284 research outputs found

    SPG20 protein spartin is recruited to midbodies by ESCRT-III protein Ist1 and participates in cytokinesis.

    Get PDF
    Hereditary spastic paraplegias (HSPs, SPG1-46) are inherited neurological disorders characterized by lower extremity spastic weakness. Loss-of-function SPG20 gene mutations cause an autosomal recessive HSP known as Troyer syndrome. The SPG20 protein spartin localizes to lipid droplets and endosomes, and it interacts with tail interacting protein 47 (TIP47) as well as the ubiquitin E3 ligases atrophin-1-interacting protein (AIP)4 and AIP5. Spartin harbors a domain contained within microtubule-interacting and trafficking molecules (MIT) at its N-terminus, and most proteins with MIT domains interact with specific ESCRT-III proteins. Using yeast two-hybrid and in vitro surface plasmon resonance assays, we demonstrate that the spartin MIT domain binds with micromolar affinity to the endosomal sorting complex required for transport (ESCRT)-III protein increased sodium tolerance (Ist)1 but not to ESCRT-III proteins charged multivesicular body proteins 1-7. Spartin colocalizes with Ist1 at the midbody, and depletion of Ist1 in cells by small interfering RNA significantly decreases the number of cells where spartin is present at midbodies. Depletion of spartin does not affect Ist1 localization to midbodies but markedly impairs cytokinesis. A structure-based amino acid substitution in the spartin MIT domain (F24D) blocks the spartin-Ist1 interaction. Spartin F24D does not localize to the midbody and acts in a dominant-negative manner to impair cytokinesis. These data suggest that Ist1 interaction is important for spartin recruitment to the midbody and that spartin participates in cytokinesis

    Contribution à l’étude de la régulation des complexes respiratoires par la phosphorylation chez Saccharomyces cerevisiae : -Etude générale du protéome et du phosphoprotéome mitochondrial selon le métabolisme -Cas particulier de deux sous-unités du complexe cytochrome c oxydase

    Get PDF
    Mitochondria are the powerhouses of cells, providing energy in the form of adenosine triphosphate (ATP). The synthesis of ATP is achieved by oxidative phosphorylation (OXPHOS), a process catalyzed by the respiratory chain, which is located in the inner membrane of mitochondria. Deregulation of OXPHOS is often associated to diseases. Deregulation is particularly observed in mitochondrial diseases and neurodegenerative diseases, but regulation of respiration by phosphorylation is still poorly understood.However, phosphorylation is one of the most frequent post-translational modifications in the cell, modulating most processes, and defects at a cellular level are observed in some diseases (Alzheimer, Parkinson, cancer). Moreover, some phosphorylation sites have been identified in the respiratory complexes, particularly in the complex IV; some of them have an effect on the stability and/or activity of the complex, but we still lack a comprehensive study about mitochondrial phosphoproteome. Such analysis would be necessary to extend the role of phosphorylation in the regulation of mitochondrial functions in general, and in the regulation of the respiratory chain in particular.In the first part of this thesis, we focused on the analysis of the mitochondrial phosphoproteome of Saccharomyces cerevisiae. We studied the mitochondrial phosphoproteome in three growth conditions: in the respiratory condition (YLAC), in the fermentable condition (YPGA) and in an intermediate one (YPGalA). We quantified around 300 mitochondrial phosphorylation sites in which 90 displayed a different level of phosphorylation according to the substrate. This study is a first step towards understanding mitochondrial phosphorylation and its mechanism. Phosphorylation sites with varying levels of phosphorylation according to their conditions are mostly located on proteins involved in energy metabolism. We localized the phosphosites on the structure of the respiratory complexes when it was possible. This allowed us to make hypotheses on the role of these residues. In order to normalize the quantity of phosphorylation sites in the three growth conditions, we also studied the mitochondrial proteome in the three conditions. These results helped us to understand the energetic metabolism of galactose, which is surely intermediate between respiration and fementation, a question still debated nowadays.Finally this proteomic and phosphoproteomic study is a step forward in the comprehension of regulation of mitochondria by phosphorylation. These results can be used as a model to study cancer cells because they display a deregulation in the energetic metabolism: normal cells display respiratory metabolism whereas cancer cells exhibit fermentable metabolism.The second part of this thesis was the study of two subunits of complex IV of the respiratory chain: Cox12p and Cox13p, which had been poorly studied. Moreover, two phosphorylation sites had been identified in the subunit Cox12p. First we were interested in the role of these two proteins, thus we compared the mitochondria of mutants Δcox12, Δcox13 et Δcox12Δcox13 with wild-type mitochondria. We particularly focused on the assembly and the activity of complex IV. Secondly, we analyzed the role of the two phosphosites of Cox12p: Ser7 and Ser82. We generated phosphomimetic mutants of these two residues and observed their effects on the stability and/or activity of complex IV.All of these results allowed us to identify a role of Cox12p in the stability of complex IV and a role of Cox13p in the dimerization of complex IV. Phosphorylation of Ser7 of Cox12p seemed to destabilize the complex. Moreover phosphorylation of both Ser7 and Ser82 of Cox12p seemed to modify the interaction between cytochrome c and complex IV; this hypothesis remains to be tested but is relevant according to the proximity between Cox12p and the subunit Cox2p, where the cytochrome c interacts.La phosphorylation oxydative est un processus majeur du métabolisme énergétique qui est catalysée par les enzymes de la chaîne respiratoire (OXPHOS), localisées dans la membrane interne des mitochondries. Sa dérégulation est souvent associée à des pathologies, par exemple aux maladies mitochondriales et neurodégénératives. La régulation de la phosphorylation oxydative par la phosphorylation reste encore peu comprise et peu étudiée. Pourtant, la phosphorylation est une des modifications post-traductionnelles les plus répandues dans la cellule, régulant de nombreux aspects de la vie cellulaire et dont l’altération est associée à des pathologies au niveau cellulaire (Alzheimer, Parkinson, cancer). Concernant la phosphorylation oxydative, il est à noter que quelques sites de phosphorylation des complexes respiratoires, en particulier du complexe IV, ont été montrés comme ayant un effet sur leur stabilité et/ou leur activité. Toutefois la connaissance du phosphoprotéome mitochondrial n’est pas suffisamment documentée à ce jour pour identifier les différents rôles que pourraient jouer la phosphorylation au niveau de la mitochondrie et en particulier, de la chaîne respiratoire.Dans la première partie de la thèse, nous nous sommes intéressés à l’analyse du phosphoprotéome mitochondrial de Saccharomyces cerevisiae dans trois conditions de culture : respiratoire (YLAC), respiro-fermentaire (YPGalA) et fermentaire (YPGA). Nous avons quantifiés près de 300 sites de phosphorylation dans la mitochondrie, dont 90 ont un niveau de phosphorylation variable selon le substrat. Les données que nous avons obtenues constituent une base pour l’analyse de la phosphorylation mitochondriale et de la compréhension de son mécanisme. Les sites de phosphorylation de la voie métabolique énergie sont ceux présentant le plus de variation de leur niveau de phosphorylation. La localisation des résidus phosphorylés sur la structure des complexes respiratoires nous a permis d’émettre des hypothèses sur le rôle de ces résidus. Afin de normaliser la quantité des résidus phosphorylés dans les trois conditions de culture, nous avons aussi quantifié le protéome mitochondrial dans les trois conditions de culture. Ceci nous a permis d’argumenter en faveur d’un métabolisme respiro-fermentaire en YPGalA, question encore largement discutée à ce jour. Enfin, cette première étude quantitative du protéome et phosphoprotéome mitochondrial constitue une avancée dans l’étude de la régulation de la mitochondrie par la phosphorylation. Elle peut notamment apporter des informations applicables à l’étude du cancer : en effet, les cellules saines ont un métabolisme respiratoire tandis que les cellules tumorales, dérégulées, ont un métabolisme fermentaire.La seconde partie de la thèse concerne l’analyse du rôle de deux sous-unités du complexe IV de la chaîne respiratoire : les sous-unités Cox12p et Cox13p, encore peu étudiées à ce jour. De plus, deux sites de phosphorylation ont été identifiés sur la sous-unité Cox12p. Dans un premier temps, nous nous sommes intéressés au rôle de ces sous-unités, notamment au niveau de l’assemblage et de l’activité du complexe IV, en analysant des mutants Δcox12, Δcox13 et Δcox12Δcox13. Dans un deuxième temps, nous nous sommes intéressés au rôle des deux sites de phosphorylation de Cox12p : Ser7 et ser82. Nous avons généré les mutants phosphomimétiques de ces deux résidus et étudié leurs effets sur la stabilité et/ou l’activité du complexe IV. Cette seconde étude nous a notamment permis d’identifier un rôle de Cox12p sur la stabilité du complexe et un rôle de Cox13p dans sa dimérisation. La phosphorylation de Cox12p au niveau de la Ser7 semble aussi déstabiliser le complexe IV. De plus, la phosphorylation de la Ser7 et de la Ser82 semblent influencer l’interaction du cytochrome c avec le complexe IV. Cette hypothèse reste à vérifier mais est pertinente du fait de la proximité de Cox12p avec Cox2p, qui porte le lieu de fixation du cytochrome c

    A role for protein phosphatase PP1γ in SMN complex formation and subnuclear localization to Cajal bodies

    Get PDF
    The spinal muscular atrophy (SMA) gene product SMN forms with gem-associated protein 2-8 (Gemin2-8) and unrip (also known as STRAP) the ubiquitous survival motor neuron (SMN) complex, which is required for the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs), their nuclear import and their localization to subnuclear domain Cajal bodies (CBs). The concentration of the SMN complex and snRNPs in CBs is reduced upon SMN deficiency in SMA cells. Subcellular localization of the SMN complex is regulated in a phosphorylation-dependent manner and the precise mechanisms remain poorly understood. Using co-immunoprecipitation in HeLa cell extracts and in vitro protein binding assays, we show here that the SMN complex and its component Gemin8 interact directly with protein phosphatase PP1γ. Overexpression of Gemin8 in cells increases the number of CBs and results in targeting of PP1γ to CBs. Moreover, depletion of PP1γ by RNA interference enhances the localization of the SMN complex and snRNPs to CBs. Consequently, the interaction between SMN and Gemin8 increases in cytoplasmic and nuclear extracts of PP1γ-depleted cells. Two-dimensional protein gel electrophoresis revealed that SMN is hyperphosphorylated in nuclear extracts of PP1γ-depleted cells and expression of PP1γ restores these isoforms. Notably, SMN deficiency in SMA leads to the aberrant subcellular localization of Gemin8 and PP1γ in the atrophic skeletal muscles, suggesting that the function of PP1γ is likely to be affected in disease. Our findings reveal a role of PP1γ in the formation of the SMN complex and the maintenance of CB integrity. Finally, we propose Gemin8 interaction with PP1γ as a target for therapeutic intervention in SMA

    Hérédité des variations de couleur du pelage du Buffle africain (Syncerus caffer)

    Get PDF
    La sous-espèce des savanes du Buffle africain (Syncerus Caffer caffer) est noire, la sous-espèce de forêts (Syncerus caffer nanus) rouge à extrémités noires. L’examen de croisements faits au Muséum national d’Histoire naturelle de Paris montre que le phénotype croisé est intermédiaire, c’est-à-dire rouge à extrémités noires avec une extension plus marquée des plages noires que chez nanus. On peut penser que les deux sous-espèces diffèrent par un allèle au locus Agouti A : caffer étant probablement récessif aa cependant que nanus porterait l’allèle AY pour le rouge à extrémités noires, leur formule au locus E d’Extension étant la même : E+E+The « savana » subspecies of the African Buffalo (Syncerus Caffer caffer) is black the « forest» subspecies (Syncerus caffer manus) is red with black extremities. The F1 which were obtained at the Museum d’Histoire Naturelle of Paris were intermediary, red but with a greater extension of the black areas. One can think than the two subspecies differ from one another in one allele at the locus Agouti A : caffer could probably be aa, nünus carrying the Ay allele for the red with black extremities. The formula of both at the E locus could be the same : E+E

    Distinct domains of the spinal muscular atrophy protein SMN are required for targeting to Cajal bodies in mammalian cells.

    Get PDF
    Mutations of the survival motor neuron gene SMN1 cause the inherited disease spinal muscular atrophy (SMA). The ubiquitous SMN protein facilitates the biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs). The protein is detected in the cytoplasm, nucleoplasm and enriched with snRNPs in nuclear Cajal bodies. It is structurally divided into at least an amino-terminal region rich in basic amino acid residues, a central Tudor domain, a self-association tyrosine-glycine-box and an exon7-encoded C-terminus. To examine the domains required for the intranuclear localization of SMN, we have used fluorescently tagged protein mutants transiently overexpressed in mammalian cells. The basic amino acid residues direct nucleolar localization of SMN mutants. The Tudor domain promotes localization of proteins in the nucleus and it cooperates with the basic amino acid residues and the tyrosine-glycine-box for protein localization in Cajal bodies. Moreover, the most frequent disease-linked mutant SMN{Delta}ex7 reduces accumulation of snRNPs in Cajal bodies, suggesting that the C-terminus of SMN participates in targeting to Cajal bodies. A reduced number of Cajal bodies in patient fibroblasts associates with the absence of snRNPs in Cajal bodies, revealing that intranuclear snRNA organization is modified in disease. These results indicate that direct and indirect mechanisms regulate localization of SMN in Cajal bodies

    Analyse du cycle de vie d'un système bioélectrochimique en tant que plate-forme technologique innovante pour la production d'acide succinique à partir de déchets

    Get PDF
    International audienceWaste management is a key environmental and socio-economic issue. Environmental concerns are encouraging the use of alternative resources and lower emissions to air, water and soil. Innovative technologies to deal with waste recovery that produce marketable bioproducts are emerging. Bioelectrochemical synthesis systems (BESs) are based on the primary principle of transforming organic waste into added-value products using microorganisms to catalyse chemical reactions. This technology is at the core of a research project called BIORARE (BIoelectrosynthesis for ORganic wAste bioREfinery), an interdisciplinary project that aims to use anaerobic digestion as a supply chain to feed a BES and produce target biomolecules. This technology needs to be driven by environmental strategies. Life Cycle Assessment (LCA) was used to evaluate the BIORARE concept based on expert opinion and prior experiments for the production of biosuccinic acid and waste management. A multidisciplinary approach based on biochemistry and process engineering expertise was used to collect the inventory data. The BES design and the two-step anaerobic digestion process have many potential impacts on air pollution or ecotoxicity-related categories. The comparison of the BIORARE concept with conventional fermentation processes and a water-fed BES technology demonstrated the environmental benefit resulting from the use of both the BES technology and a waste-based substrate as input thus supporting the BIORARE concept. Some trade-offs among the impact categories were identified but led to options to improve the concept. BES design and synergy management may improve the environmental performance of the BIORARE concep
    corecore