

i ξ̂(x, ĉ, η̂) + ŵT
i ξ̃(x, c̃, η̃)

+ w̃T
i ξ̃(x, c̃, η̃) + · · · +

∑
j=v,ω

[ϕ̂ij ξ̂j(x, ĉj, η̂j)uj

+ ϕ̃ij ξ̂j(x, ĉj, η̂j)uj + ϕ̂ij ξ̃j(x, c̃j, η̃j)uj

+ ϕ̃ij ξ̃j(x, c̃j, η̃j)uj] + εin (30)

where w̃T
ξ̂ + ŵT

ξ̃ represents the learning error and
considering w̃T

ξ̃ and
∑m

j=1 ϕ̃ij ξ̃juj into εin.

d

dt
S(t) =

⎛
⎜⎜⎜⎜⎝

−kxex + �Lf hx(x) +
ω∑

j=v

�Lgjhx(x)uj − �x sign(Sx)

−kyey + �Lf hy(x) +
ω∑

j=v

�Lgjhyxuj − �y sign(Sy)

⎞
⎟⎟⎟⎟⎠ (23)

(
uvN

uωN

)
=
(

Lgvhx(x) Lgωhx(x)
Lgvhy(x) Lgωhy(x)

)−1

×
⎛
⎜⎝−Lf hx(x) + d

dt
rx ref − kxex − (vxN + �xsign(Sx))

−Lf hy(x) + d

dt
ry ref − kyey − (vyN + �ysign(Sy))

⎞
⎟⎠ (24)
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Doing ŵi ξ̂(x, ĉ, η̂) = �Lf hi(x) and
∑

j=v,ω ϕ̂ij ξ̂j(x, ĉj, η̂j)

uj = ∑
j=v,ω �Lgjhi(x)uj.

Combining control law (24) and neural compensation (30)
into the robotic model (18) the close loop error equation
yields (see (31))

using an approximation for the function ξ̃ = ξ∗
(x, c∗, η∗) −

ξ̂(x, ĉ, η̂). In order to deal with ξ̃, the Taylor’s expansion of
ξ∗ is taken from c∗ = ĉ and η∗ = η̂

ξ∗
(x, c∗, η∗) = ξ̂(x, ĉ, η̂) + �Tc̃ + �Tη̃ + O(x, c̃, η̃) (32)

Where O denotes the high-order arguments in a Taylor’s
series expansion and � and � are derivatives of ξ∗

(x, c∗, η∗)
with respect to c∗ and η∗ at (ĉ, η̂). They are expressed as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
�T = ∂ξ(x, c∗, η∗)

∂c∗

∣∣∣∣c∗=ĉ
η∗=η̂

�T = ∂ξ(x, c∗, η∗)
∂η∗

∣∣∣∣c∗=ĉ
η∗=η̂

(33)

Equation (32) can be expressed as

ξ̃ = �Tc̃ + �Tη̃ + O(x, c̃, η̃) (34)

From (34) the high-order term O is bounded by

‖O(x, c̃, η̃)‖ = ‖ξ̃ − �Tc̃ − �Tη̃‖
≤ ‖ξ̃‖ + ‖�Tc̃‖ + ‖�Tη̃‖
≤ κ1 + κ2‖c̃‖ + κ3‖η̃‖ ≤ OMax (35)

where κ1, κ2 and κ3 are some constants because of the fact
that RBF and its derivative are always bounded by constants

(the proof is omitted here to save space). Substituting (34)
into (31), it can be obtained (see (36))

where the uncertain ŵT
i O + ∑ω

j=v(ϕ̂
T
ijOjuj) + εin, is assumed

to be bounded by

|εMax| =
∣∣∣∣∣ŵT

i O +
∑
j=v,ω

(ϕ̂
T
ijOjuj) + εin

∣∣∣∣∣ ≤ �i, i = x, y (37)

6 Stability analysis and neural parameters
adjustment

To derive the stable tuning law, the following Lyapunov
function is chosen

V = 1

2

y∑
i=x

[
piS

2
i + w̃T

i θiw̃i +
ω∑

j=v

ϕ̃
T
ijρijϕ̃ij

]

+ 1

2
(c̃T

�1c̃ + η̃
T
�2η̃) (38)

where P is a 2 × 2 diagonal positive definite matrix, and θi

and �1,2 are 5 × 5 and 2 × 2 non-negative definite matrices,
respectively. The derivative of the Lyapunov function is
given by

dV

dt
=
∑

i

[
piSi

dSi

dt
+ w̃T

i θi
dw̃i

dt
+

ω∑
j=v

ϕ̃
T
ijρij

dϕ̃ij

dt

]

+
(

dc̃T

dt
�1c̃ + dη̃

T

dt
�2η̃

)
(39)

Substituting (36) in (39), and considering that KTP =
(KTP)T, P and K are a diagonal matrix. And doing Q =
KTP, (39) can be written as (see (40))

d

dt

(
Sx

Sy

)
=

⎛
⎜⎜⎝

−kxex − w̃T
x ξ̂(x, ĉ, η̂) − ŵT

x ξ̃(x, c̃, η̃) −
ω∑

j=v
[ϕ̃xj ξ̂j(x, ĉj, η̂j)uj + ϕ̂xj ξ̃(x, c̃j, η̃j)uj] − εxn

−kyey − w̃T
y ξ̂(x, ĉ, η̂) − ŵT

y ξ̃(x, c̃, η̃) −
ω∑

j=v
[ϕ̃yj ξ̂j(x, ĉj, η̂j)uj + ϕ̂yj ξ̃(x, c̃j, η̃j)uj] − εyn

⎞
⎟⎟⎠ −

(
�xsign(Sx)
�ysign(Sy)

)
(31)

d

dt

(
Sx

Sy

)
=

⎛
⎜⎜⎝

−kxex − w̃T
x ξ̂(x, ĉ, η̂) − ŵT

x (�
Tc̃ + �Tη̃ + O) − · · · −

∑
j=v,ω

[ϕ̃xj ξ̂j(x, ĉj, η̂j)uj + ϕ̂xj(�
Tc̃j + �Tη̃j + Oj)uj] − εxn

−kyey − w̃T
y ξ̂(x, ĉ, η̂) − ŵT

y (�
Tc̃ + �Tη̃ + O) − · · · −

∑
j=v,ω

[ϕ̃yj ξ̂j(x, ĉj, η̂j)uj + ϕ̂yj(�
Tc̃j + �Tη̃j + Oj)uj] − εyn

⎞
⎟⎟⎠

− · · · −
(

�x 0
0 �y

)(
sign(Sx)
sign(Sy)

)
(36)

dV

dt
=
∑

i

[
−qiS

2
i − piSiw̃

T
i ξ̂ − piSiŵ

T
i �

Tc̃ − piSiŵ
T
i �

Tη̃ − piSiŵ
T
i O − piSi

∑
j=v,ω

ϕ̃ij ξ̂i(x, ĉj, η̂j)uj − · · ·

− piSi

∑
j=v,ω

ϕ̂ij(�
Tc̃j + �Tη̃j + Oj)uj − piSiεin − piSi�isign(Si) + w̃T

i θi
dw̃i

dt
+

ω∑
j=v

ϕ̃
T
ijρij

dϕ̃ij

dt

]

+
(

dc̃T

dt
�1c̃ + dη̃

T

dt
�2η̃

)
(40)
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Rearranging (40)

dV

dt
=
∑

i

[
−qiS

2
i − piSiw̃

T
i ξ̂ − piSiŵ

T
i �

Tc̃ − piSiŵ
T
i �

Tη̃

− piSiŵ
T
i O + w̃T

i θi
dw̃i

dt
+

∑
j=v,ω

ϕ̃
T
ijρij

dϕ̃ij

dt

− piSi

∑
j=v,ω

ϕ̃
T
ij ξ̂juj−piSi

∑
j=v,ω

ϕ̂ij�
Tc̃juj

− piSi

∑
j=v,ω

ϕ̂ij�
Tη̃juj − piSi

∑
j=v,ω

ϕ̂jjOjuj

− piSiεin − pi�i|Si|
]

+
(

dc̃T

dt
�1c̃ + dη̃

T

dt
�2η̃

)

(41)

Rearranging and grouping terms (see (42))
If ˙̃c, ˙̃η ˙̃wi and ˙̃ϕ are selected as

dw̃i

dt
= θ−1

i piSi ξ̂ (43)

dϕ̃ij

dt
= ρ−1

ij piSi ξ̂juj (44)

dη̃
T

dt
= �−1

2

∑
i

piSi

[
ŵT

i �
T +

∑
j

ϕ̂
T
ij�

Tuj

]
(45)

dc̃T

dt
= �−1

1

∑
i

piSi

[
ŵT

i �
T +

∑
j

ϕ̂
T
ij�

Tuj

]
(46)

Considering (43), (44), (45) and (46) into (41), then (41)
can be rewritten as

dV

dt
=
∑

i

− qiS
2
i − piSi

(
ŵT

i O +
∑

j

ϕ̂ijOjuj + εin

)
− pi�i|Si|

dV

dt
≤
∑

i

−qi|Si|2 + pi|Si||εMax| − pi�i|Si| < 0 (47)

from (47), it follows that

dV

dt
≤
∑

i

−qi|Si|2 < 0 (48)

From (43), (44), (45) and (46) considering ẇ∗
i = 0, ċ∗ =

0, η̇∗ = 0, and ϕ̇∗ = 0 the tuning rules are

dwi

dt
= θ−1

i piSi ξ̂ (49)

dϕij

dt
= ρ−1

ij piSi ξ̂juj (50)

dηT

dt
= �−1

2

∑
i

piSi

[
ŵT

i �
T +

∑
j

ϕ̂
T
ij�

Tuj

]
(51)

dcT

dt
= �−1

1

∑
i

piSi

[
ŵT

i �
T +

∑
j

ϕ̂
T
ij�

Tuj

]
(52)

From (48) the negativeness of the time derivative of the
Lyapunov candidate function is guaranteed, resulting in the
stability of the overall system.

Now from (1) and (2) and taking into account the
complete control law (24), the Lie derivatives are

Lgvhx(x) = 1

ϑ1
cos ψ

Lgvhy(x) = − 1

ϑ2
a sin ψ

Lgωhx(x) = 1

ϑ1
sin ψ

Lgωhy(x) = 1

ϑ2
a cos ψ

Lf hx(x) =
(

ϑ3

ϑ1
ω2 − ϑ4

ϑ1
v

)
cos ψ

−
(

−ϑ5

ϑ2
vω − ϑ6

ϑ2
ω

)
a sin ψ

Lf hy(x) =
(

ϑ3

ϑ1
ω2 − ϑ4

ϑ1
v

)
sin ψ

+
(

−ϑ5

ϑ2
vω − ϑ6

ϑ2
ω

)
a cos ψ

(53)

And considering that

⎛
⎜⎜⎝

1

ϑ1
cos ψ − 1

ϑ2
a sin ψ

1

ϑ1
sin ψ

1

ϑ2
a cos ψ

⎞
⎟⎟⎠

−1

=
⎛
⎝ ϑ1 cos ψ ϑ1 sin ψ

−ϑ2

a
sin ψ

ϑ2

a
cos ψ

⎞
⎠

(54)

dV

dt
=
∑

i

[
−qiS

2
i + w̃T

i

(
−piSi ξ̂ + θi

dw̃i

dt

)
+ · · · +

∑
j=v,ω

ϕ̃
T
ij

(
−piSi ξ̂juj + ρij

dϕ̃ij

dt

)

− piSi

(
ŵT

i O +
∑
j=v,ω

ϕ̂ijOjuj + εin

)
− pi�i|Si|

]
+ · · · +

(
−
∑

i

piSi

[
ŵT

i �
T +

∑
j=v,ω

ϕ̂
T
ij�

Tuj

]
+ dη̃

T

dt
�2

)
η̃ + · · ·

+
(

−
∑

i

piSi

[
ŵT

i �
T +

∑
j=v,ω

ϕ̂
T
ij�

Tuj

]
+ dc̃T

dt
�1

)
c̃ (42)
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Fig. 4 Angular and linear velocities output and control actions
of sliding neural compensator control technique

The complete control law can be expressed as (see (55))

7 Experimental results

To show the performance of the proposed controller, several
experiments were executed and some of the results are
presented in this section. The proposed controller was
implemented on a Pioneer 2DX mobile robot, which admits
linear and angular velocities as input reference signals. The
Pioneer2DX has an 800 MHz Pentium III with 512 Mb RAM
onboard computer in which the controller was programmed.
The controller setup parameters are: kx = ky = 4, �x =
0.001 and �y = 0.001, the NN has 5 RBFs. In order to sense
the robot position and velocities, odometric sensors were
used, the sensitivity of the odometres is 1 mm for position,
1 mms−1 for linear velocity and 1◦/s for angular velocity. It
was verified that the wheels of the mobile robot roll without
slipping. {

rx = 0.75 sin(0.03π t)
ry = 0.75 cos(0.03π t)

(56)

The analysis of the controller performance was
accomplished in two stages Fig. 4. In the first one, the
control system was analysed in an inverse dynamic scheme
in the absence of sliding neural compensation. For this
situation, the controller without compensation performs the
trajectory tracking as shown in Fig. 5 and the tracking error
in Fig. 6 (both cases are indicated by dashed line). This
figure shows a behaviour with greater error of the control
system in tracking the desired robot trajectory.
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Fig. 5 Reference and actual trajectory neural compensator (solid
line) and inverse controller (dashed line)
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Fig. 6 Trajectory Error with sliding neural compensator (solid
line) and inverse controller (dashed line)

In the second stage, a neural compensation was included.
The control scheme with compensation has a very good
performance. On the other hand, adding the neural structure
allows a significant improvement and an effective control
of robot trajectory, which can be verified in Figs. 5 and 6
(solid line). Fig. 6 shows the distance errors for experiments
using the proposed RBF compensator to follow the desired
reference trajectory. The distance error is defined as the
instantaneous distance between the reference and the robot
position. Note the high initial error, which is because of the

(
uvN

uωN

)
=
(

ϑ1 cos ψ ϑ1 sin ψ

−ϑ2

a
sin ψ

ϑ2

a
cos ψ

)

×

⎛
⎜⎜⎜⎝

−
[(

ϑ3

ϑ1
ω2 − ϑ4

ϑ1
v

)
cos ψ −

(
−ϑ5

ϑ2
vω − ϑ6

ϑ2
ω

)
a sin ψ

]
− λxex − (vxN + �xsign(Sx))

−
[(

ϑ3

ϑ1
ω2 − ϑ4

ϑ1
v

)
sin ψ +

(
−ϑ5

ϑ2
vω − ϑ6

ϑ2
ω

)
a cos ψ

]
− λyey − (vyN + �ysign(Sy))

⎞
⎟⎟⎟⎠ (55)

IET Control Theory Appl., 2012, Vol. 6, Iss. 12, pp. 1–10 9
doi: 10.1049/iet-cta.2011.0581 © The Institution of Engineering and Technology 2012



www.ietdl.org

fact that the reference trajectory starts on a point that is far
from the initial robot position.

The Fig. 4 depicts the speeds and control actions of the
RBF adaptive controller and outputs velocities.

8 Conclusions

In this paper, a trajectory tracking controller for a unicycle-
like mobile robot, including a neural adaptive compensator,
is proposed. The controller is capable of generating smooth
and continuous velocity commands to the robot. The
tracking control errors can asymptotically converge to
zero. The RBF–NN controller compensates the difference
between a known nominal dynamics structure and the actual
dynamics structure of the robot. Therefore the computational
effort is significantly smaller than a NN learning the
complete inverse model of the robot. The proposed neural
compensation scheme behaves with strong robustness with
respect to unknown dynamics and non-linearities and the
stability of the closed loop system and convergence towards
zero of the tracking error is guaranteed. Experimental
results show the good performance of the proposed tracking
controller and its capacity to adapt to the actual robot
dynamics.
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10 Appendix: parameters description

The identified parameters can be described by

ϑ1 =
(

((Ra/ka)(MRtr + 2Ie) + 2rkDT)

2rkPT

)

ϑ2 =
(

((Ra/ka)(Ied2 + 2Rtr(Iz + Mb2)) + 2rdkDR)

2rdkPR

)

ϑ3 =
(

(Ra/ka)MbRt

2kPT

)

ϑ4 =
(

(Ra/ka)((kakb/Ra) + Be)

rkPT
+ 1

)

ϑ5 =
(

(Ra/ka)MbRt

dkPR

)

ϑ6 =
(

(Ra/ka)((kakb/Ra) + Be)d

2rkPR
+ 1

)

(57)

In these relations, M is the robot mass; r is the radius of
the left and right wheels; kb is equal to the electro motoric
force constant multiplied by the reduction constant; Ra is the
electric resistance; ka is the constant of torque multiplied by
the reduction constant; kPR, kPT, y kDT are positive constants;
Ie and Be are the moment of inertia and the viscous friction
coefficient both belonging to the combination of motor,
gear box and wheel; and Rt is the nominal radius of
the wheel.
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