61 research outputs found

    A highly conserved segmental duplication in the subtelomeres of Plasmodium falciparum chromosomes varies in copy number

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Segmental duplications (SD) have been found in genomes of various organisms, often accumulated at the ends of chromosomes. It has been assumed that the sequence homology in-between the SDs allow for ectopic interactions that may contribute to the emergence of new genes or gene variants through recombinatorial events.</p> <p>Methods</p> <p><it>In silico </it>analysis of the 3D7 <it>Plasmodium falciparum </it>genome, conducted to investigate the subtelomeric compartments, led to the identification of subtelomeric SDs. Sequence variation and copy number polymorphisms of the SDs were studied by DNA sequencing, real-time quantitative PCR (qPCR) and fluorescent <it>in situ </it>hybridization (FISH). The levels of transcription and the developmental expression of copy number variant genes were investigated by qPCR.</p> <p>Results</p> <p>A block of six genes of >10 kilobases in size, including <it>var</it>, <it>rif</it>, <it>pfmc-2tm </it>and three hypothetical genes (<it>n-, o- </it>and <it>q-gene</it>), was found duplicated in the subtelomeric regions of chromosomes 1, 2, 3, 6, 7, 10 and 11 (SD1). The number of SD1 per genome was found to vary from 4 to 8 copies in between different parasites. The intragenic regions of SD1 were found to be highly conserved across ten distinct fresh and long-term cultivated <it>P. falciparum</it>. Sequence variation was detected in a ≈ 23 amino-acid long hypervariable region of a surface-exposed loop of PFMC-2TM. A hypothetical gene within SD1, the <it>n-gene</it>, encoding a PEXEL/VTS-containing two-transmembrane protein was found expressed in ring stage parasites. The <it>n-gene </it>transcription levels were found to correlate to the number of <it>n-gene </it>copies. Fragments of SD1 harbouring two or three of the SD1-genes (<it>o-gene, pfmc-2tm, q-gene</it>) were also found in the 3D7 genome. In addition a related second SD, SD2, of ≈ 55% sequence identity to SD1 was found duplicated in a fresh clinical isolate but was only present in a single copy in 3D7 and in other <it>P. falciparum </it>lines or clones.</p> <p>Conclusion</p> <p><it>Plasmodium falciparum </it>carries multiple sequence conserved SDs in the otherwise highly variable subtelomeres of its chromosomes. The uniqueness of the SDs amongst plasmodium species, and the conserved nature of the genes within, is intriguing and suggests an important role of the SD to <it>P. falciparum</it>.</p

    SURFIN4.1, a schizont-merozoite associated protein in the SURFIN family of Plasmodium falciparum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In its effort to survive the human immune system, <it>Plasmodium falciparum </it>uses several parasite-derived antigens most of which are expressed at the surface of the parasitized red blood cells (pRBCs). Recently SURFINs, a new family of antigens encoded by the <it>surf </it>multi-gene family, has been reported. One member of the family, SURFIN<sub>4.2</sub>, was found present both at the pRBC-surface and at the merozoite apex.</p> <p>Methods</p> <p>The presence of a second SURFIN member, SURFIN<sub>4.1 </sub>(PFD0100c, PFD0105c) is reported here. Bioinformatic tools were used to study the structure of the <it>surf</it><sub>4.1 </sub>gene. To investigate the expression of <it>surf </it>genes PCR and real-time quantitative PCR (Rt-QPCR) were employed and Northern and Western blots were used to confirm the size of the <it>surf</it><sub>4.1 </sub>gene and the SURFIN<sub>4.1 </sub>protein respectively. Localization of SURFIN<sub>4.1 </sub>was determined using immunofluorescence assays.</p> <p>Results</p> <p>The <it>surf</it><sub>4.1 </sub>gene was found present in one copy by Rt-QPCR in some parasites (3D7AH1, 3D7S8, 7G8) whereas six copies of the gene were identified in FCR3 and FCR3S1.2. <it>surf</it><sub>4.1 </sub>was found transcribed in the late asexual stages of the parasite beginning ≈32 hours post invasion and throughout the schizont stages with the level of transcription peaking at late schizogony. The levels of transcript correlated with the number of gene copies in FCR3 and 3D7S8. <it>surf</it><sub>4.1 </sub>was found to encode a polypeptide of ≈Mw 258 kDa (SURFIN<sub>4.1</sub>) present within the parasitophorous vacuole (PV), around free merozoites as merozoite-associated material, but not at the pRBC-surface. Despite multiple <it>surf</it><sub>4.1 </sub>gene copies in some parasites this was not reflected in the levels of SURFIN<sub>4.1 </sub>polypeptide.</p> <p>Conclusion</p> <p>SURFIN<sub>4.1 </sub>is a member of the SURFINs, present in the PV and on the released merozoite. The results suggest different SURFINs to be expressed at different locations in the parasite and at distinct time-points during the intra-erythrocytic cycle.</p

    Simultaneous transcription of duplicated var2csa gene copies in individual Plasmodium falciparum parasites

    Get PDF
    Duplicated var2csa genes in one strain of Plasmodium falciparum are simultaneously transcribed, challenging the dogma of mutual exclusive var gene transcriptio

    A global transcriptional analysis of Plasmodium falciparum malaria reveals a novel family of telomere-associated lncRNAs

    Get PDF
    Background: Mounting evidence suggests a major role for epigenetic feedback in Plasmodium falciparum transcriptional regulation. Long non-coding RNAs (lncRNAs) have recently emerged as a new paradigm in epigenetic remodeling. We therefore set out to investigate putative roles for lncRNAs in P. falciparum transcriptional regulation. Results: We used a high-resolution DNA tiling microarray to survey transcriptional activity across 22.6% of the P. falciparum strain 3D7 genome. We identified 872 protein-coding genes and 60 putative P. falciparum lncRNAs under developmental regulation during the parasite's pathogenic human blood stage. Further characterization of lncRNA candidates led to the discovery of an intriguing family of lncRNA telomere-associated repetitive element transcripts, termed lncRNA-TARE. We have quantified lncRNA-TARE expression at 15 distinct chromosome ends and mapped putative transcriptional start and termination sites of lncRNA-TARE loci. Remarkably, we observed coordinated and stage-specific expression of lncRNA-TARE on all chromosome ends tested, and two dominant transcripts of approximately 1.5 kb and 3.1 kb transcribed towards the telomere. Conclusions: We have characterized a family of 22 telomere-associated lncRNAs in P. falciparum. Homologous lncRNA-TARE loci are coordinately expressed after parasite DNA replication, and are poised to play an important role in P. falciparum telomere maintenance, virulence gene regulation, and potentially other processes of parasite chromosome end biology. Further study of lncRNA-TARE and other promising lncRNA candidates may provide mechanistic insight into P. falciparum transcriptional regulation.Organismic and Evolutionary BiologyStem Cell and Regenerative BiologyOther Research Uni

    A genomic and evolutionary approach reveals non-genetic drug resistance in malaria

    Get PDF
    Background: Drug resistance remains a major public health challenge for malaria treatment and eradication. Individual loci associated with drug resistance to many antimalarials have been identified, but their epistasis with other resistance mechanisms has not yet been elucidated. Results: We previously described two mutations in the cytoplasmic prolyl-tRNA synthetase (cPRS) gene that confer resistance to halofuginone. We describe here the evolutionary trajectory of halofuginone resistance of two independent drug resistance selections in Plasmodium falciparum. Using this novel methodology, we discover an unexpected non-genetic drug resistance mechanism that P. falciparum utilizes before genetic modification of the cPRS. P. falciparum first upregulates its proline amino acid homeostasis in response to halofuginone pressure. We show that this non-genetic adaptation to halofuginone is not likely mediated by differential RNA expression and precedes mutation or amplification of the cPRS gene. By tracking the evolution of the two drug resistance selections with whole genome sequencing, we further demonstrate that the cPRS locus accounts for the majority of genetic adaptation to halofuginone in P. falciparum. We further validate that copy-number variations at the cPRS locus also contribute to halofuginone resistance. Conclusions: We provide a three-step model for multi-locus evolution of halofuginone drug resistance in P. falciparum. Informed by genomic approaches, our results provide the first comprehensive view of the evolutionary trajectory malaria parasites take to achieve drug resistance. Our understanding of the multiple genetic and non-genetic mechanisms of drug resistance informs how we will design and pair future anti-malarials for clinical use. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0511-2) contains supplementary material, which is available to authorized users

    Release of Sequestered Malaria Parasites upon Injection of a Glycosaminoglycan

    Get PDF
    Severe human malaria is attributable to an excessive sequestration of Plasmodium falciparum–infected and uninfected erythrocytes in vital organs. Strains of P. falciparum that form rosettes and employ heparan sulfate as a host receptor are associated with development of severe forms of malaria. Heparin, which is similar to heparan sulfate in that it is composed of the same building blocks, was previously used in the treatment of severe malaria, but it was discontinued due to the occurrence of serious side effects such as intracranial bleedings. Here we report to have depolymerized heparin by periodate treatment to generate novel glycans (dGAG) that lack anticoagulant-activity. The dGAGs disrupt rosettes, inhibit merozoite invasion of erythrocytes and endothelial binding of P. falciparum–infected erythrocytes in vitro, and reduce sequestration in in vivo models of severe malaria. An intravenous injection of dGAGs blocks up to 80% of infected erythrocytes from binding in the micro-vasculature of the rat and releases already sequestered parasites into circulation. P. falciparum–infected human erythrocytes that sequester in the non-human primate Macaca fascicularis were similarly found to be released in to the circulation upon a single injection of 500 μg of dGAG. We suggest dGAGs to be promising candidates for adjunct therapy in severe malaria

    Default Pathway of var2csa Switching and Translational Repression in Plasmodium falciparum

    Get PDF
    Antigenic variation is a subtle process of fundamental importance to the survival of a microbial pathogen. In Plasmodium falciparum malaria, PfEMP1 is the major variable antigen and adhesin expressed at the surface of the infected erythrocyte, which is encoded for by members of a family of 60 var-genes. Peri-nuclear repositioning and epigenetic mechanisms control their mono-allelic expression. The switching of PfEMP1 depends in part on variable transition rates and short-lived immune responses to shared minor epitopes. Here we show var-genes to switch to a common gene that is highly transcribed, but sparsely translated into PfEMP1 and not expressed at the erythrocyte surface. Highly clonal and adhesive P. falciparum, which expressed distinct var-genes and the corresponding PfEMP1s at onset, were propagated without enrichment or panning. The parasites successively and spontaneously switched to transcribe a shared var-gene (var2csa) matched by the loss of PfEMP1 surface expression and host cell-binding. The var2csa gene repositioned in the peri-nuclear area upon activation, away from the telomeric clusters and heterochromatin to transcribe spliced, full-length RNA. Despite abundant transcripts, the level of intracellular PfEMP1 was low suggesting post-transcriptional mechanisms to partake in protein expression. In vivo, off-switching and translational repression may constitute one pathway, among others, coordinating PfEMP1 expression

    Antimalarial Exposure Delays Plasmodium falciparum Intra-Erythrocytic Cycle and Drives Drug Transporter Genes Expression

    Get PDF
    BACKGROUND: Multi-drug resistant Plasmodium falciparum is a major obstacle to malaria control and is emerging as a complex phenomenon. Mechanisms of drug evasion based on the intracellular extrusion of the drug and/or modification of target proteins have been described. However, cellular mechanisms related with metabolic activity have also been seen in eukaryotic systems, e.g. cancer cells. Recent observations suggest that such mechanism may occur in P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS: We therefore investigated the effect of mefloquine exposure on the cell cycle of three P. falciparum clones (3D7, FCB, W2) with different drug susceptibilities, while investigating in parallel the expression of four genes coding for confirmed and putative drug transporters (pfcrt, pfmdr1, pfmrp1 and pfmrp2). Mefloquine induced a previously not described dose and clone dependent delay in the intra-erythrocytic cycle of the parasite. Drug impact on cell cycle progression and gene expression was then merged using a non-linear regression model to determine specific drug driven expression. This revealed a mild, but significant, mefloquine driven gene induction up to 1.5 fold. CONCLUSIONS/SIGNIFICANCE: Both cell cycle delay and induced gene expression represent potentially important mechanisms for parasites to escape the effect of the antimalarial drug

    A Novel DBL-Domain of the P. falciparum 332 Molecule Possibly Involved in Erythrocyte Adhesion

    Get PDF
    Plasmodium falciparum malaria is brought about by the asexual stages of the parasite residing in human red blood cells (RBC). Contact between the erythrocyte surface and the merozoite is the first step for successful invasion and proliferation of the parasite. A number of different pathways utilised by the parasite to adhere and invade the host RBC have been characterized, but the complete biology of this process remains elusive. We here report the identification of an open reading frame (ORF) representing a hitherto unknown second exon of the Pf332 gene that encodes a cysteine-rich polypeptide with a high degree of similarity to the Duffy-binding-like (DBL) domain of the erythrocyte-binding-ligand (EBL) family. The sequence of this DBL-domain is conserved and expressed in all parasite clones/strains investigated. In addition, the expression level of Pf332 correlates with proliferation efficiency of the parasites in vitro. Antibodies raised against the DBL-domain are able to reduce the invasion efficiency of different parasite clones/strains. Analysis of the DBL-domain revealed its ability to bind to uninfected human RBC, and moreover demonstrated association with the iRBC surface. Thus, Pf332 is a molecule with a potential role to support merozoite invasion. Due to the high level of conservation in sequence, the novel DBL-domain of Pf332 is of possible importance for development of novel anti-malaria drugs and vaccines
    corecore