80 research outputs found

    A tutorial on thermal sensors in the 200th anniversary of the seebeck effect

    Get PDF
    Two noteworthy events associated to the physics of thermal sensors were demonstrated and announced in 1821, exactly two hundred years ago. The first event was the Seebeck effect, which led to the development of thermocouples. The second was the study of the thermal dependence of the resistivity of pure metals, which led to the design of resistance temperature detectors (RTD).Postprint (updated version

    Toward non-CPU activity in low-power MCU-Based measurement systems

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis article evaluates the benefits of having peripheral-triggered peripherals in a microcontroller unit (MCU) intended for low-power sensor applications. In such an architecture, the functionality is moved from the central processing unit (CPU) to the peripherals so that a peripheral is able to trigger another peripheral with non-CPU intervention. For the sensor data logging application under study, both energy consumption and measuring time are reduced by a factor of 2 with respect to the case of applying an interrupt-based approach that requires the CPU intervention.Peer ReviewedPostprint (author's final draft

    A microcontroller-based interface circuit for non-linear resistive sensors

    Get PDF
    This article proposes a circuit based on a microcontroller unit (MCU) for the direct measurement and linearization of non-linear resistive sensors, such as thermistors. The measurement relies on an embedded digital timer and does not require (either embedded or external) operational amplifiers or an analog-to-digital converter, thus resulting in a low-cost, low-power design solution. The circuit includes a known resistor with a twofold function: it is a reference for circuit auto-calibration purposes, and it is in parallel with the non-linear resistive sensor for linearization purposes.Postprint (updated version

    Rail-to-Rail Timer-Based Demodulator for AM Sensor Signals

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper proposes a novel timer-based demodulator for low-frequency amplitude-modulated (AM) sensor signals with a rail-to-rail operating range. The demodulator extracts the amplitude of the AM signal by measuring the period of a reference signal that is altered by the AM signal itself, as already suggested in a previous paper. The rail-to-rail operation, which is the main contribution of the novel circuit, is achieved by simply but cleverly incorporating a multiplexer that enables the comparison between the two signals (reference and AM) just at the beginning and at the end of the period measurement. This new topology offers an operating range that is up to more than four times wider than that reported in the literature. The input-output characteristic in such a wider operating range is not linear, but it can be accurately modeled by a second-degree polynomial.Peer ReviewedPostprint (author's final draft

    Improving the efficiency of PV low-power processing circuits by selecting an optimal inductor current of the DC/DC converter

    Get PDF
    In the context of autonomous sensors powered by small-size photovoltaic (PV) panels, this work analyses how the efficiency of DC/DC-converter-based power processing circuits can be improved by an appropriate selection of the inductor current that transfers the energy from the PV panel to a storage unit. Each component of power losses (fixed, conduction and switching losses) involved in the DC/DC converter specifically depends on the average inductor current so that there is an optimal value of this current that causes minimal losses and, hence, maximum efficiency. Such an idea has been tested experimentally using two commercial DC/DC converters whose average inductor current is adjustable. Experimental results show that the efficiency can be improved up to 12% by selecting an optimal value of that current, which is around 300-350 mA for such DC/DC converters.Peer ReviewedPostprint (published version

    Demodulating AM square signals via a digital timer for sensor applications

    Get PDF
    This paper evaluates theoretically and experimentally the performance of a timer-based demodulator applied to low-frequency amplitude-modulated (AM) square signals coming from sensor circuits. The demodulator extracts the amplitude of the AM square signal by measuring the period of a reference triangular signal that is altered by the AM signal itself, as already suggested in a previous paper but for AM sinusoidal signals.Postprint (published version

    Optimal inductor current in boost DC/DC converters operating in burst mode under light-load conditions

    Get PDF
    This letter analyzes how the efficiency of boost dc/dc converters operating in burst mode under light-load conditions can be improved by an appropriate selection of the inductor current that transfers energy from the input to the output. A theoretical analysis evaluates the main power losses (fixed, conduction, and switching losses) involved in such converters, and how do they depend on the inductor current. This analysis shows that there is an optimal value of this current that causes minimum losses and, hence, maximum efficiency. These theoretical predictions are then compared with experimental data resulting from a commercial boost dc/dc converter (TPS61252), whose average inductor current is adjustable. Experimental results show that the use of the optimal inductor current, which was around 340 mA for an output voltage of 5 V, provides an efficiency increase of 7%.Peer ReviewedPostprint (author's final draft
    • …
    corecore