

Contribution à l'étude de la régulation des complexes respiratoires par la phosphorylation chez Saccharomyces cerevisiae : -Etude générale du protéome et du phosphoprotéome mitochondrial selon le métabolisme -Cas particulier de deux sous-unités du complexe cytochrome c oxydase

Margaux Renvoisé

▶ To cite this version:

Margaux Renvoisé. Contribution à l'étude de la régulation des complexes respiratoires par la phosphorylation chez Saccharomyces cerevisiae : -Etude générale du protéome et du phosphoprotéome mitochondrial selon le métabolisme -Cas particulier de deux sous-unités du complexe cytochrome c oxydase. Biochimie [q-bio.BM]. Université Paris Sud - Paris XI, 2014. Français. <NNT : 2014PA11T051>. <tel-01215336>

HAL Id: tel-01215336 https://tel.archives-ouvertes.fr/tel-01215336

Submitted on 14 Oct 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

construire l'avenir®

UNIVERSITÉ PARIS-SUD

ÉCOLE DOCTORALE 419 : BIOSIGNE

Laboratoire de Protéines Membranaires UMR 8221 / CNRS / CEA Saclay

THÈSE DE DOCTORAT

SCIENCES DE LA VIE ET DE LA SANTÉ

par

Margaux RENVOISÉ

Contribution à l'étude de la régulation des complexes respiratoires par la phosphorylation chez Saccharomyces cerevisiae

-Etude générale du protéome et du phosphoprotéome mitochondrial selon le métabolisme

-Cas particulier de deux sous-unités du complexe cytochrome c oxydase

Date de soutenance : 13/10/2014

Composition du jury :

Directeur de thèse :	Claire LEMAIRE	Chargée de Recherches CNRS (UMR8221, CEA Saclay)
Rapporteurs :	Marie-France GIRAUD Fabrice RAPPAPORT	Chargée de Recherches CNRS (IBGC, Bordeaux) Directeur de Recherches CNRS (IBPC, Paris)
Examinateurs :	Marc LE MAIRE Anne LOMBÈS Virginie REDEKER	Professeur (Université Paris-Sud) Directrice de Recherches INSERM (Institut Cochin, Paris Chargée de Recherches INSERM (LEBS, Gif-sur-Yvette)

Sommaire

Une page se tourne! C'est avec émotion que s'achèvent mes trois années de thèse. Ce fut une expérience riche tant au niveau scientifique qu'humain, et ces moments ainsi que toutes les personnes rencontrées, resteront dans mon esprit.

Tout d'abord, je remercie chaleureusement ma directrice de thèse, Claire Lemaire, de son soutien, son écoute, et son aide qui m'ont permis d'accomplir ce travail de thèse, tout ça dans la bonne humeur. Je la remercie particulièrement de sa confiance qui m'a permis de m'initier au vaste domaine de la biologie.

Je voudrais remercier les membres du jury, Marie-France Giraud, Fabrice Rappaport, Marc Le Maire, Anne Lombès et Virginie Redeker, d'avoir accepté d'examiner et de juger mon travail de thèse.

Je remercie Francis Haraux, directeur de l'équipe "Régulation des complexes mitochondriaux transducteurs d'énergie", ainsi que Tiona Andrianaivomananjaona, Qian Wu, Mehdi Lembrouk et l'ensemble des personnes ayant fait partie pendant un temps de cette petite famille, pour les discussions scientifiques, leurs conseils et aides lors des expériences et surtout pour le climat chaleureux et plaisant dans lequel se sont déroulées ces trois années.

Je remercie Jean-Marc Grognet, directeur de l'iBiTec-S, Bruno Robert, directeur de l'UMR8221 et Marc Le Maire, directeur du Laboratoire des Protéines Membranaires, de m'avoir accueilli au sein du laboratoire, ainsi que le programme doctoral Irtelis d'avoir financé ces trois années de thèse.

J'adresse mes remerciements à Michel Zivy, Marlène Davanture, Ludovic Bonhomme, Thierry Bailleau, Benoît Valot et l'ensemble de la plateforme PAPPSO pour m'avoir guidée lors des expériences de spectrométrie de masse et pour m'avoir initiée aux rouages de la phosphoprotéomique et des traitements statistiques.

Je remercie également Raphaël Guerois de m'avoir consacré un moment pour discuter du vaste domaine des kinases et de leurs prédictions, ainsi que de m'avoir fait découvrir le serveur strip qu'il a mis au point.

Merci à tous les doctorants/post-doctorants des bâtiments 532 et 528, passés ou présents, pour les partages scientifiques et humains, et bien sûr pour tous les moments de détente qui j'espère ne s'arrêteront pas avec la thèse. Je n'oublie personne même s'ils sont trop nombreux pour les citer chacun!

Enfin, je clos cette session en adressant mes remerciements à mes proches, famille et amis, sans qui je n'aurai pu accomplir ce travail. Je remercie du fond du cœur mes parents, ma sœur, mes grandsparents, ainsi que mes amis les plus chers, de leur soutien et leurs encouragements. Une mention toute particulière pour Damien qui a été à mes côtés chaque jour et a su faire preuve de patience quelquefois. Mais naturellement les mots sont faibles pour les remercier de tout ce qu'ils m'apportent!

Sommaire

<u>LIS</u>	TE DES ABREVIATIONS	9
110		11
<u>LIS</u>	TE DES TABLEAUX	15
<u>INT</u>	IRODUCTION GENERALE	17
Ι.	Metabolisme de Saccharomyces cerevisiae	19
1.	METABOLISME ENERGETIQUE	19
2.	REGULATION DE L'EXPRESSION DES PROTEINES EN PRESENCE DE SUCRES	22
3.	Les substrats de Saccharomyces cerevisiae	24
II.	LA MITOCHONDRIE	27
1.	STRUCTURE DE LA MITOCHONDRIE	27
2.	ORIGINES DES PROTEINES MITOCHONDRIALES (ADN MITOCHONDRIAL/ IMPORT DES PROTEINES MITOCH	IONDRIALES
COL	DEES PAR LE GENOME NUCLEAIRE)	28
3.	FONCTIONNEMENT DE LA CHAINE RESPIRATOIRE	30
III.	LES COMPLEXES RESPIRATOIRES, STRUCTURE, ASSEMBLAGE ET FONCTION	32
1.	COMPLEXE I OU NADH DESHYDROGENASES	32
2.	COMPLEXE II : SUCCINATE UBIQUINONE REDUCTASE	32
3.	COMPLEXE III : UBIQUINOL CYTOCHROME C REDUCTASE	33
4.	COMPLEXE IV : CYTOCHROME C OXIDASE	39
5.	COMPLEXE V : ATP SYNTHASE	42
6. -	AUTRES ACTEURS DE LA PHOSPHORYLATION OXYDATIVE	45
1.	REGULATION DES COMPLEXES RESPIRATOIRES	46
IV.		47
1. ว	2 MODELES EXTREMES : FLUIDE OU SOLIDE	47
2. ว		48
3. ⊿		50
4. c		51 51
э. V		52
v. 1		53
1. 2		55
2. २		62
VI		66
1	PATHOLOGIES MITOCHONDRIALES	66
2	MALADIES NEURODEGENERATIVES	68
3.	CANCER	69
4.	IMPLICATION DE LA PHOSPHORYLATION DANS LES PATHOLOGIES ?	70
MA	ATERIELS ET METHODES	73
١.	Souches et milieux de culture	75
1.	Souches	75

Sommaire

2.	MILIEUX DE CULTURE	75
3.	Test des marqueurs d'auxotrophie	76
4.	Culture	76
II.	TECHNIQUES BIOCHIMIQUES	76
1.	PREPARATION DE MITOCHONDRIES	76
2.	Dosage de proteines: adapte de la methode de Lowry	78
3.	Dosage de proteines: 2D-quant kit	79
4.	ELECTROPHORESE EN CONDITIONS DENATURANTES (SDS-PAGE)	79
5.	ELECTROPHORESE EN CONDITIONS NATIVES (BN-PAGE)	80
6.	Electrophorese 2D	81
7.	TRANSFERT SUR NITROCELLULOSE	82
8.	Test immunologiques	82
9.	COLORATION DES GELS AU BLEU COLLOÏDAL (DONG ET AL. 2011)	82
10.	DETECTION DE L'ACTIVITE DU COMPLEXE IV « IN GEL »	83
III.	REACTIONS ENZYMATIQUES : ACTIVITE IN-VITRO DU COMPLEXE IV	83
1.	REDUCTION DU CYTOCHROME C	83
2.	MESURE DE LA CONCENTRATION DE CYTOCHROME C REDUIT	83
3.	Mesure de l'activite enzymatique <i>in-vitro</i>	84
IV.	SPECTRES D'ABSORPTION DES CYTOCHROMES	84
v.	BIOLOGIE MOLECULAIRE : MUTATION ET SUREXPRESSION D'IF1	85
1.	GENERATION D'ADN PLASMIDIQUE MUTE	85
2.	SUREXPRESSION D'IF1 DANS UNE BACTERIE	87
3.	Purification d'IF1	88
VI.	ENRICHISSEMENT EN PHOSPHOPEPTIDES EN AMONT DE LA LC-MS/MS	89
1.	DIGESTION TRYPSIQUE	90
2.	MARQUAGE ISOTOPIQUE PAR LA METHODE DU "DIMETHYL ISOTOPE LABELING" : ANALYSE TRIPLEX (BOERSEM	1A ET
AL.	2009)	90
3.	ENRICHISSEMENT EN PHOSPHOPEPTIDES PAR SCX-IMAC	91
4.	LC-MS/MS	92
RES	SULTATS ET DISCUSSION	93
RFS	SULTATS FT DISCUSSION - PARTIE A	95
ι.	OBJECTIF DU PROJET	97
II.	RESUME DES RESULTATS OBTENUS	99
III.	ARTICLE JOURNAL OF PROTEOMICS (2014)	99
IV.	DISCUSSION SUR LE NIVEAU D'ACCUMULATION DES PROTEINES MITOCHONDRIALES SELON LE SUBSTRAT	
CAR	BONE	113
1.	COMPARAISON LACTATE/ GLUCOSE : LE GLUCOSE EST UN SUBSTRAT FERMENTAIRE	113
2.	COMPARAISON GALACTOSE/ LACTATE-GLUCOSE : QUEL EST LE METABOLISME ENERGETIQUE EN GALACTOSE :	
FER	MENTAIRE ? RESPIRATOIRE ? RESPIRO-FERMENTAIRE ?	118
V.	STATISTIQUES GENERALES SUR LA PHOSPHORYLATION MITOCHONDRIALE	124
1.	QUEL ROLE PEUT AVOIR LA PHOSPHORYLATION MITOCHONDRIALE?	126
2.	QUELLES KINASES POURRAIENT ETRE RESPONSABLES DE LA PHOSPHORYLATION MITOCHONDRIALE?	129
VI.	PHOSPHORYLATION DE LA CHAINE RESPIRATOIRE	135
1.	QUEL PEUT ETRE LE ROLE DE LA PHOSPHORYLATION DE LA CHAINE RESPIRATOIRE?	135
2.	LES SITES DE PHOSPHORYLATION DE LA CHAINE RESPIRATOIRE SONT-ILS ACCESSIBLES AUX KINASES?	140
VII.	BILAN	141

RESULTATS ET DISCUSSION - PARTIE B

Ι.	OBJECTIF DU PROJET	145
п.	ANALYSE DU COMPLEXE CYTOCHROME C OXYDASE PAR BN-PAGE ET SPECTROMETRIE DE MASSE	145
ш.	QUEL EST LE ROLE DE COX12P ET DE COX13P DANS LE COMPLEXE IV ET LA CHAINE RESPIRATOIRE?	150
1.	RESULTATS	150
2.	Discussion	159
3.	BILAN	163
IV.	MUTANTS DE PHOSPHORYLATION	164
1.	Phosphorylation de la Ser7	164
2.	Phosphorylation de la Ser82	165
3.	Consequences de la phosphorylation de la Ser7 et de la Ser82	168
4.	Discussion	184
5.	BILAN	190
<u>co</u>	NCLUSION GENERALE ET PERSPECTIVES	193
١.	CONCLUSION	195
II.	PERSPECTIVES	197
1.	ROLE DE LA PHOSPHORYLATION D'IF1	197
2.	ROLE DE LA PHOSPHORYLATION DE RIP1P	202
<u>RÉ</u>	FÉRENCES	205
<u>AN</u>	NEXES	225
١.	Kinases de Saccharomyces cerevisiae, repertoriees par familles et groupes de kinases	226
П.	LISTE DES 724 PROTEINES QUANTIFIES DANS NOTRE ANALYSE PROTEOMIQUE	232
ш.	HEAT MAP DES 168 PROTEINES QUANTIFIES DANS LES TROIS CONDITIONS ET DONT L'ABONDANCE VARIE	
sigi	NIFICATIVEMENT SELON LE SUBSTRAT DANS NOTRE ANALYSE PROTEOMIQUE	242
IV.	LISTE DES PHOSPHOPEPTIDES QUANTIFIES DANS NOTRE ANALYSE PHOSPHOPROTEOMIQUE	244
v.	HEAT MAP DES 39 RESIDUS QUANTIFIES DANS LES TROIS CONDITIONS ET DONT LE NIVEAU DE PHOSPHORY	LATION
VAF	RE SIGNIFICATIVEMENT SELON LE SUBSTRAT	256
VI.	CARACTERISTIQUES DES 49 SITES DE PHOSPHORYLATIONS DE LA CHAINE RESPIRATOIRE	258
VII.	LOCALISATION DES SITES DE PHOSPHORYLATION SUR LA STRUCTURE DES COMPLEXES RESPIRATOIRES	260

<u>143</u>

Sommaire

Liste des abréviations

Acétyl-CoA: Acétyl-Coenzyme A ADN: Acide désoxyribonucléique ADP: Adenosine Di-Phosphate AKAP: A-kinase anchor protein AKIP: A-kinase interacting protein AMP: Adenosine Monophosphate ARN: Acide ribonucléique ATP: Adenosine Tri-Phosphate BN-PAGE: Blue Native-Poly acrylamide gel electrophoresis CaMK: Ca²⁺ calmoduline kinase CDK: Cyclin-dependant kinase CK1: Casein kinase 1 CK2: Casein kinase 2 CL: cardiolipide CMGC: COX: Cytochrome c oxydase CPEO: Chronic progressive external ophthalmoplegia Cryo-EM: Cryo-elecrton microscopy DAB: Diamonobenzidine DG: digitonine DTT: Dithiothréitol EGFR: Epidermal growth factor receptor FAD: Flavine adénine dinucléotide GMPC: Guanosine Monophosphate cyclic HILIC: Hydrophilic Interaction Liquid Chromatography HXT: Hexose transporter IMAC: Immobilized Metal Ion Affinity Chromatography LC-MS/MS: Liquid chromatography/Mass spectrometry LM: Laurylmaltoside MAPK: Mitogen-activated Protein Kinase MELAS: Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes MERRF: Myoclonic epilepsy with ragged-red fibers MILS: Maternally Inherited Leigh Syndrome NAD: Nicotinamide adénine dinucléotide NARP: Neuropathy, Ataxia, and Retinitis Pigmentosa NEK NIMA **OXPHOS: Oxydative Phosphorylation** PAM: Plasma membrane-associated membrane PE: phosphatidylethanolamine Pi: Phosphate inorganique PKA: Protein Kinase A PKC: Protein Kinase C PKG: Protein Kinase G PPM: metal-dependant protein phosphatases PPP: Phosphoprotein phosphatase **ROS:** Reactive Oxygen species SAM: Sorting and Assembly Machinery

Liste des abréviations

SCX: Strong Cation exchange (chromatography) SDS-PAGE: Sodium-dodecyl sulfate- poly acrylamide gel electrophoresis SILAC: Stable Isotope Labeling with Amino acids in Cell culture TCA: Tricarboxylic acid TIM: Transport Inner Membrane TOM: Transport Outer Membrane

Liste des figures

Figure 1: La glycolyse	20
Figure 2: Le cycle TCA	21
Figure 3: Activation de la répression glucose par Mig1p	23
Figure 4: Répression des transporteurs d'hexoses (gènes HXT) en absence de glucose	24
Figure 5: Induction des transporteurs d'hexoses (gènes HXT) en présence de glucose	25
Figure 6: Métabolisme du galactose	26
Figure 7: Activation de la transcription des gènes GAL par Gal4p	26
Figure 8: Compartiments mitochondriaux	27
Figure 9: ADN mitochondrial	29
Figure 10: Import des protéines mitochondriales: les complexes TOM/TIM	30
Figure 11: Fonctionnement de la chaîne respiratoire	31
Figure 12: Structure de la succinate déshydrogenase d'E.coli (Pdb 1orz)	33
Figure 13: Structure du complexe III co-cristallisé avec des fragments d'anticorps reconnaissant la protéine de	
Rieske (VL et VH)	34
Figure 14: Schéma simplifié du mécanisme du transfert d'électrons du complexe III	36
Figure 15: Assemblage du complexe III	38
Figure 16: Structure du complexe IV dimérique dans le bœuf (Pdb 1occ)	40
Figure 17: Assemblage du "module Cox1p" du complexe IV	41
Figure 18: Assemblage du "module Cox3p" du complexe IV	41
Figure 19: Structure schématique du complexe V	43
Figure 20: Assemblage du complexe V	45
Figure 21: Profil BN-PAGE des mitochondries de S.cerevisiae après solubilisation en digitonine	47
Figure 22: Modèle de l'organisation dynamique de la chaine respiratiore d'après Acin-Perez et Enriquez 2014	48
Figure 23: Strucure Cryo-EM du supercomplexe IV1 III2IV1 de la levure	49
Figure 24: Activation des kinases par une molécule: exemple des kinases PKA et CaMK	57
Figure 25: Structure 3D du site catalytique des kinases	58
Figure 26: Changement conformationnel du site catalytique des kinases, au cours de leur activation et	
fonctionnement	59
Figure 27: Mécanisme de dégradation des mitochondries par PINK1/Parkin	71
Figure 28: Etapes de l'isolement des mitochondries	77
Figure 29: Purification des mitochondries par gradient de sucrose	78
- Figure 30: Etapes de la mutagenèse dirigée avec le kit QuickChange® Site-Directed Mutagenesis (Stratgene	86
Figure 31: Principe de la surexpression d'IF1	88
Figure 32: Répartition des protéines de la voie métabolique énergie dans les clusters de variation définis dans	
notre étude protéomique	114
Figure 33: Fonction énergétique des 53 protéines de la voie métabolique énergie plus abondantes en lactate	
qu'en glucose (groupes C2, C3, C4)	115
Figure 34: Fonction énergétique des 7 protéines de la voie métabolique énergie plus abondantes en glucose	
qu'en lactate (groupe C1) 2	117
Figure 35: Fonction énergétique des 19 protéines de la voie métabolique énergie du groupe C2 1	120
Figure 36: Fonction énergétique des 27 protéines de la voie métabolique énergie du groupe C3 2	120
Figure 37: Fonction énergétique des 7 protéines de la voie métabolique énergie du groupe C4 2	121
Figure 38: Fonction énergétique des 7 protéines de la voie métabolique énergie du groupe C1 1	122
Figure 39: Répartition des protéines du cycle TCA et de la respiration dans les clusters de variation définis dan	5
l'analyse protéomique	123
Figure 40: BN-PAGE des mitochondries de S. cerevisiae W303-1A, après culture en YLAC, YPGalA et YPGA,	
solubilisées en laurylmaltoside 2%	123
Figure 41: Localisation des sites de phosphorylation mitochondriaux quantifiés dans 1, 2 ou 3 conditions de	
culture	124
Figure 42: Deuxième localisation cellulaire des phosphoprotéines mitochondriales	125
Figure 43: Répartition des 89 sites de phosphorylation dont le niveau varie selon les conditions selon leur prof	ïl
de variation	125
Figure 44: Localisation mitochondriale des 40 sites de phosphorylation ayant un profil GLU-	126

Figure 45: Localisation mitochondriale des 35 sites de phosphorylation ayant un profil LAC-	127
Figure 46: Kinases pouvant être à l'origine des sites de phosphorylation quantifiés, d'après les sites de préc	liction 131
	146
Figure 48: Schéma de la composition du doublet du complexe IV après une analyse par gel 2D BN-PAGE/SE PAGE de mitochondries de plantes solubilisées en laurvImaltoside.)S- 147
Figure 49: Modèle de la structure cristallographique du complexe cytochrome c oxydase de S. cerevisiae so forme dimérique	
Figure 50: Caractérisation de la souche $\Delta cox12$ par rapport au WT, expériences réalisées par LaMarche et Figure 51: Test sur boite de la croissance des souches en milieu fermentaire (YPGA), respiro-fermentaire (YPGalA) et respiratoire (YPGIV) à 28°C et 36°C	 al 149 150
Figure 52: Test immunologique et quantification de Cox12p dans la souche sauvage et dans la souche Δ cox	 (13. 151
Figure 53: Test immunologique et quantification de Cox13p dans la souche sauvage et dans la souche Δ co	101 (12. 151
Figure 54: Spectres d'absorption des hèmes de la souche sauvage et des trois mutants, entre 500 et 650nn Figure 55: Analyse du complexe IV du WT et des trois mutants par BN-PAGE après révélation de l'activité « gel ».	151 1. 153 1. in 154
Figure 56: Analyse du complexe IV du WT et des trois mutants par BN-PAGE après test immunologique Co	сбр. 156
Figure 57: Analyse du complexe IV du WT et des trois mutants par BN-PAGE après révélation de l'activité « gel »	 157
Figure 58: Activité in-vitro du complexe IV de la souche sauvage et des trois mutants Dans le tableau en ba la figure les activités sont exprimées en nmoles cyt c oxydé/min/mg protéines mitochondriales. Dans le diagramme, les pourcentages sont exprimés par rapport à l'activité in-vitro du complexe IV de la souche W Figure 59: Variation de l'activité in-vitro du complexe IV et du ratio hèmes a+a3/b dans les mutants Δ cox1. Δ cox13 et Δ cox12 Δ cox13 par rapport au WT	's de /T.158 2, 159
Figure 60: "Boxplot" représentant la variation du niveau de phosphorylation de la Ser 7 selon les condition culture.	 s de 164
Figure 61: Localisation du résidu His10 sur la structure dimérique du complexe IV	165
Figure 62: Localisation du résidu Ile80 sur la structure dimérique du complexe IV	166
Figure 63: Séquence primaire de Cox12p dans la souche sauvage et dans les mutants S7A et S7E	167
Figure 64: Séquence primaire de Cox12p dans la souche sauvage et dans les mutants S82A et S82E Figure 65: Accumulation de Cox12p dans le mutant "phosphorylé permanent" S7A et le mutant "déphosph permanent" S7E	167 orylé 168
Figure 66: Accumulation de Cox12p dans le mutant "phosphorylé permanent" S82A et le mutant	_ 100
Liquida 67: Spectra d'absorption des sutesbromes des mutants S74 et S75 en VDCalA et en VLAC	_ 100 _ 170
Figure 67: Spectre d'absorption des cytochromes des mutants 57A et 57E en TPGulA et en TLAC.	_ 170 171
Figure 69: Analyse du complexe IV des mutants S7A et S7E par BN-PAGE suite à une révélation de l'activité ael.	 in
Figure 70: Quantification des deux formes du complexe IV mis en évidence par test immunologique avec u	— n anti-
Cox6p dans le WT et les mutants S7A et S7E en YPGA. YPGalA et YLAC	173
Figure 71: Quantification des deux formes du complexe IV mis en évidence par test immunologique Cox6p le WT et les mutants S82A et S82E en YPGA, YPGalA et YLAC	 dans 173
Figure 72: Représentation de l'activité CIV in-vitro du mutant S7E par rapport à celle du mutant S7A en YPG YPGalA et YLAC.	— ЭА, 175
Figure 73: Représentation de l'activité CIV in-vitro du mutant S82E par rapport à celle du mutant S82A en 1	YPGA,
YPGalA et YLAC.	176
Figure 74: Représentation de l'activité in-vitro du complexe IV et du ratio hèmes a+a3/b dans les mutants	_
phosphomimétiques de la Ser7 en YPGalA et en YLAC	_ 178
Figure 75: Représentation de l'activité in-vitro du complexe IV et du ratio hèmes a+a3/b dans les mutants	170
prosprominetiques de la Ser82 en YPGalA et en YLAC	_ 179 ?
I activite III-gei	181
l'activité in-gel	181

Figure 79: « Boxplot » représentant la variation du niveau de phosphorylation de la Ser33 d'IF1 selon les 198 Figure 80: « Boxplot » représentant la variation du niveau de phosphorylation de la Ser38 d'IF1 selon les 198 Figure 80: « Boxplot » représentant la variation du niveau de phosphorylation de la Ser38 d'IF1 selon les 198 conditions de culture. 198 Figure 81: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 82: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 83: Etapes de la purification d'IF1 "EK" symbolise le site de coupure à l'entérokinase et "His" l'étiquette 200 Figure 84: Cinétique d'inhibition de l'hydrolyse d'ATP par IF1-WT 201 Figure 85: Cinétique d'inhibition de l'hydrolyse d'ATP par 100nM d'IF1 théorique 202 Figure 86: Variation de l'abondance de Rip1 et du niveau de phosphorylation de Rip1p-S24 selon le substrat 203 Figure 87: Séquence primaire de la partie N-terminale de Rip1p dans la souche sauvage et changements de 203	Figure 78: Variation de l'abondance de Cox12p en YPGalA (Gal), YPGA (Glu) et YLAC (Lac)1	85
conditions de culture 198 Figure 80: « Boxplot » représentant la variation du niveau de phosphorylation de la Ser38 d'IF1 selon les 198 conditions de culture. 198 Figure 81: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 82: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 82: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 82: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 83: Etapes de la purification d'IF1 "EK" symbolise le site de coupure à l'entérokinase et "His" l'étiquette 200 Figure 84: Cinétique d'inhibition de l'hydrolyse d'ATP par IF1-WT 201 Figure 85: Cinétique d'inhibition de l'hydrolyse d'ATP par 100nM d'IF1 théorique 202 Figure 86: Variation de l'abondance de Rip1 et du niveau de phosphorylation de Rip1p-S24 selon le substrat 203 Figure 87: Séquence primaire de la partie N-terminale de Rip1p dans la souche sauvage et changements de 203	Figure 79: « Boxplot » représentant la variation du niveau de phosphorylation de la Ser33 d'IF1 selon les	
Figure 80: « Boxplot » représentant la variation du niveau de phosphorylation de la Ser38 d'IF1 selon les 198 Figure 81: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 82: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 82: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 82: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 83: Etapes de la purification d'IF1 "EK" symbolise le site de coupure à l'entérokinase et "His" l'étiquette 200 Figure 84: Cinétique d'inhibition de l'hydrolyse d'ATP par IF1-WT 201 Figure 85: Cinétique d'inhibition de l'hydrolyse d'ATP par 100nM d'IF1 théorique 202 Figure 86: Variation de l'abondance de Rip1 et du niveau de phosphorylation de Rip1p-S24 selon le substrat 203 Figure 87: Séquence primaire de la partie N-terminale de Rip1p dans la souche sauvage et changements de	conditions de culture1	98
conditions de culture. 198 Figure 81: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 82: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 82: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 82: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 83: Etapes de la purification d'IF1 "EK" symbolise le site de coupure à l'entérokinase et "His" l'étiquette 200 Figure 84: Cinétique d'inhibition de l'hydrolyse d'ATP par IF1-WT 201 Figure 85: Cinétique d'inhibition de l'hydrolyse d'ATP par 100nM d'IF1 théorique 202 Figure 86: Variation de l'abondance de Rip1 et du niveau de phosphorylation de Rip1p-S24 selon le substrat 203 Figure 87: Séquence primaire de la partie N-terminale de Rip1p dans la souche sauvage et changements de	Figure 80: « Boxplot » représentant la variation du niveau de phosphorylation de la Ser38 d'IF1 selon les	
Figure 81: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 82: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 82: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 82: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 83: Etapes de la purification d'IF1 "EK" symbolise le site de coupure à l'entérokinase et "His" l'étiquette 200 Figure 84: Cinétique d'inhibition de l'hydrolyse d'ATP par IF1-WT 201 Figure 85: Cinétique d'inhibition de l'hydrolyse d'ATP par 100nM d'IF1 théorique 202 Figure 86: Variation de l'abondance de Rip1 et du niveau de phosphorylation de Rip1p-S24 selon le substrat 203 Figure 87: Séquence primaire de la partie N-terminale de Rip1p dans la souche sauvage et changements de	conditions de culture1	98
mutants phosphomimétiques de la Ser33 199 Figure 82: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 82: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les 199 Figure 83: Etapes de la purification d'IF1 "EK" symbolise le site de coupure à l'entérokinase et "His" l'étiquette 200 Figure 84: Cinétique d'inhibition de l'hydrolyse d'ATP par IF1-WT 201 Figure 85: Cinétique d'inhibition de l'hydrolyse d'ATP par 100nM d'IF1 théorique 202 Figure 86: Variation de l'abondance de Rip1 et du niveau de phosphorylation de Rip1p-S24 selon le substrat 203 Figure 87: Séquence primaire de la partie N-terminale de Rip1p dans la souche sauvage et changements de 203	Figure 81: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les	
Figure 82: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les mutants phosphomimétiques de la Ser38 199 Figure 83: Etapes de la purification d'IF1 "EK" symbolise le site de coupure à l'entérokinase et "His" l'étiquette histidine. 200 Figure 84: Cinétique d'inhibition de l'hydrolyse d'ATP par IF1-WT 201 Figure 85: Cinétique d'inhibition de l'hydrolyse d'ATP par 100nM d'IF1 théorique 202 Figure 86: Variation de l'abondance de Rip1 et du niveau de phosphorylation de Rip1p-S24 selon le substrat 203 Figure 87: Séquence primaire de la partie N-terminale de Rip1p dans la souche sauvage et changements de	mutants phosphomimétiques de la Ser331	99
mutants phosphomimétiques de la Ser38 199 Figure 83: Etapes de la purification d'IF1 "EK" symbolise le site de coupure à l'entérokinase et "His" l'étiquette 200 histidine. 200 Figure 84: Cinétique d'inhibition de l'hydrolyse d'ATP par IF1-WT 201 Figure 85: Cinétique d'inhibition de l'hydrolyse d'ATP par 100nM d'IF1 théorique 202 Figure 86: Variation de l'abondance de Rip1 et du niveau de phosphorylation de Rip1p-S24 selon le substrat 203 Figure 87: Séquence primaire de la partie N-terminale de Rip1p dans la souche sauvage et changements de 203	Figure 82: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les	
Figure 83: Etapes de la purification d'IF1 "EK" symbolise le site de coupure à l'entérokinase et "His" l'étiquette histidine	mutants phosphomimétiques de la Ser381	99
histidine. 200 Figure 84: Cinétique d'inhibition de l'hydrolyse d'ATP par IF1-WT 201 Figure 85: Cinétique d'inhibition de l'hydrolyse d'ATP par 100nM d'IF1 théorique 202 Figure 86: Variation de l'abondance de Rip1 et du niveau de phosphorylation de Rip1p-S24 selon le substrat 203 Figure 87: Séquence primaire de la partie N-terminale de Rip1p dans la souche sauvage et changements de 203	Figure 83: Etapes de la purification d'IF1 "EK" symbolise le site de coupure à l'entérokinase et "His" l'étiquette	
Figure 84: Cinétique d'inhibition de l'hydrolyse d'ATP par IF1-WT 201 Figure 85: Cinétique d'inhibition de l'hydrolyse d'ATP par 100nM d'IF1 théorique 202 Figure 86: Variation de l'abondance de Rip1 et du niveau de phosphorylation de Rip1p-S24 selon le substrat 203 Figure 87: Séquence primaire de la partie N-terminale de Rip1p dans la souche sauvage et changements de	histidine2	200
Figure 85: Cinétique d'inhibition de l'hydrolyse d'ATP par 100nM d'IF1 théorique202 Figure 86: Variation de l'abondance de Rip1 et du niveau de phosphorylation de Rip1p-S24 selon le substrat 203 Figure 87: Séquence primaire de la partie N-terminale de Rip1p dans la souche sauvage et changements de	Figure 84: Cinétique d'inhibition de l'hydrolyse d'ATP par IF1-WT2	201
Figure 86: Variation de l'abondance de Rip1 et du niveau de phosphorylation de Rip1p-S24 selon le substrat 203 Figure 87: Séquence primaire de la partie N-terminale de Rip1p dans la souche sauvage et changements de	Figure 85: Cinétique d'inhibition de l'hydrolyse d'ATP par 100nM d'IF1 théorique2	202
Figure 87: Séquence primaire de la partie N-terminale de Rip1p dans la souche sauvage et changements de	Figure 86: Variation de l'abondance de Rip1 et du niveau de phosphorylation de Rip1p-S24 selon le substrat 2	203
	Figure 87: Séquence primaire de la partie N-terminale de Rip1p dans la souche sauvage et changements de	
bases effectués dans les mutants phosphomimétiques de la Ser24 204	bases effectués dans les mutants phosphomimétiques de la Ser242	204

Liste des figures

Liste des tableaux

Tableau 1: Sous-unités du complexe II	32
Tableau 2: Sous-unités du complexe II	32 34
Tableau 2: Sous-unités du complexe IV	37 39
Tableau 4: Sous-unités de la nartie F1 de l'ATP synthase	33 43
Tableau 5: Sous-unités de la partie FO de l'ATP synthase	
Tableau 5: Sous-annes at familles des kingses à Ser/Thr de la levure d'anrès Brinkworth 2006	4 5 56
Tableau 7: Domaines du site catalutique des kinases	50
Tubleau 7. Domaines au site cutarytique des kinases	50
Tubleau 8. Kinuses et prosphatuses identifiées par Tomaska comme pouvant ette initochonanales	00
rableau 9. Sites de prospriorylation identifies sur la chame respiratoire. « levare » fait reference a	66
Jucchiaronnyces cerevisiae	00
rubleau 10. Pathologies associees a une matation à une sous-anne de la chaine respiratoire ou à une prot	enne 60
USSOLIEE	00
Tableau 11: Genocype des souches issues de w303	75
Tableau 12: Composition des milieux de culture inquide	/5
Tableau 13: Composition des tampons utilises pour les BN-PAGE	81
Tableau 14: Conditions de transfert pour les gels SDS-PAGE et BN-PAGE	82
Tableau 15: Composition des tampons utilises pour la purification d'IF1	88
Tableau 16: Comparaison du métabolisme respiratoire de S. cerevisiae dans différentes conditions de culti	ıre.
	114
Tableau 17: Proteines de la voie métabolique energie plus abondantes en lactate qu'en glucose	
Tableau 18: Proteines de la voie métabolique energie plus abondantes en glucose qu'en lactate C1 corresp	ond
au groupe de variation défini dans notre analyse protéomique C1: glucose>galactose>lactate. Le nombre	de
protéines de chaque fonction énergétique est indiqué. Le boxplot représentant le profil de variation des	
protéines est présenté à droite: G=glucose; Gal=galactose; L=lactate	117
Tableau 19: Comparaison du métabolisme respiratoire de S. cerevisiae dans différentes conditions de cult	ıre.
	118
Tableau 20: Comparaison du métabolisme fermentaire de S. cerevisiae dans différentes conditions de cult	ure.
	119
Tableau 22: Protéines de la voie métabolique énergie du croune C3	120 121
Tableau 22: Proteines de la voie métabolique énergie du groupe CS	121
Tableau 24: Protéines de la voie métabolique énergie du groupe C1	121 122
Tableau 25: Voie métabolique des 18 sites de phosphorylation avant un profil GUL- et étant localisés dans	122
matrice ou la membrane interne	127
Tableau 26: Phosphonrotéines mitochondriales précentant le même sens de variation selon les conditions	127 de
culture à la fois au niveau de l'abondance de la protéine et du niveau de phosphorulation	178
Tablagu 27: Matifs sur raprásantás dans nas dannáas mis an ávidance à l'aida da Matif Y	120
Tubleau 27. Molijs sul-representes dans nos donnees mis en evidence à l'une de Molij-A	152
rubedu 28. Sites de prosprioryation OAFTOS dont le nivedu de prosprioryation est plus eleve en actue	40 ET
yiucose	150
Tubleau 29. Sites de prospriorylation OAPHOS dont le niveau de prospriorylation est plus elève en glacose	40 EII
Tablagu 20: Sitas de phosphorulation OVDHOS dont le niveau de phosphorulation est plus faible en galaste	
rubiedu 50. Sites de priosprior y ation OAFTOS dont le nivedu de priosprior y ation est plus jubie en galacte	127
qu'en giucose et inclute	
rapiratoiro	120
Tespiratorie	150
intéressante	139
Tableau 33: Sites de phosphorylation localisés sur des protéines en interaction avec un complexe respirato	
Tableau 34: Sites de phosphorylation OXPHOS localisés sur la face externe des complexes respiratoires	140
Tableau 35: Sites de phosphorylation localisés sur une protéine en interaction avec un complexe respirato	 ire 141
Tableau 36: Composition du doublet du complexe IV observé nar Horan et al. anrès une analyse RN-PAGE	des
mitochondries solubilisées en laurylmaltoside	116
Tableau 37: Ratio des hèmes a+a3/h dans le W/T et les souches Acov12 Acov12 et Acov12Acov12	
	1)4

Tableau 38: Tableau récapitulatif des résultats obtenus en l'absence de Cox12p et/ou Cox13p Les résultats sont
exprimés en pourcentage par rapport aux valeurs obtenues dans le WT ; les paramètres en rouge sont ceux qui
ont diminués dans le mutant par rapport au WT, et ceux en bleu sont ceux qui ont augmenté 163
Tableau 39: Bilan de l'accumulation de Cox12p dans les mutants phosphomimétiques de la Ser7 et de la Ser82
en YPGA, YPGalA et YLAC169
Tableau 40: Bilan des ratios hèmes a+a3/b dans les mutants phosphomimétiques de la Ser7 et de la Ser82 en
YPGA, YPGalA et YLAC 171
Tableau 41: Comparaison de l'assemblage monomérique du complexe IV dans les mutants phosphomimétiques
de la Ser7 et de la Ser82 174
Tableau 42: Activité in-vitro du complexe IV pour le mutant S7A et le mutant S7E dans les trois conditions de
culture: YPGA, YPGalA et YLAC 175
Tableau 43: Activité in-vitro du complexe IV pour le mutant S82A et le mutant 82E dans les trois conditions de
culture: YPGA, YPGalA et YLAC176
Tableau 44: Bilan de l'activité in-vitro du complexe IV mesurée dans les mutants phosphomimétiques de la Ser7
et de la Ser82 en YPGA, YPGalA et YLAC177
Tableau 45: Bilan de l'activité in-vitro et du ratio hèmes a+a3/b dans multants phosphomimétiques de la Ser7 et
de la Ser82 en YPGA
Tableau 46: Comparaison de l'activité in-vitro du complexe IV et du ratio des hèmes a+a3/b dans les mutants
S7A et S7E en YPGalA et YLAC 178
Tableau 47: Comparaison de l'activité in-vitro du complexe IV et du ratio des hèmes a+a3/b dans les mutants
\$82A et \$82E en YPGalA et YLAC 179
Tableau 48 Quantification de l'activité in-gel des supercomplexes et des complexes, dans les mutants S7A et S7E
en YPGalA et en YLAC182
Tableau 49: Quantification de l'activité in-gel des supercomplexes et des complexes, dans les mutants S82A et
\$82E en YPGalA et en YLAC 182
Tableau 50: Quantification de Cox6p des supercomplexes et des complexes, dans les mutants S7A et S7E en
YPGalA et en YLAC
Tableau 51: Quantification de Cox6p des supercomplexes et du monomère, dans les mutants S82A et S82E en
YPGalA et en YLAC183
Tableau 52: Bilan de l'estimation supercomplexes/complexes et supercomplexes/monomères pour les mutants
phosphomimétiques de la Ser7 et de la Ser82 en YPGalA et en YLAC184

Introduction Générale

Introduction Générale

Introduction Générale

I. Métabolisme de Saccharomyces cerevisiae

La levure *Saccharomyces cerevisiae* est un organisme eucaryote couramment utilisé dans les laboratoires comme modèle cellulaire. Il présente de nombreux avantages : son génome a été totalement séquencé en 1996 ; des souches mutées ainsi que de nombreux outils génétiques et biochimiques sont disponibles; les cellules sont capables de s'adapter à leur environnement et aux sources carbonées, facilitant leur croissance et leur caractérisation.

De plus, la chaîne respiratoire de la levure est très proche de celui des humains, au niveau structural et fonctionnel, ce qui en fait un modèle de choix pour l'étude de cette voie métabolique.

1. Métabolisme énergétique

L'ATP (Adenosine Tri-Phosphate) est une molécule considérée comme stock d'énergie : sa déphosphorylation en ADP (Adenosine Di Phosphate) est une réaction exergonique, permettant la libération de 31 kJ/mol. Les réactions enzymatiques non spontanées qui nécessitent un travail peuvent être couplées à la déphosphorylation d'ATP : l'énergie libérée par cette étape permet à l'énzyme d'assurer sa fonction de catalyse.

L'ATP provient de la dégradation de substrats carbonés, processus ayant lieu dans le cytoplasme puis dans la matrice mitochondriale. Cette molécule peut ensuite être exportée de l'organelle et transportée dans d'autres compartiments cellulaires à l'aide de transporteurs ADP/ATP.

Le processus de dégradation des sucres peut se décomposer en deux étapes majeures.

a) La glycolyse

Après insertion du glucose dans la cellule, celui-ci est dégradé en pyruvate par une série de 8 réactions enzymatiques se produisant dans le cytoplasme : ces réactions constituent la glycolyse ou voie d'Embden-Meyerhof (cf Figure 1). Elle permet la production de deux molécules de pyruvate par molécule de glucose. Au cours de la glycolyse sont produites 2 molécules d'ATP par molécule de glucose.

Figure 1: La glycolyse

Extrait de: http://www.jpboseret.eu/index.php?page=respiration-cell

D'autre part, 2 molécules de NAD⁺ sont réduites en NADH lors de la glycolyse d'un glucose. Un système régénérant le NAD⁺ est nécessaire afin que la glycolyse puisse avoir lieu : la dégradation du pyruvate généré lors de la glycolyse est couplée à la réoxydation du NADH en NAD⁺. Ce processus constitue la deuxième étape de dégradation des sucres et dépend largement des conditions environnementales de la cellule.

b) Le devenir du pyruvate

<u>En aérobie</u>

En aérobie, les deux molécules de pyruvate formées lors de la glycolyse sont transportées du cytoplasme, où elles ont été synthétisées, dans la mitochondrie, où elles sont converties en acetylcoA par le complexe pyruvate déshydrogénase. Cette réaction est associée à la réduction d'un NAD⁺ en NADH. Les deux molécules d'acétyl-coA formées sont ensuite totalement oxydées en CO₂ et H₂O suite à une série de transformations catalysées par les enzymes du cycle TCA (cf Figure 2).

En plus de la dégradation d'un acétyl-coA en CO_2 et H_2O , un cycle TCA se caractérise par la formation d'une molécule d'ATP ainsi que par la réduction de 3 NAD⁺ en NADH. De plus, le succinate est oxydé en fumarate au niveau de la succinate déshydrogénase, enzyme faisant partie à la fois du cycle TCAs et de la chaîne respiratoire : cette oxydation est couplée à la réduction de l'ubiquinone en ubiquinol.

Figure 2: Le cycle TCA

Extrait de : http://svt.ac-dijon.fr/schemassvt/article.php3?id_article=1219

Les molécules de NAD⁺ et d'ubiquinone, réduites lors de la glycolyse et du cycle TCA sont ensuite régénérées lors de la phosphorylation oxydative.

La phosphorylation oxydative consiste en un transfert d'électrons, depuis des substrats énergétiques comme le NADH ou le succinate, vers l'accepteur final d'électrons : l'oxygène moléculaire. Le transfert d'électrons entre NADH ou le succinate et O_2 n'est pas direct : il nécessite une série de réactions d'oxydo-réduction, catalysées par les enzymes de la chaîne respiratoire situées dans la membrane interne des mitochondries. L'étape finale de la phosphorylation oxydative est la synthèse d'ATP par l'ATP synthase, à partir d'ADP et de phosphate inorganique. Ce processus permet de réoxyder le NADH en NAD⁺ tout en produisant l'ATP.

En aérobie, le métabolisme du sucre fait intervenir successivement la glycolyse, le cycle TCA et la phosphorylation oxydative, conduisant à la formation de 38 molécules d'ATP par molécule de glucose dégradée.

En anaérobie

En condition d'anaérobie, le cycle TCA et la phosphorylation oxydative ne peuvent avoir lieu. Les deux molécules de pyruvate formées lors de la glycolyse ne peuvent être totalement oxydées ; cependant elles sont converties en éthanol ou en lactate : on parle respectivement de fermentation alcoolique et lactique. Une conversion du pyruvate en acétate peut également se produire.

Ces trois transformations sont associées à la réoxydation des molécules de NADH, formées lors de la glycolyse, permettant la régénération des NAD⁺. Cependant, contrairement à la phosphorylation oxydative, elles ne sont pas couplées à la synthèse d'ATP. Les seules molécules d'ATP générées sont celles formées lors de la glycolyse. Le rendement énergétique en anaérobie est faible : 2 molécules d'ATP par molécule de glucose.

Lorsque le glucose n'est plus disponible dans le milieu, la cellule peut convertir les produits de dégradation (éthanol ou lactate) en substrats de la respiration: c'est le shift diauxique (Boucherie 1985).

Bien que le rendement énergétique de la fermentation soit moins élevé que celui de la respiration, la présence de sucres chez *Saccharomyces cerevisiae* entraîne un métabolisme fermentaire même en présence d'oxygène (Ball and Tustanoff 1970) : on dit que c'est un organisme aérobe facultatif. De nombreuses protéines, notamment celles impliquées dans la respiration, sont moins exprimées en présence de sucres (Diaz-Ruiz, Rigoulet, and Devin 2011). Ce phénomène est observé en présence de divers sucres mais c'est le glucose qui induit la répression la plus forte (Dynesen et al. 1998).

2. Régulation de l'expression des protéines en présence de sucres

La présence de sucres engendre des signaux à l'origine de la diminution d'expression d'un certain nombre de protéines. Ce processus peut agir au niveau de la transcription en diminuant le taux de transcription et/ou la stabilité des ARN messagers (Gancedo 1998) (répression catabolique); au niveau de la traduction, en diminuant son taux ; au niveau post-traductionnel, en augmentant la dégradation de la protéine, par exemple. D'autre part, les sucres peuvent entraîner une inactivation des protéines : c'est l'inactivation catabolique (Holzer 1989).

a) Répression catabolique en glucose (Gancedo 1998)

Les acteurs majeurs de la répression catabolique sont le répresseur Mig1 et la kinase Snf1 (cf Figure 3).

En absence de glucose, Snf1 est phosphorylée ; son domaine régulateur est lié au coactivateur Snf4. Snf1 est dans sa conformation active et entraîne notamment la phosphorylation de Mig1. Mig1 est relocalisée dans le cytoplasme où elle ne peut pas effectuer son action répresseur.

En présence de glucose, Snf1 est déphosphorylée ; son domaine régulateur n'est plus lié à Snf4 et interagit alors avec son domaine catalytique. Dans cette conformation, Snf1 est inactive. Mig1 est déphosphorylée, peut-être par l'action supplémentaire de la phosphatase Glc7. Mig1 dans sa forme déphosphorylée est importée dans le noyau où elle exerce son effet répresseur.

Figure 3: Activation de la répression glucose par Mig1p

Schéma adapté de Gancedo (Gancedo 1998) : RD : domaine régulateur ; KD : domaine catalytique

Mig1 réprime notamment les activateurs de transcription Hap2/3/4/5, Gal4 et Mal63. Les gènes dont la transcription est induite par ces activateurs sont aussi réprimés.

b) Régulation des protéines en glucose au niveau traductionnel et post-traductionnel

La baisse d'expression des protéines s'effectue dans la majorité des cas au niveau de la transcription. Cependant, ce niveau de régulation n'explique pas toujours la quantité de protéines accumulées : des études ont montré des différences entre la quantité des ARN et celle des protéines (Griffin et al. 2002; Gygi et al. 1999), ce qui suggère une régulation post-transcriptionnelle.

L'expression des protéines peut être contrôlée au niveau traductionnel, comme cela a été observé dans le cas du facteur de transcription Adr1p (Vallari et al. 1992). Pour d'autres protéines, c'est au niveau post-traductionnel que s'effectue la régulation : c'est le cas de la fructose-1.6-biphosphatase pour qui la présence de glucose induit sa phosphorylation, puis sa dégradation protéolytique (Funayama, Gancedo, and Gancedo 1980; Müller and Holzer 1981). D'autre part, un certain nombre de protéines sont inactivées en présence de glucose par des processus post-traductionnels. C'est le cas du facteur de transcription Adr1p. Sa phosphorylation sur la Ser230 empêche son interaction avec la machinerie de transcription et limite alors son activité transcriptionnelle (Cherry et al. 1989; Taylor and Young 1990).

c) Répression catabolique en présence d'autres sucres

La répression catabolite peut s'observer en présence d'autres sucres que le glucose, notamment le galactose. Dans cette condition, les gènes de la phosphorylation oxydative et du cycle TCA sont réprimés au niveau transcriptionnel mais cet effet répresseur est moins fort qu'en présence de glucose. (Herrero, Fernández, and Moreno 1985; Fendt and Sauer 2010; Gao et al. 2003).

Cependant, le mécanisme de répression du galactose n'est pas clairement identifié. En effet, les gènes impliqués dans le métabolisme du galactose sont induits en présence de ce sucre mais réprimés en glucose, suggérant un mécanisme différent lors de la présence de ces deux substrats, pour au moins une partie des protéines. Une étude a montré que les gènes codant pour la L-lactate ferricytochrome c oxidoreductase et la NAD-glutamate dehydrogenase sont réprimés en galactose en présence du gène *GAL4*. Ceci suggère un effet répresseur soit du galactose lui-même, soit d'un métabolite du galactose, soit du gène *GAL4* lui-même. La répression de ces gènes en galactose ne semble pas faire intervenir le mécanisme de répression du glucose (Lodi, Donnini, and Ferrero 1991).

D'autre part, une partie de la répression galactose peut être supprimée par la mutation de gènes impliqués dans le métabolisme du galactose: ces gènes ou les métabolites produits par les protéines codées par ces gènes sont susceptibles d'induire une répression de certaines protéines (Rodríguez and Flores 2000).

d) Induction de gènes glycolytiques en présence de glucose

Tous les gènes ne sont pas réprimés en présence de glucose. La répression catabolique concerne principalement les gènes dont les protéines sont impliquées dans la respiration (cycle TCA, phosphorylation oxydative) et le métabolisme des substrats respiratoires. Au contraire, ceux impliqués dans la glycolyse sont induits en présence de glucose: leur transcription est plus importante en glucose qu'en condition respiratoire comme le glycérol. C'est l'accumulation de métabolites générés lors du métabolisme du glucose, notamment le glucose-6-phosphate, qui semble induire la transcription de ces gènes (Müller et al. 1995; Gonçalves et al. 1997). D'autres gènes, par exemple ceux codant pour les protéines impliquées dans le transport du glucose dans la cellule, sont également induits en milieu fermentaire (Ozcan and Johnston 1999).

3. Les substrats de Saccharomyces cerevisiae

a) Substrats fermentaires

Glucose (Ozcan and Johnston 1999)

La présence du glucose extracellulaire est détectée par des protéines de la membrane plasmique : Snf3 et Rgt2 (cf Figures 4 et 5).

En absence de glucose, Snf3 et Rgt2 ne transmettent pas de signal intracellulaire : l'absence de signal et l'action du répresseur Rgt1 inhibent la transcription des gènes codant pour les transporteurs d'hexoses (HXT).

Figure 4: Répression des transporteurs d'hexoses (gènes HXT) en absence de glucose

Le répresseur est représenté en rouge (Rgt1) et les activateurs sont en vert (Snf3, Rgt2).

Lorsque le glucose est introduit dans le milieu, plusieurs mécanismes induisent l'expression des gènes HXT :

- Grr1 inhibe le répresseur Rgt1, autorisant l'expression des gènes HXT
- SNF3 et RGT2 sont transcrits et le glucose se fixe sur ces récepteurs. Ils changent alors de conformation ce qui engendre une cascade de signalisation qui entraîne finalement l'expression des transporteurs d'hexoses. L'expression de ces récepteurs dépend de la concentration extracellulaire en glucose : SNF3 et RGT2 sont tous deux exprimés en faible concentration de sucre mais SNF3 est réprimé lorsque la concentration augmente.

Figure 5: Induction des transporteurs d'hexoses (gènes HXT) en présence de glucose.

Le répresseur est représenté en rouge (Rgt1) et les activateurs sont en vert (Snf3, Rgt2).

Les transporteurs d'hexoses codés par les gènes *HXT* permettent l'import du glucose dans la cellule. Ils sont au nombre de 20 mais 7 seulement sont reconnus pour un transport efficace du glucose dans la cellule. Ils peuvent être séparés en deux groupes : les transporteurs présentant une forte affinité pour le glucose, et ceux présentant une faible affinité pour le glucose.

A faible concentration en glucose, ce sont les transporteurs à forte affinité pour le glucose (*HXT2, HXT3, HXT4, HXT6 et HXT7*) qui sont induits grâce à l'action de Grr1, Snf3 et Rgt2.

A forte concentration en glucose, l'expression de *HXT1*, transporteur à faible affinité pour le glucose, est induite par Rgt2 et Grr1. Son expression augmente encore via d'autres mécanismes encore méconnus. D'autre part, les transporteurs à forte affinité pour le glucose (*HXT2, HXT4, HXT6* et dans une moindre mesure *HXT3*) sont réprimés via Mig1 quand la concentration extracellulaire en glucose est forte.

Galactose (Timson 2007)

L'import du galactose dans la cellule se fait via des transporteurs d'hexoses, principalement Gal2p. Le gène à l'origine de la protéine est réprimé en présence de glucose via Mig1 et un processus de dégradation se met en place; il est fortement induit en présence de galactose.

Suite à son entrée dans la cellule, le galactose est converti en glucose-6-phosphate, substrat de la glycolyse. La voie métabolique de dégradation du galactose se nomme la voie de Leloir, en référence

au biochimiste l'ayant élucidé (cf Figure 6). Elle requiert l'activité des enzymes Gal1p, Gal7p, Gal10p, Pgm1p/Pgm2p, codées par les gènes *GAL*. La transcription des gènes *GAL* est réprimée par Mig1 en présence de glucose, et activée via Gal4p en présence de galactose.

Figure 6: Métabolisme du galactose

Extrait de Timson (Timson 2007)

L'activité de Gal4p est elle-même régulée par les protéines Gal80p et Gal3p (cf Figure 7). En l'absence de galactose, Gal4p est déphosphorylée et forme un complexe avec Gal80p : Gal4p est inactive. En présence de galactose, Gal3p se lie au galactose et à l'ATP et interagit avec Gal80p. Gal4p se dissocie alors de Gal80p et se fixe à d'autres protéines notamment le facteur de transcription Gal11p : la transcription des gènes *GAL* est activée. La forme active de Gal4p possède 3 sites de phosphorylation, notamment la Ser699 dont l'état phosphorylé est requis pour l'activation de Gal4p.

Figure 7: Activation de la transcription des gènes GAL par Gal4p

b) Substrats respiratoires : exemple du lactate

Des sources carbonées, comme l'éthanol, le glycérol ou le lactate, n'entraînent pas la répression catabolique des protéines du cycle TCA et de la phosphorylation oxydative. Elles sont introduites dans la cellule puis converties en substrats de la respiration.

Par exemple le symport du lactate à travers la membrane plasmique nécessite la protéine codée par le gène *JEN1* (Casal et al. 1999). Le lactate est ensuite oxydé en pyruvate : la protéine Cyb2p codée par le gène *CYB2* est responsable de l'oxydation du (L)-lactate (Guiard 1985) tandis que la protéine issue de la traduction de *DLD1* est responsable de celle du (D)-Lactate (Lodi and Ferrero 1993). L'oxydation du lactate est couplée à la réduction du cytochrome c.

JEN1, à l'origine de la protéine impliquée dans le symport du lactate, est réprimé en glucose par l'intermédiaire des répresseurs Mig1 et Mig2 (Bojunga and Entian 1999). Sa dérepression en milieu non-fermentaire comme l'éthanol ou le lactate est induite par les facteurs de transcription Cat8, le complexe Hap2/3/4/5 et la kinase Snf1. D'autre part, la transcription de JEN1 nécessite la présence d'O₂ (Lodi, Fontanesi, and Guiard 2002).

Les deux gènes impliqués dans l'oxydation du lactate (*CYB2* et *DLD1*) sont également réprimés en glucose et en anaérobiose. Leur dérepression en milieu non-fermentaire est induite par les activateurs Hap1 et le complexe Hap2/3/4/5 (Guiard 1985; Lodi and Guiard 1991; Ramil et al. 2000; Lodi et al. 1999).

II. La mitochondrie

1. Structure de la mitochondrie

La mitochondrie est entourée de deux membranes: les membranes interne et externe de part et d'autre de l'espace inter-membranaire. La matrice est le compartiment délimité par la membrane interne (cf Figure 8).

Figure 8: Compartiments mitochondriaux

Extrait de : www.astrosurf.com/luxorion/bioastro-evolution...

La membrane externe

La membrane externe mitochondriale est constituée de lipides à 60% et de protéines à 40% (cf www.facbio.com). Les protéines sont majoritairement impliquées dans le transport de métabolites ou de protéines. Notamment les porines permettent le transport des molécules de moins de 30kDa; le complexe TOM (Transport Outer Membrane) reconnait les protéines adressées à la mitochondrie et permet leur import dans l'espace inter-membranaire (Wiedemann et al. 2004).

La membrane interne

La membrane interne n'a pas la même constitution que la membrane externe puisqu'elle est composée de protéines à 70-80% et qu'elle est trois fois plus riche en cardiolipide (16% des phospholipides totaux) (Zinser et al. 1991). Elle forme des crêtes dont la structure et le nombre peuvent varier. Les protéines présentes dans les crêtes sont différentes des protéines localisées en dehors. Notamment, les protéines de la phosphorylation oxydative sont majoritairement localisées dans les crêtes mitochondriales. Des protéines assurant d'autres fonctions sont également présentes dans la membrane interne mitochondriale: des transporteurs ADP/ATP, des canaux ioniques, le complexe TIM (Transport Inner Membrane) qui permet l'insertion des protéines dans la membrane interne ou leur import dans la matrice mitochondriale.

L'espace inter-membranaire

L'espace inter-membranaire est délimité par les membranes interne et externe. Il contient quelques protéines solubles, notamment un transporteur d'électrons de la chaîne respiratoire : le cytochrome c.

La matrice mitochondriale

Les mitochondries contiennent leur propre ADN ainsi que leur machinerie de transcription et de traduction, situés dans la matrice mitochondriale. Les protéines du cycle TCA sont également présentes dans ce compartiment.

2. Origines des protéines mitochondriales (ADN mitochondrial/ import des protéines mitochondriales codées par le génome nucléaire)

a) Double origine des protéines mitochondriales

Les protéines de la chaîne respiratoire ont une double origine: certaines sont issues du génome nucléaire dont la transcription et la traduction ont lieu dans le cytoplasme; les autres sont issues du génome mitochondrial et leur transcription et traduction ont lieu dans la matrice mitochondriale. Le génome mitochondrial est moins important que le génome nucléaire: il contient 78kb chez *S. cerevisiae* tandis que l'ADN nucléaire est de 13000kb. Il code principalement pour des protéines très hydrophobes localisées dans la membrane mitochondriale interne contenant plusieurs segments transmembranaires : Cox1p, Cox2p, Cox3p, Cytbp, Atp6p, Atp8p et Atp9p (cf Figure 9). Plusieurs hypothèses cherchent à expliquer l'origine particulière de ces protéines: la première est que d'un point de vue énergétique, il serait plus avantageux pour la cellule de synthétiser les protéines directement dans la matrice mitochondriale puis de les incorporer dans la membrane interne, au lieu de les synthétiser à l'extérieur des mitochondries et de les importer à travers la membrane mitochondriale externe pour les incorporer dans la membrane mitochondriale interne. L'autre hypothèse est qu'une origine nucléaire augmenterait les risques d'avoir des protéines mal importées ou mal repliées (Nicholls and Ferguson 2013; Claros et al. 1995).

Figure 9: ADN mitochondrial

Extrait de Ricchetti 1999 (Ricchetti, Fairhead, and Dujon 1999)

b) Import des protéines mitochondriales codées par le génome nucléaire

Les protéines mitochondriales codées par le génome nucléaire et synthétisées dans le cytosol sont ensuite importées dans la mitochondrie. Selon le compartiment mitochondrial auquel elles sont adressées (membrane externe, espace inter-membranaire, membrane interne, matrice mitochondriale) le processus d'import et la machinerie utilisée est spécifique. Certaines protéines de la membrane interne sont dans un premier temps importées dans la matrice puis insérées dans la membrane interne.

Le passage à travers les membranes externe et interne a lieu respectivement au niveau des complexes TOM et TIM (cf Figure 10). L'insertion des protéines dans la membrane externe utilise les complexes SAM et Mim1p-Mim2p; l'insertion des protéines dans la membrane interne se fait via Oxa1p lorsqu'elles sont insérées depuis la matrice mitochondriale, ou Tim22p lorsqu'elles sont insérées depuis la matrice.

Figure 10: Import des protéines mitochondriales: les complexes TOM/TIM

Extrait de Schleiff et Becker, 2011 (Schleiff and Becker 2011). IMS=Inter-membrane space.

3. Fonctionnement de la chaîne respiratoire

La fonction principale de la mitochondrie est la phosphorylation oxydative qui permet la production d'ATP. Celle-ci nécessite le couplage entre le transfert d'électrons dans la membrane mitochondriale interne et la translocation de protons à travers cette même membrane.

a) Le transfert d'électrons

La chaîne respiratoire consiste en un transfert d'électrons depuis le NADH ou le succinate vers l'accepteur final d'électrons O_2 (cf Figure 11). Chez *S. cerevisiae*, les réactions redox ont lieu successivement au niveau des NADH déshydrogénases, puis des complexes respiratoires: le complexe II (succinate déshydrogénase), le complexe III (ubiquinone cytochrome c réductase) et le complexe IV (cytochrome c oxydase). Des molécules mobiles, l'ubiquinone et le cytochrome c, participent aux réactions redox. Les potentiels standards sont croissants le long de la chaîne respiratoire.

- Les molécules de NADH générées au cours de la glycolyse et du cycle TCA sont oxydées en NAD⁺ au niveau des NADH déshydrogénases externe et interne, tandis que le succinate est oxydé en fumarate au niveau du complexe II. Ces deux oxydations sont couplées à la réduction de l'ubiquinone en ubiquinol.
- L'ubiquinol est ensuite transféré vers le complexe III où il se réoxyde en ubiquinone ; la réduction couplée est celle de l'hème b porté par la sous-unité Cytbp du complexe III.
- La troisième réaction redox consiste en la réoxydation de l'hème b, couplée à la réduction du cytochrome c.
- Le cytochrome c migre vers le complexe IV: il est oxydé, et les électrons sont transférés au complexe IV et plus précisément au centre CuA puis à l'hème a localisés dans le complexe; l'hème a se réduit.

- La ré-oxydation de l'hème a est associée à la réduction de l'hème a3, lui-aussi localisé dans le complexe IV dans un centre binucléaire hème a3-CuB.
- L'étape finale du transfert d'électrons consiste en l'oxydation de l'hème a3 du complexe IV, associée à la réduction d' O_2 en H_2O .

L'indice « 2 » signifie que le complexe respiratoire est représenté sous forme dimérique. Q=ubiquinol/ubiquinone.

b) Force protomotrice et synthèse d'ATP

Parallèlement à ce transfert d'électrons dans la membrane mitochondriale interne, des protons sont transloqués depuis la matrice mitochondriale vers l'espace inter-membranaire, principalement au niveau du complexe IV. Ceci entraine la formation d'un gradient de protons de part et d'autre de la membrane interne mitochondriale, à l'origine d'une force protomotrice.

L'enzyme finale de la chaîne respiratoire est le complexe V ou ATP synthase. La force protomotrice engendre un flux de protons vers la matrice mitochondriale au niveau de l'ATP synthase: la dissociation de la force protomotrice entraîne la rotation de l'ATP synthase et la synthèse d'ATP à partir d'ADP et de Pi.

III. Les complexes respiratoires, structure, assemblage et fonction

1. Complexe I ou NADH déshydrogénases

La chaîne respiratoire des mammifères et de levure *S.cerevisiae* diffèrent au niveau de la première enzyme impliquée dans le transfert d'électrons: les mammifères possèdent un complexe multi-protéique tandis que la levure se caractérise par la présence de NADH déshydrogénases interne et externe (Luzikov 2009).

Le complexe I bovin est constitué de 45 sous-unités dont 7 sont codées par le génome mitochondrial (Carroll et al. 2006). Ces 45 sous-unités s'assemblent en trois domaines distincts: un domaine matriciel (22 sous-unités) et deux domaines membranaires localisés dans la membrane mitochondriale interne (13 et 8 sous-unités respectivement).

Saccharomyces cerevisiae possède deux NADH déshydrogénases dans la membrane interne mitochondriale: une NADH déshydrogénase externe, tournée vers l'espace inter-membranaire, et constituée des sous-unités Nde1p et Nde2p (Luttik et al. 1998); une NADH déshydrogénase interne tournée vers la matrice et constituée d'une seule sous-unité Ndi1p (Marres, de Vries, and Grivell 1991). Elles permettent de régénérer le NAD⁺ consommé dans le cytosol par la glycolyse (NADH déshydrogénase externe), et le NAD⁺ consommé dans la matrice mitochondriale notamment par le cycle TCA (NADH déshydrogénase interne).

2. Complexe II : succinate ubiquinone réductase

Le complexe II est une enzyme intervenant à la fois dans le cycle TCA et dans la chaîne respiratoire. Elle catalyse l'oxydation du succinate en fumarate (transformation au niveau du cycle TCA). La réaction est associée à la réduction de l'ubiquinone en ubiquinol : ce composé transfère ensuite ses électrons dans la chaîne respiratoire au niveau du complexe III.

Composition

Le complexe II, ou succinate ubiquinone réductase, est un complexe protéique contenant 4 sous-unités (Sdh1p, Sdh2p, Sdh3p, Sdh4p), toutes codées par le génome nucléaire (cf Tableau 1). Deux sous-unités (Sdh1p et Sdh2p) sont matricielles tandis que Sdh3p et Sdh4p sont situées dans la membrane interne des mitochondries : elles contiennent chacune 3 domaines transmembranaires.

Complexe succinate dehydrogenase	Origine du gène	Localisation
Sdh1p	nucléaire	matricielle
Sdh2p	nucléaire	matricielle
Sdh3p	nucléaire	Mb - 3TM
Sdh4p	nucléaire	Mb - 3TM

Tableau 1: Sous-unités du complexe II

Mb=membranaire; TM= nombre de segments transmembranaires

Le complexe II contient un groupement FAD lié de façon covalente à Sdh1p, trois centres Fe-S localisés au niveau de la sous-unité Sdh2p et un hème de type b dans la membrane mitochondriale

interne, entre Sdh3p et Sdh4p (cf Figure 12). Sdh5p est une protéine chaperone du complexe II impliquée dans la fixation du groupement FAD à Sdh1p (Hao et al. 2009).

Espace inter-membranaire

Figure 12: Structure de la succinate déshydrogenase d'E.coli (Pdb 1orz)

Mécanisme

Les deux électrons libérés lors de l'oxydation du succinate en fumarate, ainsi que deux protons provenant de la matrice sont transférés au groupement FAD situé dans le complexe II. Les électrons sont ensuite séquentiellement transférés via les centres Fe-S jusqu'au site de réduction de l'ubiquinone, situé dans la membrane interne, proche du 3^{ème} centre Fe-S. Le rôle de l'hème est encore méconnu (Kim et al. 2012).

3. Complexe III : ubiquinol cytochrome c réductase

L'ubiquinol cytochrome c réductase est une enzyme de la chaîne respiratoire responsable de l'oxydation de l'ubiquinol en ubiquinone, ainsi que de la réduction du cytochrome c.

Composition

Cette enzyme contient 3 sous-unités catalytiques (Cytbp, Cyt1p, Rip1p) et 7 autres sousunités qui ne participent pas directement au transfert d'électrons. Le complexe III a une double origine : Cytbp est codée par le génome mitochondrial tandis que les 9 autres sous-unités ont une origine nucléaire (cf Tableau 2 et Figure 13).

Cytbp est également la sous-unité la plus ancrée dans la membrane interne : elle contient huit domaines transmembranaires, les 5 autres sous-unités membranaires n'en contenant qu'un. Enfin

les 4 sous-unités restantes sont solubles, 3 étant matricielles et 1 se situant dans l'espace intermembranaire.

Complexe cytochrome bc1	Origine du gène	Localisation
Cytbp	mitochondriale	Mb - 8TM
Cyt1p	nucléaire	Mb - 1TM
Rip1p	nucléaire	Mb - 1TM
Cor1p	nucléaire	matricielle
Cor2p	nucléaire	matricielle
Qcr6p	nucléaire	EIM
Qcr7p	nucléaire	matricielle
Qcr8p	nucléaire	Mb - 1TM
Qcr9p	nucléaire	Mb - 1TM
Qcr10p	nucléaire	Mb - 1TM

Tableau 2: Sous-unités du complexe III

Mb=membranaire; TM= nombre de segments transmembranaires ; EIM=espace Inter-membranaire

Figure 13: Structure du complexe III co-cristallisé avec des fragments d'anticorps reconnaissant la protéine de Rieske (VL et VH)

(Hunte et al. 2000). COB=CYTB

Le complexe III se présente uniquement sous forme dimérique (cf Figure 13). Le complexe bc1 se caractérise par la présence d'un hème de type c lié covalemment sur la sous-unité Cyt1p, de
deux hèmes de type b (un de haut potentiel, b_H , et un de bas potentiel, b_L) dans la membrane interne sur Cytbp ainsi que d'un centre Fe-S de haut potentiel sur Rip1p, localisé dans la membrane interne du côté de l'espace inter-membranaire.

<u>Mécanisme</u>

L'ubiquinol cytochrome c réductase catalyse l'oxydation de l'ubiquinol en ubiquinone : les électrons sont transférés à un autre transporteur d'électrons, le cytochrome c. Ce transfert d'électrons se déroule en plusieurs étapes (cf Figure 14).

Deux molécules d'ubiquinol (UQH₂) sont oxydées, provenant d'un pool UQ/UQH₂ existant dans la membrane interne mitochondriale. Chaque ubiquinol libère ses deux protons dans l'espace intermembranaire, ainsi qu'un électron à Rip1p : ces deux électrons sont successivement transférés à la sous-unité Cyt1p et au cytochrome c.

Les deux électrons restants sont transférés successivement à l'hème b de bas potentiel (b_L) puis à l'hème b de haut potentiel (b_H), tous deux localisés au niveau de Cytbp: les deux molécules d'ubiquinol sont à ce stade complètement oxydées en ubiquinone.

Enfin une des deux molécules d'ubiquinone récupère deux électrons au niveau de l'hème de haut potentiel b_H , ainsi que deux protons de la matrice, et est régénéré en ubiquinol. L'autre molécule d'ubiquinone reste sous forme oxydée.

Figure 14: Schéma simplifié du mécanisme du transfert d'électrons du complexe III

(Nicholls and Ferguson 2013)

 $UQH_2/UQ = ubiquinol/ubiquinone; cyt c= cytochome c; b_L et b_H sont les deux hèmes du complexe III respectivement à bas potentiel et à haut potentiel.$

La coloration de b_H, UQ, UQH₂ et Cyt c représentent leur niveau de réduction: blanc=oxydé, gris=réduit à 1e⁻; noir= réduit à 2e⁻

Au cours du transfert d'électrons, la conformation du complexe III est modifiée: Rip1p est soit plus proche du site de fixation de l'ubiquinol soit plus proche de la sous-unité Cyt1p. Ce changement de conformation permet le transfert d'électrons de l'ubiquinol vers Rip1p, puis de Rip1p vers Cyt1p. L'étape suivante consiste au transfert d'électrons de Cyt1p vers l'hème du cytochrome c via une interface spécifique. Ainsi l'oxydation d'une molécule d'ubiquinol, provenant des NADH déshydrogénases ou du complexe II, a permis la réduction de deux molécules de cytochrome c, ainsi que le transfert de deux protons dans l'espace inter-membranaire. Une autre molécule d'ubiquinol assiste ce mécanisme mais est régénérée à la fin.

<u>Assemblage</u>

L'assemblage du complexe bc1 commence par l'association d'un sous-complexe contenant les sous-unités Cytbp, Qcr7p, Qcr8p (cf Figure 15). A ce premier assemblage s'ajoutent les sousunités Cyt1p, Cor1p et Cor2p puis la chaperone Bcs1p et enfin les sous-unités Qcr6p et Qcr9p. Puis s'ensuit l'assemblage de la sous-unité Rip1p : suite à sa synthèse dans le cytosol, Rip1p est importée dans la matrice mitochondriale où se déroule la fixation du groupe Fe-S sur sa partie C-terminale. La sous-unité ainsi maturée est insérée dans la membrane interne et intégrée au complexe III. L'insertion de Rip1p requiert l'assemblage préalable de la chaperone Bcs1p dans le complexe préassemblé. La dernière étape consiste en l'insertion de Qcr10p qui nécessite l'assemblage préalable de Rip1p. (Fox 2012; Zara, Conte, and Trumpower 2009).

Dimeric cytochrome bc1 complex

Figure 15: Assemblage du complexe III

ISP= Rip1p. Extrait de Zara 2009 (Zara, Conte, and Trumpower 2009)

Cytbp est la seule sous-unité du complexe III codée par le génome mitochondrial : suite à sa synthèse, elle est prise en charge par les protéines chaperones Cbp3p et Cbp6p avant l'assemblage du complexe III (Fox 2012).

4. Complexe IV : cytochrome c oxidase

La cytochrome c oxydase est l'enzyme terminale de la chaîne de transfert d'électrons, et catalyse le transfert d'électrons du cytochrome c vers l' O_2 de l'air.

Composition

Le site actif est constitué de deux sous-unités membranaires codées par le génome mitochondrial : Cox1p et Cox2p. Une troisième protéine membranaire est codée par le génome mitochondrial mais ne fait pas partie du site actif : il s'agit de Cox3p. Les 9 autres sous-unités de l'enzyme sont codées par le génome nucléaire puis importées dans la mitochondrie. 3 de ces sous-unités périphériques sont solubles : Cox4p et Cox6p sont matricielles tandis que Cox12p est située dans l'espace inter-membranaire (cf Tableau 3 et Figure 16).

Complexe	Origine du	Localisation
cytochrome c	gène	
oxydase		
Cox1p	mitochondriale	Mb - 12TM
Cox2p	mitochondriale	Mb - 2TM
Cox3p	mitochondriale	Mb - 7TM
Cox4p	nucléaire	matricielle
Cox5ap	nucléaire	Mb - 1TM
Cox5bp	nucléaire	Mb - 1TM
Сох6р	nucléaire	matricielle
Cox6ap=Cox13p	nucléaire	Mb - 1TM
Cox6b=Cox12p	nucléaire	EIM
Cox7p	nucléaire	Mb - 1TM
Cox7ap=Cox9p	nucléaire	Mb -1TM
Cox8p	nucléaire	Mb - 1TM

Tableau 3: Sous-unités du complexe IV

Mb=membranaire; TM= nombre de segments transmembranaires ; EIM=espace inter-membranaire

matrice

Figure 16: Structure du complexe IV dimérique dans le bœuf (Pdb 1occ)

Le complexe IV possède un centre CuA dans l'espace inter-membranaire au niveau de Cox2p ainsi que deux hèmes (hème a et hème a3) et un centre CuB dans la membrane interne du côté de l'espace inter-membranaire, au niveau de Cox1p.

Mécanisme

Le complexe IV catalyse le transfert d'électrons du cytochrome c réduit vers le dioxygène de l'air. C'est l'étape finale du transfert d'électrons.

Le cytochrome c se lie au niveau de Cox2p où il transfère les électrons au centre CuA. Les électrons migrent alors depuis CuA vers l'hème a, l'hème le plus proche de l'espace inter-membranaire, puis vers le centre a3-CuB localisé vers la matrice. C'est sur l'hème a3 que se fixe l'O₂ avant sa réduction en H_2O .

En plus des quatre protons captés pour former H_2O , deux protons supplémentaires sont transloqués de la matrice vers l'espace inter-membranaire par paire d'électrons transférée dans la membrane interne. Ceci augmente la force protomotrice générée au cours du transfert d'électrons.

<u>Assemblage</u>

L'assemblage du complexe IV de *Saccharomyces cerevisiae* consisterait en l'assemblage de trois modules pré-assemblés indépendamment, chacun contenant une sous-unité catalytique codée par le génome mitochondrial : Cox1p, Cox2p ou Cox3p.

L'assemblage du premier module concerne celui contenant Cox1p (cf Figure 17). Après sa synthèse dans la matrice mitochondriale, Cox1p est insérée dans la membrane via Oxa1p (Fox 2012) puis s'associe avec des protéines chaperones et des sous-unités COX codées par le génome nucléaire. Les chaperones exercent divers rôles, notamment le contrôle de la synthèse de Cox1p (Mss51p) et l'insertion de l'hème a sur la sous-unité (Shy1p). D'autres chaperones (Coa3p, Coa1p, Cox14p) assurent la stabilité de l'interaction Cox1p-Mss51p et empêchent l'aggrégation de Cox1p avec d'autres protéines hydrophobes.

Les trois sous-unités codées par le génome nucléaire et présentes sur ce sous-complexe sont Cox5p et Cox6p, associées en dimère, et Cox8p. L'insertion des différentes chaperones et sous-unités COX dans le sous-complexe se fait séquentiellement: les deux modèles diffèrent dans l'ordre dans lequel s'associent les sous-unités COX et les chaperones (Fox 2012; Su, McStay, and Tzagoloff 2014).

Modèle n°2: Su C-h., McStay G.P., Tzagoloff A., Mol Biol Cell 25 (2014)

Figure 17: Assemblage du "module Cox1p" du complexe IV

Les sous-unités du complexe IV sont représentées sous forme rectangulaire tandis que les chaperones d'assemblage sont sous forme ovale.

Après la synthèse de Cox3p dans la mitochondrie et son insertion dans la membrane interne via Oxa1p, Cox3p forme un sous-complexe avec des protéines codées par le génome nucléaire: Cox4p, Cox7p et Cox13p, ainsi qu'avec une protéine chaperone: Rcf1p (cf Figure 18). Rcf1p semble jouer un rôle dans l'assemblage mais n'est pas nécessaire. De même que pour Cox1p, le module Cox3p s'assemble progressivement: 3 intermédiaires ont été identifiés (Su, McStay, and Tzagoloff 2014).

Modèle: Su C-h., McStay G.P., Tzagoloff A., Mol Biol Cell 25 (2014)

Figure 18: Assemblage du "module Cox3p" du complexe IV

Les sous-unités du complexe IV sont représentées sous forme rectangulaire tandis que les chaperones d'assemblage sont sous forme ovale.

La formation du module Cox2p est encore peu connue. De même que pour Cox1p et Cox3p, Cox2p est synthétisée dans la matrice mitochondriale puis insérée dans la membrane interne via Oxa1p. D'autres protéines semblent impliquées dans la translocation de Cox2p à travers la membrane interne, parmi lesquelles Cox18p/Oxa2p associées à Mss2p et Pnt1p. C'est le clivage de sa séquence N-terminale par une protéase de l'espace inter-membranaire qui permet la maturation de la sous-unité (Herrmann and Funes 2005). Cox2p est associée à la protéine chaperone Cox20p tant que le complexe IV n'est pas assemblé (Fox 2012).

L'assemblage de certaines sous-unités nucléaires est encore peu connu: Cox12p (Cox6bp) n'a pas été clairement identifiée dans un intermédiaire d'assemblage de la levure. Lazarou et al ont étudié l'assemblage de sous-unités nucléaires sur un complexe IV déjà pré-assemblé sur des tissus humains, et ont trouvé que Cox12p s'assemblerait en dernier après l'insertion des sous-unités Cox13p (Cox6ap) et Cox9p (Cox7ap). Cependant cette expérience ne reflète pas nécessairement l'assemblage *in-vivo* (Lazarou et al. 2009). D'autre part, dans les tissus humains, Cox12p avait été identifiée comme partenaire du module Cox3p, ce qui ne parait pas être le cas dans la levure.

Chaperones et régulations d'assemblage du complexe IV

L'assemblage du complexe IV est régulé à de multiples niveaux. De nombreuses chaperones sont nécessaires pour assurer la formation du complexe IV mature et fonctionnel. Cox1p et Cox2p ont respectivement un centre CuB et CuA insérés grâce à Cox17p : le centre CuB est transféré de Cox17p à Cox11p avant d'être inséré sur Cox1p, tandis que le centre CuA est transféré de Cox17p à Sco1p et Sco2p qui assurent son insertion sur Cox2p (Herrmann and Funes 2005). D'autre part, les protéines codées par *COX10, COX5, YAH1* sont impliquées dans la synthèse de l'hème a (Luzikov 2009). PET100 permet l'assemblage correct du complexe IV (Luzikov 2009).

Mis à part le rôle des chaperones, l'assemblage du complexe IV mature nécessite la présence du cytochrome c mature ainsi que l'ATP synthase assemblée et fonctionnelle (Fontanesi, Soto, and Barrientos 2008).

D'autre part, l'accumulation des sous-unités codées par le génome mitochondrial (Cox1p, Cox2p, Cox3p) dépend d'autres sous-unités et de l'assemblage du complexe IV : les protéines chaperones associées à Cox1p dans le premier sous-assemblage limitent la synthèse de Cox1p tant que l'assemblage du complexe IV est inachevé (Fox 2012); une baisse de la traduction de Cox5p ou Cox6p entraîne une diminution dans la synthèse de Cox1p ; l'absence de Cox7p, Cox2p et Cox3p (contrairement à celle de Cox12p, Cox13p) induit une diminution de la transcription de Cox1p; enfin les protéines Cox1p non assemblées sont dégradées par des protéases contrairement à d'autres sous-unités codées par le génome nucléaire (Fontanesi, Soto, and Barrientos 2008).

5. **Complexe V : ATP synthase**

L'ATP synthase est l'enzyme finale de la phosphorylation oxydative : c'est elle qui synthétise l'ATP à partir d'ADP et de phosphate inorganique. Elle est constituée de deux unités distinctes : le F1, partie matricielle, et le F0 plus ancrée dans la membrane mitochondriale interne.

Composition

Le F1 est un ensemble protéique matriciel, composé majoritairement des sous-unités catalytiques de l'enzyme : Atp1p, Atp2p. Au total, 3 sous-unités Atp1p et 3 sous-unités Atp2p sont assemblées formant 3 interfaces catalytiques aux conformations différentes. Une des interfaces contient les métabolites ADP et Pi nécessaires pour la synthèse d'ATP (interface « DP ») ; la deuxième contient l'ATP synthétisée (interface « TP ») ; la troisième est vide suite au relargage d'ATP (interface « empty »)(cf Tableau 4 et Figure 19).

Complexe ATPsynthase F1	Origine du gène	Localisation
Atp1p(α)	nucléaire	matricielle
Atp2p (β)	nucléaire	matricielle
Atp3p (γ)	nucléaire	matricielle
Atp16p (δ)	nucléaire	matricielle
Atp15p (ɛ)	nucléaire	matricielle

Tableau 4: Sous-unités de la partie F1 de l'ATP synthase

Le F0 est une unité plus ancrée dans la membrane interne des mitochondries. Parmi les 11 sous-unités la constituant, 7 sont membranaires, dont 3 sont codées par le génome mitochondrial (Atp6p, Atp8p, Atp9p) (Tableau 5 et Figure 19).

FO		
Atp4p	nucléaire	Mb - 2TM
Atp5p (OSCP)	nucléaire	matricielle
Atp6p	mitochondriale	Mb - 5TM
Atp7p	nucléaire	matricielle
Atp8p	mitochondriale	Mb - 1TM
Atp9p	mitochondriale	Mb - 2TM
Atp14p (h)	nucléaire	soluble
Atp17p (f)	nucléaire	Mb - 1TM
Atp18p (i)	nucléaire	Mb - 1TM
Atp19p	nucléaire	soluble
Atp20p (g)	nucléaire	Mb - 1TM
Atp21p = Tim11p	nucléaire	Mb - 1TM
(e)		
Inh1p	nucléaire	soluble

Tableau 5: Sous-unités de la partie FO de l'ATP synthase

Mb=membranaire; TM= nombre de segments transmembranaires

Figure 19: Structure schématique du complexe V Extrait de la thèse de Vincent Corvest 2006

<u>Mécanisme</u>

Au niveau de l'ATP synthase, une translocation de protons a lieu depuis l'espace intermembranaire vers la matrice dissipant le gradient de protons. Ce flux de protons a lieu au niveau de l'interaction des sous-unités Atp6p et Atp9p (partie F0). Ceci engendre la rotation de l'ATP synthase permettant la synthèse d'ATP à partir d'ADP et de phosphate inorganique.

Lorsqu'il n'y a plus de gradient de protons de part et d'autre de la membrane interne, la rotation de l'ATP synthase s'effectue dans l'autre sens, ce qui engendre l'hydrolyse d'ATP en ADP et phosphate inorganique. Afin d'empêcher l'hydrolyse de l'ATP, un peptide inhibiteur endogène, Inh1p, se fixe sur l'ATP synthase et bloque sa rotation.

On distingue dans l'ATP synthase le rotor du stator (cf Figure 19); le rotor contient les sous-unités du F1 et du F0 qui sont à l'origine de la rotation de l'enzyme au cours de la translocation des protons : Atp9p (partie F0) et Atp3p, Atp16p, Atp15p (partie F1).

Assemblage (Rak, Gokova, and Tzagoloff 2011)

L'assemblage de l'ATP synthase commence par celle de la partie F1 : initialement, Atp1p (α) et Atp2p (β) sont respectivement associées aux chaperones Atp12p et Atp11p ; les deux sous-unités s'associent entre elles à l'aide de la sous-unité Atp3p (γ). L'intégration des deux autres sous-unités de la partie F1 (Atp15p (ϵ) et Atp16p (δ)) n'est pas connue.

Puis, un certain nombre de protéines Atp9p s'assemblent en un anneau. Cette étape requiert la présence de la chaperone Atp25p (cf Figure 20). L'anneau constitué par les sous-unités Atp9p est intégré au F1 au niveau des sous-unités Atp3p et Atp15p.

D'autre part le pré-assemblage du F1 permet d'activer la traduction d'Atp6p et d'Atp8p qui sont ensuite associées en un sous-complexe constitué en plus des sous-unités Atp4p, Atp7p et de la protéine chaperone Atp10p. La dernière étape d'assemblage consiste en l'interaction de l'anneau Atp9p avec ce sous-complexe au niveau d'Atp6p. Ce processus requiert la présence de la protéine chaperone Atp10p.

Figure 20: Assemblage du complexe V

Extrait de Rak et al. 2011 (Rak, Gokova, and Tzagoloff 2011)

6. Autres acteurs de la phosphorylation oxydative

a) Transport d'électrons vers le complexe III: les quinones

L'ubiquinone assure le transfert d'électrons depuis le complexe I (pour les mammifères) ou les NADH déshydrogénases (pour la levure) ainsi que depuis le complexe II. Cependant, différents pool de quinones coexisteraient afin d'assurer le transfert d'électrons depuis un complexe protéique ou un autre. Dans le cas des mammifères, les complexes I et III seraient associées en structures supramoléculaires contenant des quinones liées aux complexes ; le complexe II ne serait pas associée au complexe III et ce serait un pool de quinones libres qui diffuserait librement dans la membrane interne pour transférer les électrons. Environ 80% des quinones feraient partie du pool libre (Lenaz and Genova 2009).

b) Navette d'électrons entre les complexes III et IV: le cytochrome c

Le cytochrome c est une protéine de l'espace inter-membranaire codée par le génome nucléaire. Elle existe sous deux isoformes respectivement codés par les gènes *CYC1* (isoforme 1) et *CYC7* (isoforme 2). La quantité d'ARNm de *CYC7* est plus faible que celle de *CYC1* notamment en glucose. Cette différence est encore plus importante au regard de l'accumulation des isoformes: en milieu respiratoire seul 5% de la quantité de cytochrome c correspond à l'isoforme2 (Laz, Pietras, and Sherman 1984).

Le cytochrome c assure le transfert d'électrons entre le complexe III et le complexe IV. Il contient un hème dont la fixation fait intervenir la cytochrome c heme lyase, Cyc3p. Cette étape de maturation

se déroule dans l'espace inter-membranaire, après le passage de l'apocytochrome c à travers la membrane externe (Fox 2012).

Plusieurs études se sont intéressées à la fixation du cytochrome c sur le complexe IV. Le complexe IV présenterait deux sites de fixation possibles du cytochrome c ; toutefois deux molécules de cytochrome c ne peuvent se lier simultanément au complexe IV. (Ferguson-Miller, Brautigan, and Margoliash 1976; Rieder and Bosshard 1978). Au cours du turnover du complexe IV, la conformation de l'enzyme varie et le lieu de fixation du cytochrome c changerait (Sampson and Alleyne 2001). Cette étude a été réalisée sur le complexe IV bovin : dans l'état oxydé, l'enzyme lie le cytochrome c au niveau de la sous-unité II (Cox2p); au cours du turnover, le cytochrome c est fixé au complexe IV au niveau de la sous-unité II ainsi que des sous-unités IV et VIb (ce qui correspond respectivement aux sous-unités Cox5p et Cox12p de la levure).

c) Inhibiteurs de l'hydrolyse d'ATP

IF1 (ou Inh1p) est un peptide endogène retrouvé dans de nombreux organismes et inhibant l'hydrolyse d'ATP lorsqu'il n'y a plus de force protomotrice. Cette activité semble spécifique des ATPases mitochondriales car IF1 n'inhibe pas les ATPases chloroplastiques. D'autre part, l'activité d'IF1 semble dépendre d'autres paramètres, notamment du pH. Dans la levure, coexistent deux peptides inhibiteurs : IF1 et STF1. Ces peptides ont 50% d'homologie de séquence (Hashimoto, Yoshida, and Tagawa 1984). Ils sont tous les deux capables d'inhiber l'hydrolyse de l'ATP à 100% en condition saturante d'inhibiteurs. Cependant, l'affinité de STF1 pour l'ATPase est plus faible que celle d'IF1, expliquant une plus grande implication d'IF1 dans ce processus (Venard et al. 2003).

Un autre peptide, STF2, existe dans la levure mais il possède peu d'homologie de séquence avec IF1 et STF1. Une étude a montré qu'il interférerait avec l'interaction d'IF1 et de STF1 sur l'ATP synthase mais ce résultat n'a pas été vérifié jusqu'à présent (Hashimoto, Yoshida, and Tagawa 1990). Le rôle de STF2 reste obscure.

7. Régulation des complexes respiratoires

Les complexes respiratoires sont régulés à de multiples niveaux depuis la transcription des gènes jusqu'à la stabilité des complexes (Luzikov 2009). En particulier, des protéases sont localisées dans les différents compartiments mitochondriaux, comme Pim1p dans la matrice, le complexe Yta10p-Yta12p dans la membrane interne du côté matriciel et Yme1p dans la membrane interne du côté de l'espace inter-membranaire, par exemple. Elles permettent d'éliminer les protéines mal repliées ou non associées à leur partenaire et ainsi éviter leur aggrégation. La majorité de ces protéases agissent de façon couplée à l'hydrolyse d'ATP.

IV. Organisation supramoléculaire de la chaîne respiratoire

1. 2 modèles extrêmes : fluide ou solide

Deux théories extrêmes existent concernant l'organisation des complexes respiratoires dans la membrane mitochondriale interne. La première suggère que les complexes respiratoires diffusent librement dans la membrane. La diffusion plus rapide des transporteurs d'électrons (ubiquinol et cytochrome c) permettent des collisions entre ces molécules et les complexes respiratoires et assurent ainsi le transfert d'électrons (Hackenbrock, Chazotte, and Gupte 1986).

La deuxième théorie suggère que tous les complexes respiratoires sont associés en une seule unité appelée respirasome, qui contiendrait également les transporteurs d'électrons, afin d'optimiser le transfert d'électrons et d'assurer une diffusion minimale des protéines (Lenaz and Genova 2007).

En 1991, Schagger et von Jagow ont mis au point une technique de gels natifs (BN-PAGE) qui permet de faire migrer des complexes protéiques dans un gel d'électrophorèse en maintenant leur conformation native et les interactions protéine-protéine (cf Figure 21). Après solubilisation des membranes à l'aide de détergents non ioniques, du Serva blue G est introduit dans les échantillons conférant des charges négatives aux complexes protéiques et assurant ainsi leur migration dans un champ électrique. (Schägger and von Jagow 1991). Cette technique a permis de mettre en évidence l'association des complexes respiratoires en organisations supramoléculaires appelées supercomplexes (Schägger and Pfeiffer 2000).

Figure 21: Profil BN-PAGE des mitochondries de S.cerevisiae après solubilisation en digitonine

V=complexe V; III=complexe III; IV=complexe IV; II=complexe II. Le poids moléculaire de chacune des formes est notée à côté de la bande correspondante. L'indice "Dim" ou "2" signifie que le complexe est sous forme dimérique; l'indice "Mon" ou "1" signifie que le complexe est sous forme monomérique. Extrait de Schägger et Pfeiffer 2000 (Schägger and Pfeiffer 2000)

Mais la théorie principale aujourd'hui est celle selon laquelle les complexes respiratoires coexisteraient sous différentes structures dans la membrane mitochondriale (complexes isolés, supercomplexes, respirasomes) et que la répartition des complexes dans les différentes structures serait dynamique (cf Figure 22) (Acin-Perez and Enriquez 2014).

Figure 22: Modèle de l'organisation dynamique de la chaine respiratiore d'après Acin-Perez et Enriquez 2014

(Acin-Perez and Enriquez 2014)

2. Nature des supercomplexes

a) Supercomplexes III+IV

Dans la levure, les supercomplexes majeurs identifiés sont formés du complexe III sous forme dimérique et du complexe IV sous forme monomérique ou dimérique: III_2IV_1 et III_2IV_2 . Dans les mitochondries de mammifères, le complexe I est aussi présent dans les supercomplexes, et la stœchiométrie du complexe IV est différente par rapport à la levure: $I_1II_2IV_2$ ou $I_1II_2IV_4$ (Schägger and Pfeiffer 2000).

Les structures des supercomplexes III_2IV_2 de la levure (Mileykovskaya et al. 2012) et $I_1III_2IV_1$ du bovin (Althoff et al. 2011) ont été résolus par cryo-microscopie électronique et mettent en évidence des différences de structure entre les deux organismes.

Dans le supercomplexe III₂IV₂ de levure, un monomère de CIV est situé de chaque côté du dimère CIII (cf Figure 23). Une terminologie plus adéquate du supercomplexe serait IV₁III₂IV₁. L'interface CIII-CIV faisant intervenir les sous-unités Qcr6p et Cox5ap respectivement; les deux CIV impliqués dans le supercomplexe ne sont pas en interaction.

Figure 23: Strucure Cryo-EM du supercomplexe IV₁III₂IV₁ de la levure

Chacun des complexes a été localisé dans la structure cryo-EM: le complexe IV est en rose et le complexe III en bleu Extrait de Mileykovskova (Mileykovskaya et al. 2012)

Dans le supercomplexe I₁III₂IV₁ du bœuf, le complexe IV est à la périphérie de l'interface CIII-CIII et l'interface CIII-CIV fait intervenir la protéine Rieske et le cytochrome b d'une part, et les sous-unités III et VIa d'autre part (les homologues chez la levure sont Cox3p et Cox13p). La structure du supercomplexe III₂IV₂ du bœuf n'a pas été résolue : l'interface d'interaction entre les deux complexes IV n'est pas identifiée.

D'autre part, l'ubiquinone et le cytochrome c ont été identifiés dans la structure supramoléculaire des mitochondries de cœur de boeuf: les sites de fixation des transporteurs sur les deux complexes impliqués (CI et CIII pour l'ubiquinone ainsi que CIII et CIV pour le cytochrome c) se font face (Althoff et al. 2011).

b) Une méthode d'identification des supercomplexes : BN-PAGE

L'analyse BN-PAGE est cruciale pour l'analyse des supercomplexes mais reste délicate: les détergents utilisés pour solubiliser la membrane ne sont pas équivalents dans le maintien des interactions protéine-protéine; la composition des supercomplexes identifiés dépend de la nature et de la concentration du détergent utilisé (Eubel, Jänsch, and Braun 2003). Par exemple, le laurylmaltoside permet l'analyse du monomère du complexe IV mais pas des structures plus larges; au contraire, la digitonine semble stabiliser les interactions entre le complexe III et le complexe IV ainsi que le dimère du complexe IV. Ce détergent a permis également de mettre en évidence des formes dimériques et oligomériques de l'ATPsynthase (Arnold et al. 1998; Paumard et al. 2002) et parait bien adapté à l'analyse des supercomplexes.

c) Autres protéines impliquées dans des structures supramoléculaires

Des études ont suggéré l'association d'autres protéines, non directement impliquées dans le transfert d'électrons, dans les supercomplexes OXPHOS. Par exemple, le transporteur ADP/ATP, AAC2, serait associé aux supercomplexes III+IV et favoriserait leur stabilité (Dienhart and Stuart 2008). Les chaperones Shy1p et Cox14p sont parfois retrouvées associées aux supercomplexes III+IV

ainsi que les protéines des complexes TIM23 et PAM impliqués dans le passage des protéines à travers la membrane interne (Stuart 2008). Les enzymes impliquées dans l'oxydation des acides gras pourraient être physiquement et fonctionnellement associées à la chaîne respiratoire et fournir des substrats réducteurs aux complexes respiratoires (Wang et al. 2010). Enfin des superoxide dismutases (SOD2 et SOD3) permettant la dégradation des ROS seraient aussi associées aux supercomplexes III+IV (Suthammarak et al. 2013).

D'autres supercomplexes ont été identifiés dans la mitochondrie de levure, constitués notamment des NADH déshydrogénases Ndi1p, Nde1p, Nde2p, Gut2p, Cytb2p, Dld1p (Grandier-Vazeille et al. 2001; Stuart 2008).

Le complexe V est présent sous diverses formes: avec l'aide des sous-unités e et g, deux monomères d'ATPase s'associent au niveau des sous-unités Atp9p et Atp6p pour former un dimère (Arselin et al. 2004). A leur tour, les dimères de l'ATPase interagissent au niveau d'Atp4p et des sous-unités e et g afin de former des oligomères (Thomas et al. 2008). Ces structures semblent importantes pour la morphologie mitochondriale, puisque leur déstabilisation altère la structure de la membrane interne (Giraud et al. 2002; Habersetzer et al. 2013). De plus, il a été montré que l'ATPase pouvait être associée à un transporteur de phosphate inorganique ainsi qu'à un transporteur ADP/ATP dans une structure appelée ATP synthasome (Ko et al. 2003). Cette structure a été résolue par cryo électromicroscopie et semble faciliter l'entrée des substrats et la libération de l'ATP synthétisée (Chen Chen et al. 2004).

3. Modulation des supercomplexes

L'accumulation des supercomplexes varie selon les conditions environnementales. Dans la levure, l'accumulation des supercomplexes est plus importante lorsque les cellules sont cultivées en lactate par rapport au glucose (Schägger and Pfeiffer 2000). Dans les cellules humaines, la formation des supercomplexes parait dépendre de l'environnement cellulaire: plus de supercomplexes sont observés dans les adipocytes matures par rapport aux cellules souches (Hofmann et al. 2012); moins de supercomplexes l+III et plus d'oligomères du complexe V sont accumulés dans des cellules âgées (Frenzel et al. 2010) et le complexe IV forme moins de supercomplexes en cas d'insuffisance cardiaque (Rosca, Minkler, and Hoppel 2011). La formation/stabilité des supercomplexes semble dépendre largement des caractéristiques mitochondriales: la quantité de supercomplexes diminue en hypoxie, en condition découplante, lorsque le pH diminue ou encore lorsque le potentiel de membrane augmente (Acin-Perez and Enriquez 2014).

D'autre part, des mutations des complexes respiratoires affectant leur activité ou leur stabilité entraînent une réorganisation supramoléculaire. La mutation de la Tyr278 de Cytbp chez l'homme entraîne une baisse de l'activité CIII et une réorganisation des complexes respiratoires au profit des supercomplexes les plus larges (I+III+IV) (Ghelli et al. 2013). Dans les cellules délétées en SURF1 (dont la protéine est impliquée dans l'insertion de l'hème a sur Cox1p), le complexe IV est présent en plus faible quantité, ce qui s'accompagne d'une réorganisation supramoléculaire: tout le complexe IV accumulé est présent en supercomplexes (Kovářová et al. 2012).

Dans ces différents exemples, les supercomplexes sont plus accumulés dans les conditions nécessitant un besoin énergétique plus grand ou lorsqu'un complexe respiratoire est affecté au niveau de son activité ou de sa stabilité. Ceci suggère que ces structures sont capables d'optimiser la phosphorylation oxydative à la fois au niveau de l'activité et de la stabilité, en accord avec les besoins énergétiques de la cellule ou afin de compenser des déficits observés sur un complexe respiratoire.

D'autre part, ceci montre que les supercomplexes ne sont pas des structures figées mais peuvent évoluer en accord avec les conditions cellulaires. Ceci suggère un processus de régulation des structures supramoléculaires.

4. Régulation des supercomplexes

a) Rôle des lipides

La membrane mitochondriale interne contenant les supercomplexes OXPHOS est composée majoritairement des lipides phosphatidylcholine (PC, 38% de la composition lipidique totale) et phosphatidylethanolamine (PE, 24% de la composition lipidique totale). Toutefois, la proportion de cardiolipides (CL) n'y est pas négligeable : 16% des lipides sont de cette nature dans la membrane mitochondriale interne alors qu'ils ne représentent que 6% de la composition lipidique de la membrane mitochondriale externe et 1% en moyenne de celle des autres membranes de *Saccharomyces cerevisiae* (Horvath and Daum 2013). La composition lipidique (nature et quantité) parait un élément important pour la formation/stabilisation des supercomplexes: PE (lipide zwittérionique) aurait un effet déstabilisateur sur les supercomplexes, contrairement à CL (lipide anionique) qui les stabilise (Böttinger et al. 2012). L'influence de CL sur les structures supramoléculaires a été étudiée à de nombreuses reprises et confirme le rôle stabilisateur de la cardiolipide, largement présente dans la structure des supercomplexes (Mileykovskaya and Dowhan 2014). Cette stabilisation serait due à la nature de la cardiolipide qui stabiliserait les charges à l'interface CIII-CIV (Genova and Lenaz 2014).

b) Rôle des protéines

L'accumulation des supercomplexes ne semble pas seulement dépendre de la composition lipidique de la membrane mais également de certaines protéines. La formation des supercomplexes III + IV est favorisée par la présence de chaperones du complexe IV : Cox17p (Oswald, Krause-Buchholz, and Rödel 2009) et Cox7rP (Ikeda et al. 2013). Il est à noter que l'absence de Cox17p altère la formation des supercomplexes mais pas celle du dimère du complexe IV, ce qui suggère un mécanisme différent pour la formation de ces deux types de structures.

Rip1p, sous-unité du complexe III, stabilise les supercomplexes III+IV. La partie N-terminale de Rip1p interagit transitoirement avec le complexe III; cette interaction serait localisée proche du complexe IV, ce qui favoriserait la maturation du complexe IV et l'association des complexes III et IV. Suite à ce processus, Rip1p migrerait jusqu'à son site de fixation final sur le complexe III (Cui et al. 2014).

Les sous-unités e et g de l'ATP synthase ont un rôle important, à la fois dans la dimérisation de l'ATPase (Stuart 2008; Thomas et al. 2008) mais aussi dans la stabilité des supercomplexes III + IV (Saddar, Dienhart, and Stuart 2008; Stuart 2008). RCF1, présente à la fois chez l'homme et la levure, s'associe aux complexes III et IV et stabilise leur interaction (Chen et al. 2012). RCF2, présente seulement chez la levure, a un rôle similaire (Vukotic et al. 2012). Enfin SCAF1 est un facteur d'assemblage des supercomplexes III+IV identifié chez les mammifères, dont le rôle est principalement de stabiliser les structures supramoléculaires (Lapuente-Brun et al. 2013).

c) Rôle des modifications post-traductionnelles

Dans des mitochondries présentant une déstabilisation des supercomplexes, le complexe IV isolé possède plus de thréonines phosphorylées que le WT. Ceci suggère que la phosphorylation du complexe IV peut gêner la formation ou la stabilisation des supercomplexes, conduisant à une

altération de l'organisation supramoléculaire (Rosca, Minkler, and Hoppel 2011). Les structures supramoléculaires seraient régulées à un niveau post-traductionnel.

5. Conséquences pour la chaîne respiratoire

a) Conséquences structurales

Les supercomplexes semblent avoir un rôle structural: chez les mammifères, l'association du complexe I avec les complexes III et IV favorise sa stabilité (Genova et al. 2008); si le complexe III ou le complexe IV sont présents en plus faible quantité, ils seront associés au complexe I en plus grande proportion, sûrement pour assurer la stabilité du complexe I (Lapuente-Brun et al. 2013). Inversement, le complexe III peut être stable même non associé au complexe I (Genova et al. 2008).

b) Conséquences fonctionnelles

L'association du complexe I et du complexe III chez les mammifères semble fonctionnelle. Les coenzymes Q sont présentes à la fois sous forme mobile et sous forme liée aux supercomplexes I+III. La forme liée aux supercomplexes permettrait d'assurer le transfert d'électrons depuis le NADH via le complexe I, tandis que la forme mobile permettrait de transférer les électrons provenant du succinate (par collision entre le succinate, l'ubiquinone, et les complexes II et III sous forme libre). Une baisse de l'association CI-CIII favorise le transfert d'électrons depuis le succinate (Lapuente-Brun et al. 2013). La régulation des supercomplexes serait alors un moyen pour les cellules de s'adapter à leur environnement et d'optimiser le transfert d'électrons depuis le substrat présent dans le milieu (Genova et al. 2008).

De même, le cytochrome c a aussi été identifié dans les supercomplexes III+IV et l'association du complexe IV en une structure supramoléculaire parait aussi fonctionnelle: elle permettrait de transférer les électrons qu'ils proviennent initialement du NADH (via les complexes I et III) ou du succinate (via les complexes II et III) (Lapuente-Brun et al. 2013).

Dans la structure $I_1II_2IV_1$ du bovin (Althoff et al. 2011), les sites de fixation de l'ubiquinol sur le complexe I et le complexe III se font face et ceux du cytochrome c sur les complexes III et IV se font également face: ceci suggère un acheminement des substrats et un transfert d'électrons optimisés entre les complexes: une étude a montré que suite à des mutations affectant la respiration, le recouvrement de la respiration maximale était associé à la formation des supercomplexes (D'Aurelio et al. 2006).

Cependant, une étude contredit ces hypothèses concernant le rôle fonctionnel des supercomplexes. La technique est basée sur l'inhibition réversible et compétitive du complexe IV par le monoxyde de carbone, fixé au niveau de l'hème a₃. Suite à la dissociation du CO, l'oxygène moléculaire se fixe sur le complexe IV et le cytochrome c s'oxyde. La photodissociation du CO permet de suivre l'oxydation du cytochrome c en temps réel. Cette méthode a été mise au point pour l'analyse en temps réel de la chaîne respiratoire sur cellules intactes de levure. La comparaison de l'oxydation du cytochrome c, dans une souche WT et une souche déficiente en supercomplexes ne montre pas de différence significative. Ceci suggère que l'affinité du cytochrome c pour le complexe IV est similaire en présence ou en absence de supercomplexes et remet en cause la fonctionnalité des supercomplexes (Trouillard, Meunier, and Rappaport 2011).

c) Implications dans le stress oxydatif

D'autre part, un élément majeur de la chaîne respiratoire est la production de ROS: en effet, des intermédiaires réduits sont générés au cours du transfert d'électrons et le transfert de leurs électrons à O_2 peut induire des espèces radicalaires. La production de ces espèces radicalaires doit être contrôlée car elle peut entraîner des dommages pour la cellule. La formation de supercomplexes permettrait de limiter la production de ROS: si l'association du complexe I en structures supramoléculaires diminue, la quantité de ROS augmente (Acin-Perez and Enriquez 2014).

La structure des complexes isolés a été résolue par rayons X; celle des supercomplexes a été résolue par Cryo-EM. La comparaison des deux structures a montré un changement conformationnel des complexes selon leur état (isolé ou associé aux autres complexes respiratoires) (Althoff et al. 2011). Ce changement de conformation pourrait expliquer une optimisation du transfert d'électrons (la diffusion latérale des transporteurs d'électrons est limitée) et la diminution de ROS générés (les intermédiaires réduits sont présents moins longtemps et sont moins accessibles à O₂) (Genova and Lenaz 2014).

La formation des supercomplexes n'est pas spécifique de la chaîne respiratoire mitochondriale. Notamment, les protéines de l'appareil photosynthétique s'organisent en structures supramoléculaires. Chez *Chlamydomonas reinhardtii*, on observe par exemple le supercomplexe constitué du complexe PSII et des antennes collectrices de lumière LHCII, ou celui constitué du complexe PSI et des antennes collectrices de lumière LHCII. C'est l'état de phosphorylation de LHCII qui détermine sa migration vers PSII ou PSI et entraîne la formation d'un des supercomplexes (Takahashi et al. 2006).

La phosphorylation régule de nombreux aspects de la vie cellulaire et pourrait être un élément impliqué dans la régulation des supercomplexes mitochondriaux.

V. La phosphorylation mitochondriale

La phosphorylation est la modification post-traductionnelle la plus fréquente: 30% des protéines seraient phosphorylées à un moment de leur cycle cellulaire (Hunter 1995). C'est un processus réversible qui varie notamment au cours de changements environnementaux (Schulze et al. 2012), au cours du cycle cellulaire (Tyanova et al. 2013), lors d'un stress, lors d'un changement nutritionnel (Oliveira et al. 2012), ce qui suggère un rôle de la phosphorylation dans l'adaptation environnementale.

De plus en plus de protéines mitochondriales sont identifiées comme phosphorylées : la phosphorylation parait impliquée dans des fonctions variées comme la transcription, l'apoptose ou dans le métabolisme énergétique (Hofer and Wenz 2014).

1. Analyse phosphoprotéomique

a) Premières analyses qualitatives

Les premières phosphorylations ont été identifiées par des techniques de marquage au ³²P : de l'ATP marqué est incubé dans un gel d'électrophorèse sur lequel ont été séparées les protéines mitochondriales ; l'ajout de kinase et de métabolites nécessaires à la réaction permettent la phosphorylation *in-vitro* des protéines. Cette analyse permet de déterminer les protéines phosphorylables par une kinase, mais ne donnent pas accès au résidu phosphorylé. De plus les protéines sont phosphorylées *in-vitro* et cela ne reflète pas forcément la situation biologique.

De plus en plus d'outils sont aujourd'hui disponibles pour analyser la phosphorylation *in-vivo*. Des anticorps dirigés contre les phospho-sérines, phospho-thréonines ou phospho-tyrosines permettent l'identification des protéines phosphorylées suite à leur séparation dans un gel d'électrophorèse. Cependant, ces anticorps ne paraissent pas toujours spécifiques et ne renseignent pas sur le site de phosphorylation de la protéine.

Une autre méthode de détection a été mise au point: il s'agit du marqueur fluorescent Pro-Q Diamond, se fixant de façon spécifique sur les phosphoprotéines suite à leur séparation dans un gel d'électrophorèse. Il permet une analyse rapide et quantitative du phosphoprotéome d'un échantillon mais le résidu phosphorylé n'est pas identifié avec cette méthode: une analyse supplémentaire par spectrométrie de masse est requise. C'est ainsi qu'Ohlmeier et al. ont mis en évidence un certain nombre de phosphoprotéines dans la mitochondrie de *Saccharomyces cerevisiae*, en combinant électrophorèse 2D, détection des phosphoprotéines par Pro-Q Diamond puis analyse par spectrométrie de masse des spots révélés phosphorylés (Ohlmeier, Hiltunen, and Bergmann 2010).

Ces méthodes nécessitent une séparation des échantillons par électrophorèse 2D. Cette technique de séparation ne permet l'accès ni aux protéines de très bas poids moléculaire, ni aux protéines très hydrophobes ou très basiques. Ceci constitue la plus grande limite de ces analyses (Pflieger et al. 2002; Reinders et al. 2006).

b) Analyses quantitatives avec LC-MS/MS et optimisation

L'analyse par spectrométrie de masse a permis une nette amélioration de la connaissance du phosphoprotéome mitochondrial dans divers organismes.

Les protéines phosphorylées sont moins abondantes que leurs analogues non phosphorylés. D'autre part, l'ionisation des phosphopeptides est moins efficace que celle des peptides non phosphorylés, rendant plus compliquée leur détection par spectrométrie de masse. L'analyse du phosphoprotéome requiert donc des techniques d'analyse spécifiques, notamment un enrichissement en phosphopeptides en amont de la chromatographie liquide couplée à la spectrométrie de masse (LC-MS/MS). Chez la levure, les méthodes d'enrichissement les plus répandues sont la chromatographie d'affinité IMAC et une technique basée sur l'interaction des phospho-résidus avec les particules TiO₂. Afin d'optimiser cette étape d'enrichissement les échantillons sont préalablement fractionnés, soit par électrophorèse SDS-PAGE, soit par chromatographie (chromatographie échangeuse de cations SCX ou chromatographie à phase stationnaire hydrophile HILIC (Zarei et al. 2011)).

Ces différentes stratégies sont optimales pour l'analyse des sérines et des thréonines phosphorylées. Les tyrosines phosphorylées sont présentes en plus faible quantité: leur analyse nécessite un enrichissement particulier par immuno-précipitation à l'aide d'un anticorps dirigé contre les phospho-tyrosines (Lind, Artemenko, and Pettersson 2012).

D'autre part, les analyses LC-MS/MS se déroulent généralement à pH acide, ne permettant pas la détection des phospho-histidines, labiles dans ces conditions. La détection de ces résidus phosphorylés requiert une stratégie d'analyse spécifique (Besant and Attwood 2009).

La grande majorité des études ciblant le phosphoprotéome mitochondrial sont réalisées sur des mitochondries isolées et purifiées: l'absence de fractionnement cellulaire ne permet l'accès qu'à peu de protéines mitochondriales moins abondantes que celles d'autres compartiments cellulaires. Ceci est illustré par la synthèse bibliographique réalisée par Amoutzias sur les études phosphoprotéomiques réalisées sur des cellules de levure qui répertorie plus de 10 000 sites, mais très peu d'entre eux sont localisés sur des protéines mitochondriales (Amoutzias et al. 2012).

c) Etudes comparatives grâce aux techniques de marquage

La mise au point de marquage des échantillons a permis la comparaison du phosphoprotéome dans différentes conditions. Les deux types de marquage principaux sont la méthode SILAC (Ong et al. 2002) et le « dimethyl labeling » (Boersema et al. 2009). Pour le marquage SILAC, les cellules sont incubées en présence d'acides aminés constitués d'isotopes différents : les protéines à marquer intègrent ces isotopes et sont alors différentiables par leur masse. Le marquage mis au point par Boersema consiste à faire réagir une molécule de formaldéhyde avec les domaines N-terminaux des peptides ; les échantillons à marquer réagissent avec des formaldéhydes de masse spécifique, selon les isotopes les constituant et sont donc différentiables par leur masse.

Le marquage isotopique (SILAC) a permis notamment de comparer le phosphoprotéome de levure lors d'un stress ou lors d'un changement métabolique (Oliveira et al. 2012). Cette technique a amélioré la connaissance du mécanisme de phosphorylation: la comparaison du phosphoprotéome entre une cellule WT et une cellule délétée pour une kinase ou une phosphatase a permis d'identifier les cibles de ces enzymes (Grosstessner-Hain et al. 2011; Schreiber et al. 2012; Johnson et al. 2014). Par exemple, cette expérience a été réalisée chez la levure *S. cerevisiae* pour mettre en évidence les substrats de la kinase Sks1p (Johnson et al. 2014) et ceux de la phosphatase Ppt1p (Schreiber et al. 2012). Les substrats de la phosphatase Ppt1 semblent majoritairement non-mitochondriaux et impliqués dans le stress thermique ; certaines cibles de la kinase Sks1p sont mitochondriales et impliquées dans des voies métaboliques diverses comme le métabolisme des acides aminés (Leu1p), la voie énergétique (Pda1p), dans le transport d'ammonium (Ato2p). Chez l'homme, la comparaison du phosphoprotéome entre une cellule normale et une cellule dans laquelle la kinase PLK1 est inhibée a mis en évidence le rôle de la kinase dans le génome nucléaire et particulièrement dans le dommage de l'ADN (Grosstessner-Hain et al. 2011).

2. Régulation des phosphorylations : kinases et phosphatases

Dans la levure, 113 gènes ont pour le moment été identifiés comme codant pour des kinases, ce qui représente, à ce jour, 2% du génome. La majorité sont des kinases à serine/thréonine et appartiennent à différentes familles selon leur mode de régulation, et leur site consensus : PKA, PKC, Ca²⁺-calmodulin kinase, AMPc-dépendante kinase, MAPKK, (Hunter and Plowman 1997). Elles sont répertoriées dans le tableau 6 ci-dessous. Cependant, des tyrosine kinases ont également été identifiées dans la levure.

Groupe			Familles			
AGC	РКА	PKC	PKG			
STE	Famille Ste11p	Famille	Famille NRK			
		Ste20p				
CMGC	Famille Cycline-	MAPKs	GSK3β	Famille	Autres	
	dépendante			CDK-like		
CaMK	Famille	Famille	Famille Nim1p	Autres		
	calcium/calmoduline-	5'AMP				
	régulatrice	activée				
NEK	Famille Ste7p	Famille	Famille NEK-			
		NIMA	like			
Kinases	Cogram	a da kinasas n	last nas diffáranci	á on pluciourc	famillac	
« uniques »	Ce group	e de kindses n	est pus unjerencie	e en plusieurs	Junnies	
Autre	Famille CK1	Famille CK2	Famille	Famille	Famille	Famille
			Nkp1p/Hal5p	Elm1p	Ran1p	Pim1p-
						like

Tableau 6: Groupes et familles des kinases à Ser/Thr de la levure d'après Brinkworth 2006

(Brinkworth, Munn, and Kobe 2006)

Le groupe Kinases « uniques » concerne les kinases de levure qui n'ont pas été conservées dans l'évolution.

L'ensemble des kinases sont répertoriées dans l'Annexe I.

a) Fonctionnement des kinases

Activation des kinases

Les kinases sont constituées de deux régions: une région catalytique, qui porte l'activité enzymatique, et une région régulatrice qui inhibe la région catalytique en se fixant dessus au niveau de son site actif (Hubbard and Cohen 1993). Selon la kinase considérée, ces deux régions peuvent être distinctes (PKA) ou faire partie d'une même entité (CaMK). Lorsque la kinase est activée, elle subit un changement conformationnel qui induit la dissociation de la région régulatrice et de la région catalytique: le site actif de la kinase libéré, elle peut exercer son activité enzymatique (cf Figure 24) (http://biochimej.univ-angers.fr/Page2/COURS).

La kinase PKA a été très étudiée depuis la découverte de sa structure en 1991 (Knighton et al. 1991) et sert de modèle pour l'étude des kinases. La kinase PKA se présente sous la forme d'un tétramère, constitué de deux sous-unités régulatrices et de deux sous-unités catalytiques (cf Figure 24). Les sous-unités régulatrices (R) sont codées par un gène: *BCY1*. Les sous-unités catalytiques (C) sont chacune codées par 3 gènes: *TPK1, TPK2, TPK3*. Ces kinases sont AMPc-dépendantes: ce métabolite se fixe sur Bcy1p, entrainant la dissociation de Tpk1p, Tpk2p et Tpk3p et leur activation. Le mécanisme semble identique dans la mitochondrie, l'activité des sous-unités catalytiques dans la mitochondrie étant dépendante de la sous-unité régulatrice Bcy1p (Rahman and Hudson 1995a).

Les kinases de la famille CaMK ne sont pas activées par l'AMPc mais par le calcium et la calmoduline: lorsque 4 Ca²⁺ se sont fixées à la calmoduline, cette dernière adopte une nouvelle conformation capable d'interagir avec les régions régulatrices des kinases de la famille CaMK et de les activer (cf Figure 24) (http://biochimej.univ-angers.fr/Page2/COURS).

Figure 24: Activation des kinases par une molécule: exemple des kinases PKA et CaMK

R : domaine régulateur ; C : domaine catalytique

Analogies entre les sites catalytiques des kinases

Le site catalytique des kinases de différentes familles présentent de nombreuses similarités (cf Tableau 7). Certains résidus ou régions sont invariants ou très peu variants d'une kinase à l'autre. Au total 11 sous-domaines sont caractéristiques, ayant chacun un rôle dans la fixation de l'ATP ou dans la stabilisation de la structure de la kinase (Hanks and Hunter 1995).

Sous domaine	Résidu(s) conservé(s)	Rôle
I	Gly-X-Gly-X-X-Gly-X-Val	Fixation des groupements phosphoryl α et β de l'ATP (non transférables)
II	Lys	Fixation des groupements phosphoryl α et β de l'ATP Essentielle pour une activité maximale
111	Glu	Stabilisation de l'interaction entre la Lys du sous-domaine II et les groupements phosphoryl α et β de l'ATP
IV	-	
V	Résidus hydrophobes	Fixation d'ATP par liaisons hydrogène Stabilisation de la structure 3D du site catalytique en assurant le lien entre les deux lobes de ce dernier
Vla	Résidus hydrophobes	Stabilisation de la structure du lobe le plus large
VIb	His-Arg-Asp-Leu-Lys-X-X-Asn	Boucle catalytique Transfert du proton provenant du groupe hydroxyle du substrat au niveau de Asp Phospho-transfert Chélation d'un ion Mg ²⁺ qui lie les groupements α et γ de l'ATP, au niveau de l'Asn

VII	Asp-Phe-Gly	Chélation de l'autre ion Mg^{2+} qui lie les groupements β et γ de l'ATP au niveau de Asp Orientation du groupement phosphoryl γ (transférable) de l'ATP
VIII	Ala-Pro-Glu	Reconnaissance du substrat
IX	Asp	Stabilisation de la boucle catalytique
Х	_	

Tableau 7: Domaines du site catalytique des kinases

X signifie qu'aucun résidu spécifique n'est présent à cette position Les domaines IV et X ne présentent pas de ressemblance entre les différentes familles de kinases.

La structure tridimensionnelle du domaine catalytique est aussi similaire entre les kinases de différentes familles. Elle est représentée Figure 25. Elle se caractérise notamment par:

- un lobe N-terminal
- un lobe C-terminal contenant notamment le segment d'activation qui régule l'accès au substrat et le site de fixation du substrat
- la fente catalytique où se déroule la phosphorylation, localisée à l'interface des deux lobes
- la boucle P qui fixe l'ATP et se situe parallèle à la fente catalytique

Figure 25: Structure 3D du site catalytique des kinases

Extrait de : http://www.ulysse.u-bordeaux.fr/atelier/ikramer/biocell_diffusion

Notamment la kinase présente des conformations différentes selon si elle se trouve sous sa forme active ou inactive (cf Figure 26). Au cours de ce changement conformationnel, les lobes ont une orientation différente modifiant alors l'ouverture de la fente catalytique. Pour que la phosphorylation puisse se faire, le substrat ainsi que l'ATP doivent avoir accès à la fente catalytique dans sa bonne orientation.

Figure 26: Changement conformationnel du site catalytique des kinases, au cours de leur activation et fonctionnement

Extrait de : http://www.ulysse.u-bordeaux.fr/atelier/ikramer/biocell diffusion

Les similarités observées au niveau de la structure et de certains résidus du site catalytique expliquent que les kinases aient un mécanisme d'action similaire. Les différences observées entre les kinases résident majoritairement au niveau de la reconnaissance du substrat et de la spécificité kinase/substrat.

Reconnaissance du substrat (Pinna and Ruzzene 1996)

De nombreuses études se sont intéressées à la reconnaissance du substrat et au mécanisme selon lequel une kinase a pour cible un site de phosphorylation. La séquence entourant le site de phosphorylation aurait un rôle important dans cette étape.

Par exemple, les caséine kinases seraient acidophiles, c'est-à-dire iraient phosphoryler des résidus situés majoritairement dans des régions acides. Au contraire, les kinases PKA, PKC et calmodulinedépendante seraient basophiles. Les kinases des familles MAPK et cycline-dépendante seraient dirigées par la proline, c'est-à-dire phosphoryleraient des résidus situés à côté d'un acide aminé proline. Cette observation s'expliquerait par une complémentarité de séquence entre la séquence de la protéine entourant le résidu phosphorylé, et celle de la kinase au niveau du site actif. Cette complémentarité favoriserait l'interaction locale entre les deux protéines, par exemple en permettant la formation de liaisons hydrogènes ou d'interactions de charges ou d'interactions hydrophobes.

b) Les phosphatases

La phosphorylation est un processus réversible: le mécanisme de déphosphorylation est assuré par les phosphatases. A ce jour, un nombre plus restreints d'ORF a été associé aux phosphatases, par rapport aux kinases: par exemple dans le génome humain, 518 gènes sont supposées être des protéines kinases alors que seulement 130 sont attendus comme codant pour une phosphatase (Shi 2009).

On distingue quatre familles majeures de phosphatases: PPPs, PPMs et les phosphatases à aspartate qui déphosphorylent les sérines et thréonines; et la famille des tyrosine-phosphatases qui, comme son nom l'indique, sont spécifiques de la déphosphorylation des tyrosines phosphorylées (Barford, Das, and Egloff 1998).

Des équipes ont élucidé la structure et le mécanisme d'action des phosphatases: de même que pour les kinases, les phosphatases de la famille PPPs sont généralement constituées d'une région catalytique assurant la fonction enzymatique, et d'une région régulatrice (Shi 2009). Celles de la famille PPM n'ont pas de région régulatrice mais des régions dans la séquence qui assurent la spécificité du substrat.

Peu de données ont été accumulées à ce jour concernant la régulation et la spécificité des phosphatases.

c) Kinases dans la mitochondrie

De nombreuses kinases identifiées dans la levure ont été conservées au cours de l'évolution. Celles que l'on ne retrouve pas chez l'homme sont surtout impliquées dans l'adaptation à l'environnement et au substrat. Au contraire, certaines familles de kinases identifiées chez l'homme sont absentes dans la levure (GMPc dépendante kinase, Raf-related kinase, tyrosine family kinase): ces kinases servent surtout à la communication inter-cellulaire (Hunter and Plowman 1997).

La phosphorylation mitochondriale a été peu étudiée par rapport à celle des autres compartiments cellulaires. Pendant des années, seule PKA a été clairement localisée dans la mitochondrie et identifiée comme responsable de la phosphorylation de protéines mitochondriales, suggérant que ce processus agirait très peu de façon intra-mitochondrial. En 2000, Tomaska a étudié l'import des kinases dans la mitochondrie de *Saccharomyces cerevisiae*, et a trouvé que seules 7 kinases et 1 phosphatase (répertoriées dans le tableau 8), non localisées dans un autre compartiment, ont un peptide signal pouvant les adresser à la mitochondrie. Les protéines mitochondriales seraient donc plutôt phosphorylées par des kinases cytosoliques ou par des kinases accrochées à la membrane mitochondriale externe avant leur import (Tomaska 2000).

Gene	Description of the gene product	PSORTII P [mt] (%) ^a	MITOPROT P [mt] (%) ^b	TRIPLES localization ^c	EXP. localization ^d
Protein kinases	3				
SAT4	Serine/threonine protein kinase involved in sensitivity to salt	60.9	96.2	Background	N.D.°
YGR052W	Serine/threonine protein kinase of unknown function	60.9	90.2	Background	N.D.
YIL042C	Protein with similarity to mitochondrial branched chain alpha-ketoacid and pyruvate dehydrogenase protein kinases	47.8	97.9	No records	N.D.
KIN82	Serine/threonine protein kinase of unknown function	30.4	97.1	Background	N.D.
PTK1	Serine/threonine protein kinase, activator of low-affinity, low-capacity polyamine transport	17.4	90.7	No records	N.D.
YDL214C	Serine/threonine protein kinase with similarity to members of the NPR1 subfamily	26.1	80.8	Background	N.D.
YKL171C	Serine/threonine protein kinase of unknown function	8.7	91.6	No records	N.D.
Protein phosph	natases				
YCR079W	Protein phosphatase of the PP2C family	34.8	85.1	Background	l N.D.°

Tableau 8: Kinases et phosphatases identifiées par Tomaska comme pouvant être mitochondriales

(Tomaska 2000)

Cependant, de nombreuses protéines mitochondriales, et en particulier les kinases PKA, ne sont pas adressées à la mitochondrie via un peptide signal mais se lient à des récepteurs localisés sur la membrane mitochondriale externe ; ceci remet en cause l'étude précédente. D'autres études sont en faveur de phosphorylation intra-mitochondriale : en 1987, Muller et Bandlow ont étudié la localisation de kinases mitochondriales. Ils ont notamment identifié une kinase mitochondriale

AMPc-dépendante dans l'espace inter-membranaire (sous-unité catalytique et sous-unité régulatrice fixant l'AMPc) en condition non-fermentaire ; les substrats mitochondriaux de cette kinase paraissent liés à la membrane interne. D'autre part, 4 kinases dont l'activité est indépendante d'AMPc ont été détectées dans la mitochondrie. Une des kinases AMPc-indépendante est impliquée dans la phosphorylation du complexe pyruvate déshydrogénase et de son inactivation en condition fermentaire. Dans cette étude, une action enzymatique de phosphorylation a été détectée mais la kinase responsable n'a pas été identifiée. (Müller and Bandlow 1987).

L'avancée des techniques a permis de localiser de plus en plus de kinases dans un des compartiments mitochondriaux : ces kinases sont cytosoliques mais peuvent être adressées à la mitochondrie ce qui montre que les kinases n'ont pas une localisation unique dans la cellule (Horbinski and Chu 2005).

Le rôle des trois sous-unités catalytiques, Tpk1p, Tpk2p et Tpk3p, semble partiellement redondant car l'absence simultanée de deux sous-unités n'empêche pas la croissance des levures (Toda et al. 1987). Cependant les trois kinases ne sont pas équivalentes car certaines protéines semblent spécifiquement phosphorylées par une des sous-unités catalytiques (Rahman and Hudson 1995b).

PKA est adressée à la mitochondrie suite à sa fixation sur des protéines spécifiques, les AKAPs, dans les cellules humaines et Zds1p, chez la levure (Tudisca et al. 2010). Les sous-unités catalytiques de PKA ont été identifiées dans différents compartiments mitochondriaux notamment la matrice et la membrane interne ou encore à la surface cytoplasmique de la mitochondrie (Horbinski and Chu 2005).

Un rôle de PKA mitochondriale dans la répression glucose a été mis en évidence (Livas et al. 2011); l'activité des kinases PKA dans la mitochondrie varie selon la condition de culture et régule la transcription des gènes mitochondriaux (Rahman and Hudson 1995b). Tpk3p a été étudiée de façon plus approfondie et semble impliquée dans la biogenèse mitochondriale. Sa délétion entraine une diminution de la quantité de certaines protéines mitochondriales, notamment du cytochrome c (Chevtzoff et al. 2005). L'absence de Tpk3p induirait la génération de ROS ce qui entraînerait une inactivation du complexe Hap2/3/4/5, activateur de transcription, puis une diminution de la quantité de certaines protéines mitochondriales (Chevtzoff et al. 2010). Une activation inappropriée de Tpk3p module également la production de ROS et la transcription de gènes mitochondriaux, entrainant l'apoptose (Leadsham and Gourlay 2010).

Autres familles de kinases (Horbinski and Chu 2005)

Des kinases de la famille PKB impliquées majoritairement dans la survie cellulaire, peuvent être localisées dans la mitochondrie, principalement dans les fractions membranaires. Leur mécanisme est encore peu connu mais, parmi les substrats mitochondriaux de PKB, se trouvent Atp2p et la kinase responsable de la phospho-inactivation de la pyruvate déshydrogénase (GSK3β).

Les kinases PKC ont été montrées comme localisées dans la mitochondrie notamment dans la membrane interne et les crêtes mitochondriales. L'activation de ces kinases nécessite la présence de calcium. Leur adressage à la mitochondrie entraîne généralement une inhibition des fonctions mitochondriales et/ou l'apoptose. Cependant, selon le type de cellule étudiée ou la cible de PKC, son effet peut être inverse. Le mécanisme n'est pas encore élucidé.

La cascade de signalisation faisant intervenir successivement les kinases Raf (MAPKKK), MEK1/2 (MAPKK) et ERK1/2 (MAPK) peut être adressée à la mitochondrie et induire une activité pro-

apoptotique ou au contraire anti-apoptotique selon le mécanisme utilisé. ERK1/2 a été détecté dans la mitochondrie, et principalement à l'interface membrane externe/espace inter-membranaire.

Les kinases JNK ou p38 MAPKs sont aussi impliquées dans une cascade de signalisation faisant intervenir successivement MAPKKK, MKK et ces kinases. Un des effets de ces cascades est l'apoptose mais, comme pour la kinase ERK, l'effet inverse peut être observé selon le type cellulaire considéré, l'interaction avec une protéine ou un stimulus particulier. A la fois JNK et p38 MAPKs sont activées par les ROS. JNK a été localisée dans la mitochondrie.

Les kinases / phosphotases uniquement mitochondriales

Les kinases discutées avant ne sont pas spécifiquement mitochondriales : elles exercent une fonction dans d'autres compartiments cellulaires mais peuvent être adressées à la mitochondrie en réponse à un stress. Au contraire, il a été montré chez l'homme qu'une kinase (PINK1) et 2 phosphatases (PTPMT1 et Tim50) se situent préférentiellement dans la mitochondrie ou elles exercent un rôle dans la mitophagie (PINK1), le métabolisme du glucose (PTPMT1) et l'apoptose (Tim50) (Pagliarini and Dixon 2006).

La tyrosine kinase c-Src

Chez les mammifères, plus de 100 protéines mitochondriales contiennent des tyrosines phosphorylées, ce qui montre l'importance de cette modification post-traductionnelle dans la mitochondrie, et suggère des kinases spécifiques dans ce compartiment (Hebert-Chatelain 2013). La tyrosine kinase Src a été localisée dans la mitochondrie, ; elle est bien conservée dans l'évolution, en particulier au niveau du site de reconnaissance du substrat (Yadav and Miller 2008). L'activité de la kinase est plus élevée dans les cellules cancéreuses par rapport aux cellules saines ; son activation permettrait le maintien du métabolisme des cellules cancéreuses : elle serait notamment responsable de la phosphorylation des complexes I de la chaîne respiratoire associée à une augmentation de son activité (Hebert-Chatelain et al. 2012).

3. Analyse fonctionnelle de la phosphorylation

a) Le rôle de la phosphorylation dans la mitochondrie

En 1969, le premier cas de régulation d'une protéine mitochondriale par la phosphorylation a été mis en évidence (Linn, Pettit, and Reed 1969). La protéine mitochondriale en question est une sous-unité du complexe protéique de la pyruvate déshydrogénase. Depuis, de nombreuses études ont élucidé ce mécanisme et ont notamment mis en évidence les kinases et phosphatases responsables. La phosphorylation du complexe pyruvate déshydrogénase sur la sous-unité E1, en condition fermentaire, inhibe son activité: le complexe multi-protéique n'est alors plus capable d'assurer la liaison entre la glycolyse et le cycle TCA (Holness and Sugden 2003). Chez l'humain, 4 kinases et 2 phosphatases ont été identifiées comme impliquées dans ce processus (Patel et al. 2014).

Cependant, un nombre croissant de phosphoprotéines mitochondriales ont été identifiées ces dernières années, suggérant que la régulation du complexe pyruvate déshydrogénase par la phosphorylation n'est pas un cas isolé. En particulier, le complexe TOM est phosphorylé par deux kinases distinctes, ce qui module l'import des protéines mitochondriales: la phosphorylation de Tom22p et Mim1p par la kinase CK2 induit leur biogenèse, puis celle des autres sous-unités TOM; la

phosphorylation du récepteur Tom70p par PKA en condition fermentaire, inhibe son activité et donc l'import de certaines protéines mitochondriales (Schmidt et al. 2011).

Un des rôles majeurs de la phosphorylation mitochondriale semble être la réponse au stress. Cette modification post-traductionnelle régule différents processus : la fission, par la phosphorylation de Drp1p ; la mitophagie, par l'activité de la kinase PINK1 ; la necroptose, par les kinases RIP1 et RIP3 et l'apoptose (Kanamaru et al. 2012). En particulier, ce dernier processus est très régulé par la phosphorylation : la phosphorylation de la protéine pro-apoptotique BAD, pouvant intervenir sur 3 sérines, inactive cette dernière et induit la survie cellulaire. Différentes kinases peuvent être impliquées dans ce processus (Harada et al. 1999; Datta et al. 2000; Harada et al. 2001). Cependant, la phosphorylation de BAD sur une quatrième serine entraîne au contraire l'apoptose. D'autres protéines peuvent être phosphorylées et réguler l'apoptose : la kinase ASK-1 dans son état phosphorylé engendre une cascade de signalisation entraînant l'apoptose (Madan et al. 2013) ; les protéines Bcl2 phosphorylées sont également pro-apoptotiques.

D'autres rôles de la phosphorylation mitochondriale ont été mis en évidence de façon plus singulière. La phosphorylation peut favoriser les interactions protéine/protéine, par exemple entre les enzymes PFK-2 et FBPase-2 (Langer et al. 2012) ou encore entre les protéines Atg11-Atg32 (Aoki et al. 2011). Dans le cas de l'interaction Atg11-Atg32, le rôle de la phosphorylation est plus global puisque l'interaction entre les deux protéines initie la mitophagie. La phosphorylation peut aussi être impliquée au niveau de l'activité d'une enzyme ou d'une protéine : par exemple, la phosphorylation d'ANT1 bloque l'échange ADP/ATP nécessaire pour la respiration (Feng et al. 2010); la phosphorylation de Coq7, impliquée dans la biogenèse de CoQ6 diminue son activité, réduisant ainsi la synthèse de CoQ6 (Martín-Montalvo et al. 2011).

b) Le rôle de la phosphorylation dans OXPHOS

Des sites de phosphorylation ont été identifiés sur l'ensemble des complexes respiratoires. Ils sont répertoriés dans le tableau 9.

La phosphorylation du complexe IV a été mise en évidence pour la première fois en 1997 (Steenaart and Shore 1997). Depuis, plusieurs sites de phosphorylation ont été identifiés sur cette enzyme, notamment au niveau des sous-unités I (rat, bœuf et homme), II (boeuf), IV (rat, bœuf et homme), Va (boeuf) et Vb (rat et boeuf) (Bender and Kadenbach 2000; Ogbi et al. 2004; Ogbi and Johnson 2006; Fang et al. 2007; Helling et al. 2008). Le rôle de la majorité de ces sites de phosphorylation n'a pas encore été élucidé.

Un des modes de régulation du complexe IV est la régulation allostérique par le rapport ADP/ATP: l'augmentation d'ATP dans la matrice mitochondriale diminue son activité tandis que celle d'ADP l'augmente. Chez le bovin, la phosphorylation de la sous-unité I au niveau de la Tyr304 induit une régulation de l'activité COX qui prime sur la régulation allostérique par l'ADP et l'ATP. La phosphorylation de la sous-unité I inhibe l'activité COX, malgré la présence de l'activateur allostérique ADP (Lee et al. 2005); la déphosphorylation de la sous-unité I lève l'inhibition allostérique par l'ATP. Cette régulation par la phosphorylation n'est pas effectuée seulement par cette sous-unité: chez le rat, la phosphorylation de la Ser58 de la sous-unité IV-1 supprime l'inhibition allostérique par l'ATP (Acin-Perez et al. 2011). Chez le bœuf, la phosphorylation par PKA des sous-unités matricielles I et IV (sites de phosphorylation non identifiés) entraîne l'activation de COX (il est à noter que l'homologue de la sous-unité IV du bœuf est Cox5p chez la levure)(Hüttemann et al. 2012).

L'ATP synthase a aussi été identifiée comme phosphorylée, notamment au niveau des sousunités Atp2p chez l'homme et la levure (Højlund et al. 2003; Kane et al. 2010) et Atp20p chez la levure (Reinders et al. 2007). Le rôle de ces sous-unités varie selon chaque résidu considéré. La phosphorylation d'Atp20p au niveau de la Ser62 chez la levure semble inhiber la dimérisation de l'ATP synthase. La phosphorylation des Thr58 et Thr262 d'Atp2p de levure diminue et annule l'activité ATPasique, respectivement. La forme phosphorylée de Thr262 affecte aussi l'assemblage du F1.

Enfin des sites de phosphorylation ont été identifiés sur les complexes I et II: la phosphorylation des tyrosines sur la sous-unité NDUFV2 du complexe I augmente la phosphorylation oxydative, tandis que celle de la sous-unité SDHA sur le complexe II perturbe le transfert d'électrons et augmente la production des ROS (Ogura et al. 2012). PKA induit la phosphorylation du complexe I, notamment celle de la Ser20 de la sous-unité ESSS (NDUFB11) et de la Ser55 de la sous-unité MWFE mais le rôle de ces phosphosites est encore inconnu (Ruming Chen et al. 2004). PKA est aussi responsable de la phosphorylation de Ser173 d'AQDQ (NDUFS4) qui favorise l'accumulation de la protéine dans la mitochondrie (De Rasmo et al. 2008; De Rasmo et al. 2010). D'autre part, la phosphorylation de la sous-unité Fp du complexe II entraine une augmentation de l'activité réverse du complexe II au détriment de son activité normale (Tomitsuka, Kita, and Esumi 2009).

La phosphorylation de la chaîne respiratoire ne concerne pas uniquement les enzymes: le cytochrome c a été identifié comme phosphorylé au niveau de la Tyr97 et de la Tyr48. La phosphorylation de Tyr97 modifie la conformation du site de l'hème porté par le cytochrome c et entraîne une diminution de la cinétique COX (augmentation du Km) (Lee et al. 2006). Celle de la Tyr48 ne modifie pas la cinétique COX mais diminue l'affinité du cytochrome c pour la cardiolipide, et l'activité COX (Hüttemann et al. 2012).

Complexe respiratoire	Sous-unité	Organisme	Site de phosphorylation	Kinase	Rôle	Référence
	NDUFV2	Homme	Y193	c-Src	Hausse OXPHOS	Ogura et al. 2012
	ESSS	Boeuf	S20	РКА	n.d	Chen et al. 2004
Complexe I	MWFE	Boeuf	S55	РКА	n.d	Chen et al. 2004
	AQDQ	Boeuf	S173	РКА	Hausse accumulation protéines	De Rasmo et al. 2010
	SDHA	Homme	mme Y215 c-Src perturbe transfert d'e-		Ogura et al. 2012	
Complexe II	Fp	Homme	n.d	n.d	Hausse activité reverse et diminution de l'activité normale du complexe II	Tomitsuka, Kita et Esumi, 2009
		Rat	S115/S116	n.d	n.d	Fang et al. 2007
Complexe IV	Cox1	Homme	Y304	n.d	Inhibe COX Supprime la régulation allostérique ADP/ATP	Lee et al. 2005
			Boeuf	n.d	РКА	Active COX

	Cox2	Boeuf	n.d	РКА	n.d	Bender and Kadenbach 2000
		Boeuf	S34	n.d	n.d	Helling et al. 2008
		Homme	n.d	РКС	Hausse COX	Ogbi et al. 2006
	Covid	Rat	T52	n.d	n.d	Fang et el. 2007
	Cox4	Rat	S58	n.d	Supprime la régulation allostérique ADP/ATP	Acin-Perez et al. 2011
		Boeuf		РКА	Active COX	Huttermann et al. 2012
	Cov Fo	Boeuf	S4	n.d	n.d	Helling et al. 2008
	COX 54	Boeuf	T35	n.d	n.d	Helling et al. 2008
	Cox5b	Boeuf	n.d	РКА	n.d	Bender and Kadenbach 2000
		Rat	S40	n.d	n.d	Fang et al. 2007
		Levure	T58	n.d	Baisse activité ATPasique	Kane et al. 2010
		Levure	S213	n.d	n.d	Kane et al. 2012
		Levure	T262	n.d	Inhibe activité ATPasique Affecte assemblage F1	Kane et al. 2012
		Levure	T318	n.d	n.d	Kane et al. 2012
		Homme	T213	n.d	n.d	Hojlund et al. 2010
Complexe V	Агр2р	Homme	Y230	n.d	n.d	Hojlund et al. 2010
		Homme	Y269	n.d	n.d	Hojlund et al. 2010
		Homme	T312	n.d	n.d	Hojlund et al. 2010
		Homme	Y361	n.d	n.d	Hojlund et al. 2010
		Homme	Y395	n.d	n.d	Hojlund et al. 2010
		Homme	T475	n.d	n.d	Hojlund et al. 2010
	Atp20p	Levure	S62	n.d	Inhibe dimérisation	Reinders et al. 2007

Autres	Cyt c	Boeuf	Y97	n.d	Change conformation cytc, augmente Km	Lee et a. 2006
		Boeuf	Y48	n.d	Baisse affinité cytc/cardiolipide et baisse COX	Huttemann et al. 2012

Tableau 9: Sites de phosphorylation identifiés sur la chaine respiratoire. « levure » fait référence à Saccharomyces cerevisiae

n.d : non déterminé

A ce jour, peu de kinases ont été identifiées comme responsables de la phosphorylation de la chaîne respiratoire. La phosphorylation des complexes IV et V a été mesurée *in-vitro* sur BN-PAGE des mitochondries isolées, sans incuber avec des kinases exogènes; ceci suggère que leur phosphorylation est intrinsèque (Phillips et al. 2011).

c) Les protéines multi-phosphorylées

Nombre des phosphoprotéines identifiées présentent plusieurs sites de phosphorylation. Pour certaines protéines, par exemple pour Atp2p de l'ATP synthase, le rôle de chaque site est indépendant des autres (Kane et al. 2010).

Pour d'autres protéines, les différents sites de phosphorylation ont la même fonction. Les protéines multiphosphorylées seraient plus finement régulées par les kinases et phosphatases, ce qui permettrait une adaptation plus précise à l'environnement (Cohen 2000). Cependant, les kinases et phosphatases responsables des sites de phosphorylation ne sont pas forcément les mêmes pour tous les sites de la phosphoprotéine.

VI. Implication de la mitochondrie dans des pathologies

1. Pathologies mitochondriales

Les pathologies mitochondriales sont dues à une déficience de la chaîne respiratoire. Elles sont associées à de graves déficits de la respiration et peuvent intervenir dans un seul tissu ou être multi-systémiques. Les symptômes principaux sont des affaiblissements cardiaques, une acidose lactique, de l'ataxie, un retard mental... (Leonard and Schapira 2000a)

L'origine peut être une mutation de l'ADN mitochondrial ou une mutation de l'ADN nucléaire codant pour une protéine de la chaîne respiratoire ou protéine associée (Schapira 2006).

Mutations de l'ADN mitochondrial

Une centaine de mutations ponctuelles de l'ADN mitochondrial ont été référencées : les principales pathologies associées sont les syndromes MELAS, MERRF, NARP, MILS (syndrome de Leigh héréditaire). Les mutations de l'ADN mitochondrial peuvent également être des délétions impliquées dans la CPEO (Ophtalmoplégie externe progressive chronique) ou le syndrome de Pearson.

Mutations de l'ADN nucléaire

Des mutations de l'ADN nucléaire codant pour le complexe I ou II de la chaîne respiratoire ont été associées au syndrome de Leigh non héréditaire. Outre les gènes codant pour les complexes respiratoires, d'autres mutations de l'ADN nucléaire peuvent induire des déficits de la chaîne respiratoire et entraîner des pathologies mitochondriales (CPEO, neuropathies, syndrome de Leigh). En particulier, ces mutations altèrent la réplication ou le maintien de l'ADN mitochondrial, l'import des protéines mitochondriales ou encore l'assemblage et la stabilité des complexes respiratoires (mutations sur les protéines chaperones). Diverses mutations peuvent conduire à des pathologies similaires : par exemple, le syndrome de Leigh peut provenir d'une déficience dans la phosphorylation oxydative ou dans la pyruvate déshydrogénase.

En particulier, de multiples défauts du complexe IV sont associés à des pathologies, que ce soit au niveau de l'ADN mitochondrial (COX1, COX2, COX3), de l'ADN nucléaire (COX6b) ou de ses facteurs d'assemblage (SURF1, COX10, COX15, SCO1, SCO2, LRPPRC, TACO1, FASTKD2) (Diaz 2010). Les différents gènes de la chaîne respiratoire ayant été associés à une pathologie mitochondriale sont répertoriés dans le tableau 10.

Complexe respiratoire	Gène muté	Origine du gène	Pathologie associée
	ND1	Mitochondriale	LHON, myopathie
Comployed	ND4	Mitochondriale	LHON, myopathie
Complexe i	ND6	Mitochondriale	LHON
	NDUF	Nucléaire	Syndrome de Leigh
Complexe II	SDHA	Nucléaire	Syndrome de Leigh
Complexe III	Cyt b	Mitochondriale	Myopathie
Chaperone du complexe III	BCS1L	Nucléaire	GRACILE
	COX1	Mitochondriale	Encéphalopathie
			MELAS
			Motricité neuronale
	COX2	Mitochondriale	Myopathie
Complexe IV			Encéphalopathie
Complexe IV	COX3	Mitochondriale	Myopathie
			Encéphalopathie
			MELAS
			Syndrome de Leigh
	COX6b	Nucléaire	Encéphalopathie
	SURF1/SHY1	Nucléaire	Syndrome de Leigh
	SCO1	Nucléaire	Encéphalopathie
			Cardiomyopathie
			hypertrophique
			Acidose métabolique
	SCO2	Nucléaire	Encéphalopathie
			Cardiomyopathie
Chaperones du complexe			hypertrophique
IV	COX10	Nucléaire	Encéphalopathie
			Syndrome de Leigh
			Cardiomyopathie
			hypertrophique
	COX15	Nucléaire	Syndrome de Leigh
			Cardiomyopathie
			Encéphalopathie
	LRPPRC	Nucléaire	Syndrome de Leigh

Activateur traductionnel	TACO1	Nucléaire	Syndrome de Leigh
de COX1			
Complexe V	ATP6	Mitochondriale	NARP
Complexe v			MILS
	ATP12	Nucléaire	Pathologie
Chaperone du complexe V			multisystémique
			infantile

Tableau 10: Pathologies associées à une mutation d'une sous-unité de la chaine respiratoire ou d'une protéine associée

Données de DiMauro 2004 et Diaz 2010 (DiMauro 2004; Diaz 2010)

Une partie des symptômes observés dans les maladies mitochondriales peut être due à la production de ROS accrue lors du déficit des complexes respiratoires. Une hypothèse est que la production de ROS induirait des dommages supplémentaires de l'ADN mitochondrial conduisant à une aggravation de la pathologie, mais ceci n'a pas été prouvé (Kirkinezos and Moraes 2001).

2. Maladies neurodégénératives

Les maladies neurodégénératives (Huntington, Alzheimer, Parkinson) n'ont pas comme origine un déficit en OXPHOS; néanmoins des altérations de la chaîne respiratoire sont observées dans ces pathologies. Il n'est pas encore clair si ces déficits sont des effets secondaires des pathologies ou s'ils ont un rôle pathogène (Leonard and Schapira 2000b).

Maladie d'Huntington

La maladie d'Huntington est une pathologie caractérisée par des troubles moteurs et cognitifs, dus à une dégénérescence neurologique. Elle est due à une mutation du gène codant pour la huntingtine dans l'ADN nucléaire. Cette mutation est à l'origine de stress oxydant qui affecte l'ADN nucléaire et l'ADN mitochondrial. Suite aux dommages de l'ADN mitochondrial, un dysfonctionnement énergétique est identifié; il se traduit notamment par une baisse des activités des complexes respiratoires, une diminution du potentiel de membrane et de la production d'ATP. La production de ROS est encore augmentée, exacerbant ces effets. Finalement la maladie d'Huntington se traduit par une perte neuronale et une perte de la motricité (Ayala-Peña 2013).

Maladie d'Alzheimer

La maladie d'Alzheimer est une maladie neurodégénérative qui entraîne la perte progressive des fonctions cognitives et de la mémoire. Les origines de la maladie d'Alzheimer sont encore peu connues. Cependant, les neurones des patients atteints de cette pathologie se traduisent par un dysfonctionnement mitochondrial, une surproduction de ROS, et une hyperphosphorylation de la protéine Tau induisant son aggrégation. Une hypothèse est que le dysfonctionnement mitochondrial et le stress oxydant entraîneraient l'hyperphosphorylation de Tau, à l'origine des insuffisances neuronales (Mondragón-Rodríguez et al. 2013). Des déficits du complexe IV ont notamment été identifiés dans la maladie d'Alzheimer (Kirkinezos and Moraes 2001).

Maladie de Parkinson

La maladie de Parkinson est une maladie neurodégénérative responsable majoritairement de troubles moteurs. Une perte progressive des neurones est observée chez les patients, associée à une aggrégation d'une protéine, α -synucléine (Redeker et al. 2012). Des déficits de l'ADN mitochondrial (notamment au niveau de gène codant pour le complexe I) ont été détectés dans des patients de la maladie de Parkinson et des études ont montré qu'ils pourraient être impliqués dans la progression de la maladie. Cependant leur implication n'est pas encore élucidée, et d'autres facteurs ont été identifiés comme impliqués dans la pathogenèse de cette maladie (Kirkinezos and Moraes 2001).

L'ataxie de Friedreich

L'ataxie de Friedreich est une pathologie due à une déficience du système nerveux, et qui se caractérise principalement par un trouble de l'équilibre et de la coordination des mouvements volontaires. Elle est aussi causée par une mutation de l'ADN nucléaire, localisée cette fois-ci sur le gène codant pour la frataxine. Des déficits de la phosphorylation oxydative ont été détectés chez les patients atteints par cette pathologie, notamment au niveau des complexes II et III. La frataxine est impliquée dans l'assemblage des centres Fe-S ; sa mutation altèrerait la biogenèse des complexes respiratoires contenant des centres Fe-S et affecterait leur stabilité. Ces déficits de la phosphorylation oxydative ne semblent pas être à l'origine de la maladie ou de sa progression, mais paraissent être un dommage secondaire (Kirkinezos and Moraes 2001).

3. Cancer

Les cellules cancéreuses ont un métabolisme particulier : elles fonctionnent comme en hypoxie malgré la présence d'oxygène et donc présentent une augmentation de la production d'ATP par la glycolyse au détriment de la respiration : c'est l'effet Warburg. L'augmentation de la glycolyse peut avoir de multiples origines : elle peut être due à un déficit de la phosphorylation oxydative, à une augmentation du métabolisme du glucose (augmentation des transporteurs du glucose et des enzymes de la glycolyse), ou à une diminution du pyruvate mitochondrial par rapport au pyruvate cytosolique par exemple (Diaz-Ruiz, Rigoulet, and Devin 2011). Ces changements métaboliques peuvent provenir de l'activation des oncogènes ou de l'inactivation des suppresseurs tumoraux (Sharma et al. 2011).

Les cellules cancéreuses se caractérisent aussi par une augmentation de la fission mitochondriale. Cet effet est habituellement observé en condition hypoxique et pourrait être une conséquence de l'effet Warburg (Boland, Chourasia, and Macleod 2013).

Les cellules tumorales sont aussi caractérisées par une hausse de la prolifération cellulaire et une baisse de l'apoptose. La modification des cascades de phosphorylation, notamment la voie Ras/Raf/MEK/ERK, peut être à l'origine de ces effets (McCubrey et al. 2007). Dans une cellule normale, la stimulation de Ras ou d'autres tyrosine kinases localisées sur la membrane plasmique par un signal extérieur, induit leur changement conformationnel, leur dimérisation ou oligomérisation et leur autophosphorylation (Tsatsanis and Spandidos 2000). C'est ainsi qu'elles deviennent actives et phosphorylent la cascade de kinases cytoplasmiques. Parmi les cibles de ces cascades se trouvent des facteurs de transcription, des protéines régulant l'apoptose ou des protéines régulant le cycle cellulaire. Dans les cellules cancéreuses, une modification du processus entraîne l'activation des kinases même en absence de stimulus extérieur. Ceci conduit à une sur-activation des kinases et une dérégulation des processus activés par ces kinases (apoptose, prolifération cellulaire). L'altération de la cascade des kinases peut provenir d'une anomalie génétique d'une des kinases ou de l'augmentation de la glycolyse, par exemple. (Boland, Chourasia, and Macleod 2013)

Une plus forte concentration de ROS est présente dans les cellules tumorales par rapport aux cellules normales (Mencalha et al. 2014). Ce peut être une conséquence du fonctionnement de ces cellules (dysfonctionnement de la chaîne respiratoire, sur-activation des kinases ERK) ou être un facteur du développement cancéreux. En effet, la hausse de ROS peut être un facteur induisant la glycolyse; les ROS peuvent endommager l'ADN et être à l'origine d'anomalies génétiques induisant le cancer. Enfin, elles peuvent activer certaines voies impliquées dans la survie cellulaire (MAPK ou Akt, par exemple).

La chaîne respiratoire pourrait être impliquée dans le développement de la maladie: des mutations de l'ADN mitochondrial sont détectées dans les cellules cancéreuses, en partie responsables de l'augmentation des ROS observée dans ces cellules et pouvant favoriser la prolifération tumorale. Notamment, des mutations de l'ADN mitochondrial au niveau des sous-unités ND6, ND2 et ND5 du complexe I impliquent une déficience du complexe I, responsable de l'augmentation de ROS, de l'accumulation de NADH et de la diminution du ratio NAD/NADH. Ces modifications activent l'oncogène AKT et favorisent la prolifération tumorale. Elles peuvent aussi induire l'effet Warburg. Une mutation du complexe V au niveau d'ATP6 a aussi été associée à une croissance tumorale mais non à une augmentation des ROS (Sharma et al. 2011).

Une autre caractéristique des cellules cancéreuses est la répression réversible de la respiration, due à la présence de glucose. Cette adaptation environnementale s'appelle l'effet Crabtree (Diaz-Ruiz, Rigoulet, and Devin 2011).

Le fonctionnement des cellules cancéreuses ressemble étroitement à celui de *Saccharomyces cerevisiae* en condition fermentaire qui représente un bon modèle d'étude.

4. Implication de la phosphorylation dans les pathologies ?

Nous avons vu précédemment que la phosphorylation pouvait avoir un rôle dans la régulation des protéines mitochondriales. Toutefois, peu de choses ont été mentionnées au sujet de l'implication de la phosphorylation dans des maladies mitochondriales. O'Rourke et al. ont discuté le rôle régulateur de la phosphorylation mitochondriale et sa possible implication dans les insuffisances cardiaques (O'Rourke, Van Eyk, and Foster 2011).

La phosphorylation de la kinase PINK1 semble un élément important pour le contrôle-qualité des mitochondries et pour empêcher la maladie de Parkinson (Okatsu et al. 2012). Dans des mitochondries viables présentant un potentiel de membrane, la kinase PINK1 est importée dans la mitochondrie, où elle est dégradée par des protéases dans la membrane interne. Les protéases qui interviennent au cours de la dégradation de PINK1 sont les MPP (mitochondrial processing peptidase) et deux protéases codées par AFG3L2 et Rho-7/PARL (Thomas et al. 2014). Au contraire, lors de la dissipation du potentiel de membrane dans des mitochondries endommagées, PINK1 reste localisée sur la membrane externe mitochondriale et s'autophosphoryle au niveau des Ser228 et Ser402. Cette étape est cruciale : elle permet le recrutement de la parkine sur la membrane externe des mitochondries endommagées; cette protéine induit l'ubiquitinylation de protéines de la membrane externe, puis la dégradation des mitochondries endommagées par des protéases et l'autophagie. Ce mécanisme est nécessaire pour le contrôle qualité des mitochondries : son altération, par exemple due à l'absence de l'autophosphorylation de PINK1, conduit à la maladie de Parkinson. Ce mécanisme est résumé dans la figure 27. Ceci montre l'importance de la phosphorylation dans la régulation mitochondriale et comment son altération peut être impliquée dans des pathologies.

Figure 27: Mécanisme de dégradation des mitochondries par PINK1/Parkin

D'autres rôles de la phosphorylation ont été identifiés dans la maladie de Parkinson, principalement à cause de la mutation de la kinase LRKK2 (Deng et al. 2011)). Différents inhibiteurs de cette kinase ont été identifiés, ce qui ouvre une perspective thérapeutique.

La maladie de Parkinson n'est pas la seule maladie neurodégénérative associée à la phosphorylation. Une des caractéristiques de la maladie d'Alzheimer est l'hyperphosphorylation de Tau par les kinases CK1δ, CDK5, GSK3β: ces kinases pourraient être des cibles thérapeutiques pour cette pathologie. Des inhibiteurs de ces kinases ont été identifiés (Plisson et al. 2012).

Enfin, le cancer est une pathologie très régulée par la phosphorylation. Les cascades de kinases Ras/Raf/MEK/ERK mais aussi les kinases CDK sont impliquées dans la survie et la prolifération cellulaires: leur sur-activation dans les cellules cancéreuses est largement impliquée dans les caractéristiques des cellules tumorales (Montagut and Settleman 2009; Tsai and Nussinov 2013). Plusieurs types d'inhibiteurs de ces kinases ont été identifiés. Certains ont été mis sur le marché et montrent un effet positif sur la pathologie puisqu'ils peuvent inhiber sélectivement la prolifération des cellules cancéreuses et induire l'apoptose dans ces cellules (Borgne and Meijer 1999; Merlin 2008). Jusqu'à aujourd'hui, la régulation des cellules cancéreuses par la phosphorylation concernait surtout les voies métaboliques de la survie cellulaire. Néanmoins, il a été montré que EGFR (epidermal growth factor receptor) dans les cellules de cancer du sein pouvait interagir directement avec le complexe IV au niveau de la sous-unité II (ref: Hutteman et al. 2013). De plus, l'activation invitro de la kinase Src et du récepteur EGFR (epidermal growth factor receptor) en présence de la sous-unité II du complexe IV, induit sa phosphorylation et une diminution de l'activité du complexe IV. Ces données suggèrent un rôle de la phosphorylation dans l'effet Warburg, même s'il manque à ce jour l'identification des résidus phosphorylés dans les cellules cancéreuses. Très peu d'études se sont concentrées sur cet aspect de régulation.

Introduction Générale

Matériels et méthodes

Matériels et méthodes

Matériels et méthodes

I. Souches et milieux de culture 1. Souches

Souches en contexte génétique W303

Souche	Signe sexuel	Génotype	Cassette de résistance	Origine de la souche
W303-1A	ΜΑΤα			Laboratoire de Carl Mann (CEA Saclay)
$\Delta cox 12$	α	ado 9 1 hio 9 11 15	cox12 :: hyb	
$\Delta cox 13$	α	ade2-1, his3-11,15, leu2-3,112, trp1-1, can1-100	cox13 :: kan	
Δ cox12 Δ cox13	α		cox12 :: hyb, cox13 :: kan	Laboratoire de
cox12-S7A	а			
<i>cox12-</i> S7E	а			(030, 03A)
cox12-S82A	α			
<i>cox</i> 12-S82E	α			

 Tableau 11: Génotype des souches issues de W303

2. Milieux de culture

Milieux	Bacto yeast	Bactopeptone	Source carbonée
complets	extract		
YPG	1%	2%	2% glucose
YPGal	1%	2%	2% galactose
YPGly	1%	2%	2% glycérol
			0.5M phosphate Na/K
YPEtOH	1%	2%	3% éthanol absolu
YPEtOH/Gly	1%	2%	2% glycérol
			0.5M phosphate Na/K
			2% ethanol absolu
YLAC	0.75%	0.75%	0.5% acide lactique
Milieu	Yeast nitrogen base		Source carbonée
minimum			
Wo	0.8	37%	2% glucose

Tableau 12: Composition des milieux de culture liquide

%: poids/ volume sauf pour l'éthanol où volume/volume

Pour les souches W303 et dérivés, étant mutées dans un des gènes de biosynthèse de l'adénine (ade2), les milieux complets sont supplémentés en adénine à 0.02mg/mL final. Pour les tests sur boites de Pétri, les milieux contiennent du bactoagar à 2% (poids/volume).

3. Test des marqueurs d'auxotrophie

Le milieu minimum permettant la croissance des souches en contexte génétique W303 est constitué du milieu minimum W_0 supplémenté en adénine (0.02 mg/ml), histidine (0.01 mg/mL), leucine (0.06 mg/mL), tryptophane (0.02 mg/mL), et uracile (0.02 mg/mL). Les marqueurs d'auxotrophie sont testés sur boite en incubant à 28°C.

Les souches $\Delta cox12$, $\Delta cox13$, $\Delta cox12\Delta cox13$ sont vérifiées en testant leur résistance à l'hygromycine (0.3 mg/mL) et/ou à la généticine (0.2 mg/mL) sur milieu complet YPGA solide en incubant à 28°C.

4. Culture

Les levures sont cultivées dans des erlens de 2L, à raison de 500 mL de milieu de culture par erlen, à 28°C sous une agitation de 140 rpm (Incubateur Infors HT multitron standard) afin de bien oxygéner le milieu. Elles sont ensemencées à DO = 0.07, à partir de précultures préparées dans le même milieu de culture. Leur croissance est suivie par mesure de DO à 600nm à l'aide d'un densimètre cellulaire (Fisher scientific). Les cellules sont récoltées en phase exponentielle de croissance: DO = 4.5 en YLAC, DO = 6 en YPGaIA et YPGA pour la souche sauvage W303-1A.

II. Techniques biochimiques

- 1. Préparation de mitochondries
 - a) Isolement d'un extrait « brut » de mitochondries (Meisinger, Sommer, and Pfanner 2000)

	Récolte des cellules Centrifugation 2800g – 15min – 4°C
	Lavages des cellules avec H ₂ O stérile
	Incubation DTT Incubation à 30°C dans 100mM Tris-H ₂ SO ₄ pH 9,4, 10mM DTT pendant 20min
Digestion enzymatique de -	Lavage des cellules avec 1,2M sorbitol, 20mM phosphate de potassium pH 7,5
la paroi cellulaire	Digestion à la zymolyase Incubation à 30°C dans 1,2M sorbitol, 20mM phosphate de potassium, zymolyase 20T (3mg/g cellule)
	L Récolte des sphéroplastes <i>Centrifugation 3000g – 5min – 4°C</i>
	Lavage des sphéroplastes avec 1,2M sorbitol, 20mM phosphate de potassium pH 7,5
	Choc osmotique des sphéroplastes dans un potter par cinq mouvements de piston avec 0,6M sorbitol, 10mM Tris-HCl pH 7,4, 1mM EDTA, 1mM PMSF
Centrifugation	Elimination des débris cellulaires Centrifugation 1500g – 5min – 4°C Centrifugation 4000g – 5min – 4°C
differentielle _	Récolte des mitochondries Centrifugation 12000g – 15min – 4°C Reprise par 250mM sucrose, 1mM EDTA, 10mM MOPS-KOH pH 7,2, 1mM PMSF
	Elimination des contaminants restants Centrifugation 700g – 2min – 4°C
Cycle de lavage des mitochondries x3	Récolte des mitochondries lavées Centrifugation 13200g – 15min – 4°C Reprise par 250mM sucrose, 1mM EDTA, 10mM MOPS-KOH pH 7,2, 1mM PMSF

Figure 28: Etapes de l'isolement des mitochondries

Le DTT permet de rompre les ponts disulfures des protéines de la paroi cellulaire, et de faciliter la digestion enzymatique de la paroi.

La digestion de la paroi cellulaire par la zymolyase est suivie au cours du temps et est stoppée lorsqu'il ne reste que 10% de cellules intactes. Au contact de l'eau, les cellules dont la paroi cellulaire a été lysée subissent un choc osmotique qui va rompre leur paroi membranaire et libérer les constituants de la cellule : la turbidité du milieu augmente. Plus il y a de cellules lysées, plus la turbidité sera importante. C'est sur cette observation que se base le suivi de la digestion de la paroi cellulaire. 10µL de cellules sont placées dans 1mL d'eau et mélangés par inversion pendant 30sec, puis la turbidité de la suspension est mesurée à 600nm.

Les mitochondries sont reprises au final dans 100μ L de 250mM sucrose, 1mM EDTA et 10mM MOPS-KOH pH=7.2, aliquotées par 30μ L et stockées dans l'azote liquide. Ces échantillons constituent les « extraits bruts » de mitochondries.

b) Purification des mitochondries sur gradient de sucrose et précipitation des protéines

L'extrait brut de mitochondries peut subir une étape supplémentaire de purification sur gradient de saccharose afin d'éliminer au maximum les contaminants provenant du noyau, des vacuoles et du cytosol.

L'extrait brut de mitochondries, obtenues après les centrifugations différentielles, est repris dans du tampon contenant 250mM sucrose, 1mM EDTA et 10mM MOPS-KOH, pH=7.2 telle que la concentration en protéines soit approximativement de 5mg/mL. La solution est homogénéisée dans un potter par 10 mouvements de piston.

L'homogénat est déposé sur un gradient de sucrose constitué de:

1mM EDTA + 10mM MOPS-KOH pH7.2 + 60% sucrose: 1.5mL

1mM EDTA + 10mM MOPS-KOH pH7.2 + 32% sucrose: 4mL

1mM EDTA + 10mM MOPS-KOH pH7.2 + 23% sucrose: 1.5mL

1mM EDTA + 10mM MOPS-KOH pH7.2 + 15% sucrose: 1.5mL

Le gradient est centrifugé pendant 1h à 134000g à 4°C. Les mitochondries purifiées sont récupérées à l'interface 60%-32% puis diluées dans du tampon 250mM sucrose, 1mM EDTA et 10mM MOPS-KOH, pH=7.2.

Figure 29: Purification des mitochondries par gradient de sucrose

Ces échantillons constituent les « extraits purifiés » de mitochondries.

2. Dosage de protéines: adapté de la méthode de Lowry

La méthode de Lowry est un dosage de protéines colorimétrique (LOWRY et al. 1951). Le protocole que nous utilisons est modifié par rapport au protocole initial, selon Jean Velours (IBGC, Bordeaux).

Au cours d'une première étape, les ions Cu²⁺ ajoutés au mélange protéique forment un complexe avec les liaisons peptidiques des protéines. Une réaction d'oxydo-réduction se produit entre les ions

 Cu^{2+} et certains acides aminés des protéines (les acides aminés polaires ainsi que les tyrosines et tryptophanes), entrainant la réduction de Cu^{2+} en Cu^+ . Dans une seconde étape, les ions Cu^+ réduisent le complexe acide phosphotungstique / acide phosphomolybdique contenu dans le réactif de Folin. Ce dernier est jaune lorsqu'il est oxydé et bleu lorsqu'il est réduit. La forme réduite présente un maximum d'absorption à 750 nm.

La solution A est constituée de 1% CuSO₄, 1% tartrate double de NaK, 4% Na₂CO₃ dans du NaOH 0.1M.

Quantité de BSA	0 µg	3 µg	6 µg	9 µg	12 µg	15 µg
Volume de BSA à	0 μL	3 μL	6 μL	9 μL	12 μL	15 μL
THE						
SDS 5%	75 μL	72 μL	69 µL	66 µL	63 µL	60 µL
Solution A	750 μL					
	Vortex et inc	ubation 37°C	- 3 min			
Réactif de Folin dilué 3x	75 μL					
	Vortex et inc	ubation 37°C	- 6 min			

La gamme étalon est réalisée à partir de BSA à 1mg/mL.

L'échantillon est solubilisé dans du SDS 5% pour être à 1 mg/mL théorique. Pour chaque point, 2 prises sont réalisées.

Volume d'échantillon dilué	5 μL	10 µL	15 µL	20 µL
SDS 5%	70 µL	65 µL	60 µL	55 µL
Solution A	750 μL			
	Vortex et	incubation	37°C - 3 mi	n
Réactif de Folin dilué 3x	75 μL			
	Vortex et incubation 37°C - 6 min			

La lecture se fait à 750 nm.

3. Dosage de protéines: 2D-quant kit

Dans le cas des expériences de spectrométrie de masse, la concentration protéique des échantillons de mitochondries précipités au TCA est mesurée à l'aide du kit 2D-quant kit (GE Healthcare).

4. Electrophorèse en conditions dénaturantes (SDS-PAGE)

Les échantillons sont solubilisés avec 2% SDS, 1% β -mercaptoethanol, 10% glycérol, 0.1% bleu de bromophénol dans 125mM Tris-HCl pH6.8, et dénaturés 5min à 100°C.

Ils sont déposés sur un gel SDS-PAGE de dimension 8cm x 5cm x 0.075cm dont la composition est décrite ci-après :

	Gel de résolution	Gel de concentration
% final d'acrylamide	15%	5%
40% Acrylamide :bis-acrylamide	1.875 mL	625μL
/ 37.5 :1		
Tampon	5mLTris-HCl 0.4M pH8	5mL Tris-HCl 125mM pH6.8
Temed	10 µL	5 μL
Persulfate d'ammonium 10%	100 μL	50 μL

La migration se fait à 120V constant, à 4°C, jusqu'à la sortie du front de migration:

- le tampon cathode SDS-PAGE est constitué de 50 mM Tris, 384 mM Glycine, 0.1% SDS, 1 mM EDTA
- le tampon anode SDS-PAGE est constitué de 50 mM tris, 384 mM Glycine.

5. Electrophorèse en conditions natives (BN-PAGE)

Le BN-PAGE permet la séparation des protéines dans leur conformation native tout en conservant les interactions entre les protéines. Les complexes respiratoires maintiennent leur activité « in-gel » ce qui facilite leur détection (Schägger and von Jagow 1991).

En amont de leur solubilisation, les mitochondries subissent un traitement à la DNAse. Les mitochondries sont diluées à 1mg/mL dans 1.5M d'acide ε -amino-n-caproique et 150 mM Bis-Tris pH7. Sont ajoutés au mélange 1mM PMSF, 0.2 mg/mL DNAse et 5 mM MgCl₂; 30min d'incubation à 25°C permet l'action de la DNAse.

L'échantillon est ensuite centrifugé à 13 000 g pendant 15min à 4°C puis les mitochondries sont solubilisées par :

soit par 2% laurylmaltoside (ratio détergent/protéine = 10) dans 1.5M ϵ -amino-n-caproic acide et 150 mM Bis-Tris, pH7

soit par 2% digitonine (ratio détergent/protéine = 4) dans 1.5M ϵ -amino-n-caproic acide, 150 mM Bis-Tris, pH7.

L'échantillon solubilisé est incubé 30 min dans la glace puis centrifugé à 100 000g pendant 30min à 4°C. Le surnageant est prélevé. Le Serva blue G 250 est ajouté au solubilisat à 0.25% final: le Serva blue G 250 permet de conférer une charge négative aux complexes protéiques qui pourront ainsi migrer dans un champ électrique.

Les échantillons peuvent être stockés à -20°C avant d'être déposés sur le gel BN-PAGE: celui-ci est de dimension 8cm x 6.5cm x 0.1cm, et sa composition est décrite ci après :

	Gel de résolution		Gel de concentration
	Gradient continu		
% final d'acrylamide	5% 10%		3%
40% Acrylamide :bis-acrylamide	625µL	1.3mL	375μL
/ 29 :1			
Tampon	5mL (acide ε-amino-n-		5mL (acide ε-amino-n-
	caproique 0.5M,		caproique 0.5M,
	Bis-Tris 50mM, pH7)		Bis-Tris 50mM, pH7)
Temed	3 μL	2.5 μL	5 μL
Persulfate d'ammonium 10%	30 µL	22.5 μL	50 μL

La migration se fait à 4°C à l'aide des tampons dont la composition est décrite ci-après, et dont le pH est ajusté à 7.0 à 4°C.

	Bis-Tris	Tricine	Serva blue G 250
Tampon cathode A	15 mM	50 mM	0.02%
Tampon cathode B	15 mM	50 mM	
Tampon anode	50 mM		

Tableau 13: Composition des tampons utilisés pour les BN-PAGE

Les échantillons migrent 1h à 100V constant puis 1h à 200V constant en présence du tampon cathode A et du tampon anode. Le tampon cathode A est remplacé par le tampon cathode B, puis les échantillons migrent à 200V constant jusqu'à la sortie complète du bleu.

6. Electrophorèse 2D

Dans une première dimension, les complexes respiratoires sont séparés par BN-PAGE. Une bande de BN-PAGE est découpée puis incubée 30min dans 60mM NA₂CO₃, 60 mM DTT, 2% SDS.

Dans une seconde dimension, la bande de BN-PAGE est placée sur un gel SDS-PAGE de dimension 8cm x 5cm x 1.5mm d'épaisseur et dont la composition est décrite ci-après ; les sous-unités des complexes respiratoires sont séparées dans cette deuxième dimension.

	Gel de résolution		Gel de concentration
	Gradient continu		
% final d'acrylamide	10%	20%	5%
40% Acrylamide :bis-acrylamide / 37.5 :1	2.5mL	5mL	1.25mL
Tampon	10mL Tris-HCl 0.4M pH8		10mL Tris-HCl 125mM pH=6.8
Temed	3 μL	2.5 μL	5 μL
Persulfate d'ammonium 10%	30 μL	22.5 μL	50 μL

Les conditions de migration sont identiques à celles du gel SDS-PAGE usuel.

7. Transfert sur nitrocellulose

Le transfert sur nitrocellulose d'un gel SDS-PAGE ou d'un gel BN-PAGE nous permettra de réaliser des tests immunologiques sur ces gels.

Pour les SDS-PAGE et les BN-PAGE nous utilisons un système de transfert humide à 4°C. Après transfert, les membranes de nitrocellulose sont séchées dans du papier Whatman puis conservées dans ce même papier à 4°C.

	Gel SDS-PAGE :	BN-PAGE
	8cm x 5cm x 0.075cm	8cm x 6.5cm x 0.1cm
Tampon de transfert	50 mM Tris	25 mM Tris
	384 mM glycine	192 mM glycine
	0.1% SDS	0.02% SDS
	20% éthanol	20% éthanol
Porosité de la membrane de	0.2 μm	0.45 μm
nitrocellulose		
Ampérage/voltage constant	0.15 A constant	100 V constant
Durée	1h30	1h

 Tableau 14: Conditions de transfert pour les gels SDS-PAGE et BN-PAGE

8. Test immunologiques

Les étapes de lavage sont réalisées à l'aide du tampon PBS: 137 mM NaCl, 2.68 mM KCl, 10.3 mM Na $_2$ HPO $_4$, 1.5 mM KH $_2$ PO $_4$, 0.1% Tween 20.

Les étapes de saturation et d'incubation d'anticorps primaire et secondaire se font avec le tampon précédent auquel sont ajoutés 3% de Régilait.

La membrane est saturée puis incubée avec l'anticorps primaire. Après 3 lavages, elle est incubée en présence de l'anticorps secondaire, couplé à la peroxydase. Elle est lavée 3 fois puis révélée.

Les dilutions et temps d'incubation des anticorps primaires et secondaires sont spécifiques de chaque anticorps.

Lors de la révélation, le substrat constitué de luminol est incubé 5 min sur la membrane. La peroxydase couplée à l'anticorps secondaire réagit avec le luminol qui est alors dans son état excité. En revenant dans son état fondamental, il émet de la lumière. L'émission de lumière est enregistrée au cours du temps.

9. Coloration des gels au bleu colloïdal (Dong et al. 2011)

Les gels SDS-PAGE et BN-PAGE sont colorés dans le bleu colloïdal, 1h au minimum puis décolorés avec H_2O milli-Q.

10. Détection de l'activité du complexe IV « in gel »

Les activités « in gel » des complexes respiratoires nécessitent des complexes fonctionnellement assemblés. Ce type d'analyse s'applique uniquement aux systèmes BN-PAGE.

Le gel BN-PAGE est incubé dans 0.05% diaminobenzidine (DAB), 0.1% cytochrome c oxydé dans tampon phosphate 50 mM, pH=7.4.

Le cytochrome c est réduit par le DAB, ce qui entraîne l'oxydation de ce dernier.

Le cytochrome c réduit, de couleur rouge, et le DAB oxydé, de couleur marron, s'accumulent dans le gel, à l'endroit où le complexe IV actif a migré: le complexe IV peut alors ré-oxyder le cytochrome c. Le lieu de migration du complexe IV est donc révélé par la présence d'une coloration marron.

III. Réactions enzymatiques : activité in-vitro du complexe IV

1. Réduction du cytochrome c

50 mg de cytochrome c sont repris dans 4 mL de tampon phosphate 10 mM, pH7, et sont réduits par addition de 3 à 5 mg d'ascorbate de sodium

Le mélange est ensuite dialysé pendant 18 à 20h pour éliminer l'excès d'ascorbate de sodium. La dialyse s'effectue en tampon phosphate 10 mM, pH7, à 4°C, dans un boudin de dialyse ayant un seuil de coupure entre 6000 et 8000 Da et à l'obscurité pour éviter la ré-oxydation du cytochrome c. Le tampon de dialyse est changé 3 fois au cours des 20h.

2. Mesure de la concentration de cytochrome c réduit

Le cytochrome c réduit et le cytochrome c oxydé absorbent à 550 nm, avec des coefficients d'extinction molaire respectifs de 27600 M^{-1} cm⁻¹ et de 9100 M^{-1} cm⁻¹.

L'absorbance du mélange cytochrome c réduit/cytochrome c oxydé à 550nm est mesurée (=A(-red)). De l'ascorbate de sodium est ajouté dans la cuve pour réduire la totalité du cytochrome c: l'absorbance du cytochrome c 100% réduit est mesurée à 550 nm (=A(+red)).

La concentration de cytochrome c réduit dans le mélange est déduit d'après le calcul ci-après:

$$A_{550} (-red) = \varepsilon_{ox}C_{ox} l + \varepsilon_{red}C_{red} l$$
$$= \varepsilon_{ox} (C_t - C_{red}) l + \varepsilon_{red}C_{red} l$$
$$= \varepsilon_{ox} C_t l - \varepsilon_{ox} C_{red} l + \varepsilon_{red}C_{red} l$$
$$= \varepsilon_{ox} C_t l - C_{red} l (\varepsilon_{ox} - \varepsilon_{red})$$

- Cred 1 (ε_{ox} - ε_{red}) = A550 (-red) - ε_{ox} Ct 1 Cred 1 (ε_{red} - ε_{ox}) = A550 (-red) - ε_{ox} Ct 1 A_{550} (-red) - $\epsilon_{ox}C_t$ |

C_{red}] = -----

Ered - Eox

A550 (-red) - ϵ_{ox} [A550 (+ red)/ ϵ_{red}]

C_{red} = -----

 ϵ_{red} - ϵ_{ox}

 ϵ_{ox} = 9100 M⁻¹cm⁻¹

 ϵ_{red} = 27500 M⁻¹cm⁻¹

 ϵ_{red} - ϵ_{ox} = 18500 $M^{\text{--}1}cm^{\text{--}1}$

soit C reduit = Cred x facteur de dilution

3. Mesure de l'activité enzymatique in-vitro

Le complexe IV de la chaine respiratoire catalyse l'oxydation du cytochrome c réduit. Le coefficient d'extinction molaire à 550 nm du cytochrome c oxydé étant plus faible que celui du cytochrome c réduit, l'absorbance à 550 nm diminue au cours de l'oxydation du cytochrome c.

La mesure de l'activité du complexe IV consiste à calculer la vitesse d'oxydation du cytochrome c réduit par les mitochondries. Pour cela, l'absorbance du cytochrome c à 550 nm est suivie. Les mitochondries sont mises en présence de 0.01% laurylmaltoside, afin de perméabiliser la membrane et de permettre la pénétration du cytochrome c exogène. La pente observée correspond à l'oxydation du cytochrome c réduit que nous ajoutons dans la cuve

Les mesures de l'activité in-vitro du complexe IV s'effectuent à 30°C.

1mL de tampon phosphate 10 mM, pH7 est ajouté dans la cuve. 5µg de mitochondries sont ajoutées, ainsi que du laurylmaltoside (0.01% final) qu'on laisse incuber 30sec. Le démarrage de la réaction se fait par addition de cytochrome c réduit (50 µM final). La quantité de mitochondries peut être ajustée de sorte à obtenir un signal linéaire.

IV. Spectres d'absorption des cytochromes

Les spectres d'absorption des cytochromes ont été enregistrés sur le spectromètre QE65000 de l'Institut de Biologie Physico-Chimique.

Les cellules sont récoltées en phase exponentielles à 8.10⁷ cellules/mL. Elles sont concentrées à 1.10⁹ cellules par mL dans du tampon MES 40mM, pH6.5.

80μL de suspension cellulaire sont placées dans la cuve; 2μL d'une solution saturée en dithionite sont ajoutés dans la cuve.

L'absorbance est mesurée entre 450 et 700nm.

V. Biologie moléculaire : mutation et surexpression d'IF1 1. Génération d'ADN plasmidique muté

Le plasmide utilisé pour la surexpression d'IF1 dans les bactéries nous a été gracieusement donné par Marie-France Giraud (IBGC, Bordeaux). Il s'agit du vecteur pET30a dans lequel le gène INH1 a été répliqué et inséré. En amont du gène INH1, une protéine de fusion contenant un tag-His et un site de coupure à l'entérokinase a été introduite: ceci facilitera la purification d'IF1. De plus, le gène INH1 de ce plasmide contient la mutation F50W: la Phe50 a été remplacée par un Trp absorbant à 280nm. Ainsi il est possible de détecter la protéine par mesure d'absorbance à 280nm. Cette mutation n'affecte pas les propriétés inhibitrices d'IF1.

Ce plasmide possède une cassette de résistance à la kanamycine, ce qui permettra de sélectionner les cellules bactériennes ayant intégré le plasmide.

a) Mutation du plasmide

Les mutations ponctuelles ont été introduites sur le plasmide à l'aide du kit QuickChange[®] Site-Directed Mutagenesis (Stratagene) (cf Figure 30).

Deux oligonucléotides (direct et réverse) contenant la mutation à introduire sont placés dans la solution plasmidique. Au cours du cycle de température, le plasmide est séquentiellement dénaturé en simples brins; puis les oligonucléotides s'hybrident sur les simples brins à l'endroit de la mutation; enfin la polymérisation du brin complémentaire se fait, grâce à l'action de l'ADN polymerase Pfu Turbo[®] (Stratagène). Ainsi au cours d'un certain nombre de cycles de températures, le plasmide ayant intégré la mutation est généré et amplifié.

Le plasmide initial (ne contenant pas la mutation) est digéré à l'aide de Dpn I.

Figure 30: Etapes de la mutagenèse dirigée avec le kit QuickChange® Site-Directed Mutagenesis (Stratgene)

b) Incorporation dans une bactérie compétente

Les bactéries compétentes XL1 blue sont transformées par le plasmide muté. Ceci permet de produire l'ADN plasmidique en grande quantité.

La transformation des cellules XL1 blue se fait par choc thermique à 42°C pendant 45sec.

Les bactéries transformées sont ensuite incubées à 37°C dans un milieu contenant la kanamycine afin de sélectionner les cellules qui ont intégré le plasmide.

c) Extrait de l'ADN plasmidique et séquençage

L'ADN plasmidique est extrait des bactéries et purifié à l'aide du kit Qiaprep Spin Miniprep.

Les cellules bactériennes sont lysées, et les débris cellulaires sont éliminés par centrifugation. Le lysat est introduit sur une colonne constituée d'une membrane de silice capable de retenir l'ADN plasmidique. Ce qui n'est pas retenu sur la membrane est éliminé puis cette dernière est lavée. Enfin, l'ADN plasmidique est élué dans un petit volume de tampon.

La concentration plasmidique est évaluée par mesure d'absorbance à 260nm: 1 unité de DO correspond approximativement à 50µg/mL d'ADN double brins. Une partie de l'ADN plasmidique est séquencé afin de vérifier que la mutation a bien été introduite sur le plasmide.

2. Surexpression d'IF1 dans une bactérie

a) Incorporation dans une bactérie compétente par électroporation

Les bactéries électrocompétentes *E. coli* BL21(DE3) sont transformées par le plasmide muté. Cette étape permettra de surexprimer l'IF1 muté dans ces bactéries.

La transformation est effectuée par électroporation à l'aide d'un électroporateur (2.5kV, 25μ F, 200Ω ; Biorad).

Les cellules transformées sont ensuite incubées à 37°C dans un milieu contenant la kanamycine, afin de sélectionner les bactéries ayant effectivement intégré le plasmide.

b) Surexpression

Les bactéries BL21(DE3) sont des bactéries issues de BL21 dans lesquelles a été insérée la cassette DE3. Cette dernière contient le gène codant pour l'ARN polymerase T7, qui est responsable de l'induction d'*INH1*.

Le principe de la surexpression est représenté dans la Figure 31.

En absence d'inducteur, le gène de l'ARN polymerase T7 est réprimé par le répresseur lacl : *INH1* n'est pas induit et la protéine ne sera pas présente.

L'IPTG est un inhibiteur du répresseur lacl : l'ajout de cet inhibiteur dans le milieu lèvera la répression de l'ARN polymerase T7 et par conséquent induira l'expression d'IF1.

Extrait de la thèse de Tiona Andrianaivomananjaona 2011

La surexpression d'IF1 s'effectue par l'ajout d'IPTG dans le milieu de culture à 0.5mM final.

c) Lysat cellulaire

Pour être lysées, les cellules sont dans un premier temps incubées pendant 1h à température ambiante avec du lysozyme à 0.5 mg/mL en présence de DNAse ($10\mu g/mL$), RNAse ($10\mu g/mL$) et PMSF (1mM).

Dans un second temps, l'échantillon est placé dans un bain à ultrasons 3 fois pendant 45s. Deux périodes d'ultrasons sont espacées de 2min. L'échantillon est placé dans la glace pendant toute cette étape.

3. Purification d'IF1

La composition des tampons utilisés au cours de la purification d'IF1 est résumée dans le tableau suivant:

Tampon	Composition
Imidazole 10mM	NaCl 0.3M, Na ₂ HPO ₄ 50mM, Imidazole 10mM pH8
Imidazole 20mM	NaCl 0.3M, Na ₂ HPO ₄ 50mM, Imidazole 20mM pH8
Imidazole 250mM	NaCl 0.3M, Na ₂ HPO ₄ 50mM, Imidazole 250mM pH8
Tampon de coupure	NaCl 50mM, Tris 20mM, CaCl ₂ 2mM, pH7.4

Tableau 15: Composition des tampons utilisés pour la purification d'IF1

a) Préparation de la colonne Ni-NTA

2mL de résine Ni-NTA sont introduits sur une colonne puis lavés successivement avec H_2O milli-Q et le tampon Imidazole 10mM.

b) Purification du peptide par coupure à l'entérokinase

4mL de lysat cellulaire sont introduits sur la colonne et l'ensemble est incubé sur roue pendant 1h à température ambiante. L'IF1 est retenu sur la résine via son peptide de fusion. Le lysat non-retenu est éliminé. La colonne est lavée successivement par le tampon Imidazole 10mM puis par le tampon Imidazole 20mM afin d'éliminer le maximum d'impuretés.

L'entérokinase diluée dans 2 mL de tampon de coupure est introduite dans la colonne (à raison de 30U d'entérokinase par colonne) et l'ensemble est incubé sur roue pendant 24h à température ambiante. L'entérokinase coupe IF1 au niveau de son site de coupure, ce qui permet de détacher le peptide de la colonne. Après les 24h d'incubation, l'éluat contenant l'IF1 coupé est récolté. Puis la colonne est lavée avec le tampon Imidazole 10mM et le tampon Imidazole 20mM afin de récupérer le maximum d'IF1. Toutes les fractions de lavage sont récoltées. La présence d'IF1 dans l'éluat et les fractions de lavage est détectée par mesure d'absorbance à 280nm.

La colonne est ensuite régénérée par un lavage avec le tampon Imidazole 250mM: ceci permet d'éliminer le peptide de fusion.

c) Elimination de l'entérokinase et précipitation du peptide au TCA

Les fractions contenant IF1 sont regroupées. Elles sont chauffées à 90°C pendant 10min puis centrifugées à 11 000g pendant 20min à 10°C: cette étape permet d'éliminer l'entérokinase des échantillons.

L'échantillon est incubé dans l'eau glacée avec du TCA à 10% final afin de précipiter l'IF1. La centrifugation des échantillons permet d'éliminer le TCA et de récupérer le peptide précipité. Celui-ci est repris dans 50µL de tampon Na acétate 50mM pH5.5.

VI. Enrichissement en phosphopeptides en amont de la LC-MS/MS

Cette expérience est décrite dans le cas où 3 échantillons biologiques ont été analysés simultanément.

Pour cela, les 3 échantillons ont été digérés à la trypsine de la même façon, puis ont été marqués chacun par une solution de marquage différente. Enfin les 3 échantillons, repérables par leur marquage spécifique, sont mélangés et enrichis simultanément en phosphopeptides.

1. Digestion trypsique

Pour cette expérience, les protéines mitochondriales sont précipitées au TCA suite à la purification des mitochondries sur gradient de sucrose : les mitochondries purifiées sont incubées 15 min en présence de TCA 10% final; le précipité est récupéré après centrifugation à 13 000g pendant 15min à 4°C, puis lavé avec de l'acétone pour éliminer l'excès de TCA.

Il est stocké à -20°C.

Les précipités sont repris dans un tampon contenant 6 M urée, 2 M thiourée, 30 mM Tris-HCl pH8.8, 10 mM DTT, 50 mg/mL Zals I, telle que la concentration en protéine soit comprise entre 5 et 10 mg/mL.

La concentration des échantillons est évaluée par le kit de dosage 2D-Quant: une partie seulement des échantillons, contenant 1.3 mg de protéines, est conservée pour la suite des expériences.

Les échantillons sont alkylés par 40 mM iodoacétamide, pendant 1h à l'obscurité. Ils sont ensuite dilués 8 fois avec 50 mM de bicarbonate d'ammonium. Enfin, ils sont incubés en présence de trypsine (ratio trypsine/protéines = 1/32.5) une nuit à 37°C.

La digestion à la trypsine est stoppée par ajout de TCA, pour acidifier le mélange jusqu'à un pH=2. Les échantillons sont séchés au speed vac.

2. Marquage isotopique par la méthode du "diméthyl isotope labeling" : analyse triplex (Boersema et al. 2009)

Le marquage consiste à faire réagir une molécule de formaldéhyde sur les extrémités Nterminales des peptides et des acides aminés basiques.

Trois formaldéhydes, de composition isotopique différente, sont utilisées dans chacune des 3 solutions de marquage. Ceci confère une masse supplémentaire et spécifique au peptide détecté par spectrométrie de masse. L'écart entre la masse détectée et la masse théorique du peptide permet de tracer l'origine de ce peptide.

Les 3 échantillons à comparer sont repris dans 1 mL d'acide formique 5%, pH2; chaque échantillon est marqué spécifiquement.

Premièrement des formaldéhydes diluées sont préparées: elles contiennent 4% (v/v) de formaldéhyde 37%. Les formaldéhydes diluées sont notées pour la suite formaldéhydes 4% et ce sont elles qui sont utilisées pour préparer les solutions de marquage.

Marquage léger: 5% (v/v) de formaldéhyde 4%, 5% (v/v) cyanoborohydride 0.6M dans un tampon phosphate Na_2HPO_4/NaH_2PO_4 50 mM pH7.5.

Marquage intermédiaire: 5% (v/v) de formaldéhyde-2D 4%, 5% (v/v) cyanoborohydride 0.6M dans un tampon phosphate Na_2HPO_4/NaH_2PO_4 50 mM pH7.5.

Marquage lourd: 5% (v/v) de formaldéhyde-2D-13C 4%, 5% (v/v) cyanoborodeutéride 0.6M dans un tampon phosphate Na_2HPO_4/NaH_2PO_4 50 mM pH7.5.

Le marquage des échantillons se fait sur des colonnes Sep-Pak C18 Vac 3cc (Waters).

Les colonnes sont humidifiées par 2 mL d'acetonitrile, puis sont équilibrées par 2 x 2 mL de tampon A (=0.6% acide acétique dans H2O milli-Q (pH2)).

Les échantillons sont chargés lentement sur les colonnes.

Les colonnes sont lavées par 2 mL de tampon A puis 7 x 1 mL de solution de marquage sont chargés.

Les colonnes sont lavées par 2 mL de tampon A puis les peptides sont élués avec 2 x 500 μ L de tampon B (0.6% acide acétique dans acetonitrile (pH2)).

Les 3 échantillons marqués spécifiquement sont mélangés puis le mélange est séché au speed vac.

3. Enrichissement en phosphopeptides par SCX-IMAC

Avant l'étape d'enrichissement en phosphopeptides par IMAC, le mélange peptidique issu des 3 échantillons est fractionné. Ceci permet d'augmenter la sensibilité de l'IMAC.

Le fractionnement se fait par une chromatographie échangeuse de cations, SCX.

La colonne est équilibrée puis le mélange peptidique solubilisé dans le tampon C (30%ACN, 0.5% acide formique dans H_2O milli-Q) est chargé sur la colonne.

Les peptides sont progressivement élués au cours de la chromatographie, grâce à un gradient de sel dû au gradient de tampon D (30%ACN, 0.5% acide formique, 50 mM formate d'ammonium dans H_2O milli-Q).

En sortie de colonne, l'échantillon est collecté sur une plaque à 96 puits. Un détecteur mesure l'absorbance UV à 280nm au cours de la chromatographie, ce qui nous permet d'estimer la quantité de protéines dans chaque puits.

Les puits sont réunis en 12 fractions. Chaque fraction est séchée au speed vac puis est enrichie en phosphopeptides par une chromatographie d'affinité IMAC.

Le principe de la chromatographie d'affinité IMAC réside dans l'interaction entre des peptides chargés négativement (contenant des résidus phosphorylés ou des acides aminés acides) et une résine chargée positivement. La résine est constituée de cations tel Ga³⁺ ou Fe³⁺, liés à des agents chélatants immobilisés sur une colonne.

Ces caractéristiques permettent l'enrichissement des échantillons en phosphopeptides.

La résine, initialement en suspension dans le glycérol, est rincée 4 fois avec le tampon d'équilibration (30% ACN, 250 mM acide acétique dans H₂O milli-Q) puis mise en suspension dans ce même tampon.

Les 12 fractions issues de la chromatographie SCX sont reprises par 300 μ L de tampon d'équilibration. Elles sont chacune mises à incuber 2h sur une roue, avec 80 μ L de résine.

12 enrichissements IMAC sont effectués correspondant aux 12 fractions issues de la chromatographie SCX.

Le mélange fraction + résine est introduit dans une spin colonne placée sur un tube de collecte, puis l'ensemble est brièvement centrifugé à 5 000 g. Trois étapes de lavage ont lieu successivement: les deux premiers lavages sont réalisés avec le tampon d'équilibration, le troisième avec H₂O milli-Q; 200 μ L de tampon d'équilibration ou d'H₂O milli-Q sont introduits dans la spin colonne placée sur un tube de collecte, puis l'ensemble est brièvement centrifugé à 5 000 g.

Enfin, ce qui est enrichi en phosphopeptides est élué: $30 \ \mu$ L de tampon d'élution sont introduits dans la spin colonne placée sur un tube de collecte, puis l'ensemble est brièvement centrifugé à 2 000 g. Cette étape est répétée, en centrifugeant brièvement à 14 000 g.

Les 12 fractions IMAC sont séchées au speed vac puis sont reprises dans 20μ L de solvant de chargement (0.1% acide formique, 2% acétonitrile dans H₂O milli-Q).

4. LC-MS/MS

Les paramètres utilisés pour la chromatographie liquide couplée à la spectrométrie de masse, à la fois pour l'analyse des protéines totales et pour les phosphopeptides, sont décrits dans la section "Matériels et méthodes" de l'article Renvoisé et al., 2014 (cf Résultats et Discussion-Partie A-III).

Résultats et Discussion

Résultats et Discussion

Résultats et Discussion

Résultats et Discussion - Partie A

Résultats et Discussion - Partie A

Analyse protéomique et phosphoprotéomique des mitochondries de *Saccharomyces cerevisiae* en conditions fermentaires et respiratoire.

Résultats et Discussion - Partie A

I. Objectif du projet

Parmi les fonctions mitochondriales, la respiration est une des plus importantes. Un dérèglement du métabolisme énergétique de la mitochondrie peut entraîner un grave dysfonctionnement de la cellule, et est souvent associé à des pathologies chez l'homme, répertoriées dans l'Introduction VI.1 (Diaz 2010; DiMauro 2004). Comprendre le fonctionnement et la régulation du métabolisme énergétique est donc essentiel.

Dans ce cadre, la mitochondrie de la levure *S. cerevisiae* constitue un bon modèle d'étude. En effet, *S. cerevisiae* est un organisme capable de se développer sur milieu fermentaire ou sur milieu respiratoire et d'adapter son métabolisme en modulant l'activité et/ou l'abondance des protéines mitochondriales de la voie métabolique énergie. Il permet d'étudier les différents métabolismes énergétiques.

Les cellules cancéreuses ont un fonctionnement différent des cellules normales caractérisé par une baisse de la phosphorylation oxydative et une hausse de la glycolyse (Diaz-Ruiz, Rigoulet, and Devin 2011). Le(s) phénomène(s) à l'origine de ce changement métabolique est (sont) encore peu compris. Dans ce cadre, la comparaison des mitochondries de *S. cerevisiae* en milieu fermentaire (génération d'ATP par la glycolyse) et en milieu respiratoire (génération d'ATP par la respiration) pourrait permettre de mettre en évidence des différences entre ces deux types de culture. Ceci constituerait un bon modèle pour comprendre les différences entre cellule cancéreuse et cellule normale et le changement métabolique qui a lieu au cours du développement du cancer (Diaz-Ruiz, Rigoulet, and Devin 2011; Tosato et al. 2012).

D'autre part, la phosphorylation est une modification post-traductionnelle impliquée dans de nombreux processus cellulaires, par exemple la survie cellulaire, la différenciation, le transport membranaire (Cheetham 2004). Ces dernières années, elle a été, de façon récurrente, associée à des pathologies comme par exemple la maladie d'Alzheimer, la maladie de Parkinson ou encore le cancer (Mondragón-Rodríguez et al. 2013; Okatsu et al. 2012; Shchemelinin, Sefc, and Necas 2006). Notamment, dans la mitochondrie, la phosphorylation de PINK1 ou celle des protéines impliquées dans la régulation de l'apoptose parait jouer un rôle crucial dans la maladie de Parkinson et dans le développement des cellules tumorales. Ceci montre que la phosphorylation des protéines mitochondriales est associée à des pathologies. D'autres fonctions de la phosphorylation mitochondriale restent sûrement à découvrir. Pour cela une meilleure connaissance du phosphoprotéome mitochondrial est nécessaire.

Dans le cas de cellules cancéreuses, il serait intéressant d'étudier si le changement du métabolisme énergétique (baisse de la respiration et hausse de la glycolyse) est associé à une variation de la phosphorylation dans la chaîne respiratoire. Une étude a montré que la phosphorylation des protéines de *S. cerevisiae* est modifiée selon les conditions de culture, même si peu de données ont été obtenues sur les protéines mitochondriales (Oliveira et al. 2012). Il serait intéressant d'étudier si la phosphorylation des protéines mitochondriales, et en particulier celles de la voie métabolique énergie, varie aussi selon la condition de culture.

Quelques études de phosphoprotéomique ont été effectuées sur des cellules cancéreuses afin d'avoir une signature de celles-ci (Casado et al. 2013; Harsha and Pandey 2010). Toutefois ces études n'étaient pas ciblées sur les protéines de la chaîne respiratoire, mais plutôt sur les protéines impliquées dans la survie cellulaire. Il pourrait être intéressant de compléter ces données en étudiant le phosphoprotéome des enzymes de la phosphorylation oxydative dans les cellules tumorales. Ces sites de phosphorylation pourraient constituer une signature d'une condition cellulaire. De plus, ces sites de phosphorylation pourraient même avoir un rôle dans le métabolisme énergétique : en effet, il a été montré que la phosphorylation des protéines de la chaîne respiratoire peut influencer son fonctionnement (Helling et al. 2008).

L'ensemble de telles données permettrait d'émettre des hypothèses sur les différences de phosphorylation de la chaîne respiratoire entre cellule normale et cellule tumorale, et d'avancer dans la compréhension du changement métabolique observé dans les cellules cancéreuses.

Nous avons voulu étudier la phosphorylation des protéines mitochondriales de levure cultivées sur différentes sources de carbone. Pour cela, nous avons choisi de quantifier le protéome et le phosphoprotéome mitochondrial dans deux cas extrêmes : en glucose (substrat fermentaire) et lactate (substrat respiratoire), ainsi qu'en galactose. Ce dernier substrat est classiquement utilisé comme source de carbone pour étudier des mutants altérés au niveau de la chaîne respiratoire.

D'autre part, alors que le métabolisme de *Saccharomyces cerevisiae* en glucose est toujours associé à un métabolisme fermentaire, la situation semble moins claire pour le cas du galactose: il est souvent présenté dans la littérature comme substrat respiro-fermentaire (Fendt and Sauer 2010) mais est parfois défini comme substrat fermentaire dans d'autres études (Griffin et al. 2002). Nous avons comparé l'abondance des protéines mitochondriales en galactose, par rapport au substrat fermentaire (glucose) et au substrat respiratoire (lactate). De plus, nous avons analysé les protéines mitochondriales en général, contrairement à Fendt et Sauer qui avaient concentré leur étude sur 47 protéines de la voie métabolique énergie. Cette analyse plus globale peut permettre de mieux comprendre le fonctionnement général des mitochondries en galactose.

D'une manière générale, nous avons ainsi voulu répondre aux questions suivantes:

- Quelles protéines mitochondriales sont phosphorylées? Quelle est la fonction de ces phosphoprotéines?
- La phosphorylation dépend-elle de la condition de culture et du métabolisme utilisé?
- Ces données peuvent-elles nous permettre de suggérer un rôle de ces sites de phosphorylation?
- Des hypothèses sur les kinases responsables de la phosphorylation des sites identifiés et quantifiés peuvent-elles être émises?

Et de façon particulière dans le cas du galactose:

- Quelle est l'abondance des protéines mitochondriales en galactose, par rapport au lactate et au glucose?
- Quel métabolisme énergétique cela suggère-t-il pour le galactose?
- Quel est le niveau de phosphorylation des protéines mitochondriales en galactose par rapport aux deux conditions de culture extrêmes?

L'ensemble des résultats a fait l'objet d'un article paru dans Journal of Proteomics, **106**, 140-150 (2014).

II. Résumé des résultats obtenus

Au total, 724 protéines ont été quantifiées dans les trois conditions de culture, dont 544 sont mitochondriales. 176 protéines mitochondriales présentent une abondance différente selon les conditions de culture: elles ont été réparties en quatre groupes selon leur profil de variation. L'ensemble des résultats de l'analyse protéomique (protéines quantifiées, clusters de variations) est détaillé dans notre article (cf Résultats et Discussion Partie A – III) ainsi qu'en annexes II et III.

671 sites de phosphorylation ont été identifiés dans au moins un échantillon. Cependant, nous avons analysé de façon plus détaillée les 289 sites de phosphorylation qui ont été quantifiés dans au moins trois réplicats biologiques et ceci dans une, deux ou trois conditions (cf Annexe IV).

90 de ces résidus ont un niveau de phosphorylation différent selon le substrat: 39 sites sont quantifiés dans les trois conditions de culture et leur niveau de phosphorylation est significativement différent entre les trois conditions (cf Annexe V); 51 ne sont quantifiés que dans une ou deux conditions. Les 90 sites de phosphorylation qui varient selon le substrat ont été répartis dans cinq groupes de variation. La description des sites de phosphorylation quantifiés et leur variation sont décrites dans notre article (cf Résultats et Discussion Partie A – III).

Les protéines et les sites de phosphorylation qui varient selon la condition de culture ont été associés à la voie métabolique à laquelle ils appartiennent. Ceci nous a permis de définir d'éventuelles tendances de variation, au niveau protéomique et phosphoprotéomique, dans les différentes voies métaboliques définies selon MIPS (http://mips.helmholtz-muenchen.de/genre/proj/yeast).

Au niveau protéomique, les protéines d'une même voie métabolique varient majoritairement dans le même sens. Les protéines des voies métaboliques "métabolisme des acides aminés", "transport", "métabolisme des carbohydrates" sont plus abondantes en glucose qu'en galactose et lactate. Au contraire les voies métaboliques "énergie", "synthèse des protéines", "biogenèse des mitochondries" ont majoritairement des protéines plus abondantes en lactate qu'en condition fermentaire.

Toutefois, on n'observe pas de tendance générale au niveau phosphoprotéomique.

Les résultats obtenus concernant la régulation des voies métaboliques sont détaillés dans notre article.

La voie métabolique la plus régulée au niveau protéomique et phosphoprotéomique est la voie métabolique énergie. Ce sont sur les protéines appartenant à cette voie métabolique que portent les discussions ci-après.

III. Article Journal of Proteomics (2014)

Résultats et Discussion - Partie A

JOURNAL OF PROTEOMICS 106 (2014) 140-150

Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae

Margaux Renvoisé^{a,b}, Ludovic Bonhomme^{c,1}, Marlène Davanture^d, Benoit Valot^c, Michel Zivy^d, Claire Lemaire^{a,b,}

^aCNRS, UMR8221, F-91191 Gif-sur-Yvette, France ^bCEA, IBITECS, SB^cSM, LPM, F-91191 Gif-sur-Yvette, France ^cINRA, PAPPSO, UMR de Génétique Végétale, Gif-sur-Yvette, France ^dCNRS, PAPPSO, UMR de Génétique Végétale, Gif-sur-Yvette, France

ARTICLEINFO

Artide history: Received 25 November 2013 Accepted 12 April 2014

Keywords: Phosphoproteomic Proteomic Glucose Galactose Lactate OXPHOS

ABSTRACT

The yeast Saccharomyces cerevisiae is a facultative aerobe able to adapt its metabolism according to the carbon substrate. The mechanisms of these adaptations involve at least partly the mitochondria but are not yet well understood. To address the possible role of protein phosphorylation event in their regulation, it is necessary in a first instance to determine precisely the phosphorylation sites that show changes depending on the carbon source. In this aim we performed an overall quantitative proteomic and phosphoproteomic study of isolated mitochondria extracted from yeast grown on fermentative (glucose or galactose) and respiratory (lactate) media. Label free quantitative analysis of protein accumulation revealed significant variation of 176 mitochondrial proteins including 108 proteins less accumulated in glucose medium than in lactate and galactose media. We also showed that the responses to galactose and glucose are not similar. Stable isotope dimethyl labeling allowed the quantitative comparison of phosphorylation levels between the different growth conditions. This study enlarges significantly the map of yeast mitochondrial phosphosites as 670 phosphorylation sites were identified, of which 214 were new and quantified. Above all, we showed that 90 phosphosites displayed a significant variation according to the medium and that variation of phosphorylation level is site-dependent.

Biological significance

This proteom ic and phosphoproteom ic study is the first extensive study providing quantitative data on phosphosites responses to different carbon substrates in dependent of the variations of protein quantities in the yeast S. œrevisiae mitochondria. The significant changes observed in the level of phosphorylation according to the carbon substrate open the way to the study of the regulation of mitochondrial proteins by phosphorylation in fermentative and respiratory

Corresponding author at: CNRS, UMR8221, F-91191 Gif-sur-Yvette, France.

E-mail address: claire.lemaire@cea.fr (C. Lemaire).

http://dx.doi.org/10.1016/j.jprot.2014.04.022

1874-3919/© 2014 Elsevier B.V. All rights reserved.

¹ Present address: INRA-UBP, UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, F-63100 Clermont-Ferrand, France.

media. In addition, the identification of a large number of new phosphorylation sites show that the characterization of mitochondrial phosphoproteome is not yet completed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Mitochondrion is an organelle with multiple functions, the most important of which being to provide energy to the rest of the cell in the form of ATP by oxidative phosphorylation, a process catalyzed by the respiratory enzymes organized in supercomplexes in the mitochondrial inner membrane [1,2]. In humans, deregulation of mitochondrial functions, in particular of the respiratory chain, is associated with several pathologies, including neurodegenerative diseases [3,4], neuromuscular diseases [5], type II diabetes [6] and cancer [7]. In response to metabolic demand or various stresses, the activity of the respiratory enzymes may be adjusted and several levels of regulation could be conceived such as change in the expression level of proteins, reversible interaction with effectors, or posttranslational modifications such as phosphorylation. In plants, phosphorylation was shown to play a regulatory role in response to light conditions by inducing change in the supramolecular organization and the activity of photosynthetic apparatus of the chloroplast, an energy-converting organelle that is related to the mitochondrion [8]. The steadily increasing number of known mitochondrial phosphoproteins, kinases and phosphatases suggests that reversible protein phosphorylation could be an important level of regulation in mitochondria [9] and could be partly responsible for an adaptation to environmental change as it is the case for chloroplasts [10]. Testing such hypothesis cannot be considered without quantitative data on the variations of mitochondrial protein amounts and their level of phosphorylation under several growth conditions. The yeast Saccharomyces cerevisiae is a powerful tool to study various energetic and physiological states as it is a facultative aerobe which can grow either on fermentative substrate such as glucose or galactose or on respiratory substrate such as lactate.

Few global quantitative phosphoproteomic and proteomic studies have been carried on yeast grown on different carbon sources but mostly on whole cell extracts [11,12] and the lack of subfractionation limited the access of information on mitochondrial proteins. Two qualitative studies focused on a subset of mitochondrial proteins, but the use of 2D gel electrophoresis [13,14] limited the access to hydrophobic or basic proteins and to those of very high or very low molecular weight.

In this paper, we present for the first time a quantitative study of both protein abundance and phosphorylation levels in isolated yeast mitochondria, under respiratory (lactate medium) or fermentative conditions with two different substrates (glucose and galactose). We performed a subcellular fractionation to focus our analysis specifically on the mitochondrial proteins and used LC–MS/MS to overcome the limitations of 2D gel electrophoresis [15–17]. Protein abundances were quantified using a label free method. The quantitative analysis of the phosphoproteome was carried out by using the multiplex stable isotope dimethyl labeling procedure [18]. For all quantified phosphopeptides, protein abundance measurements were performed allowing normalization of the data and providing a way to analyze the specific variation of phosphorylation status independent of the protein abundance changes. Finally, this study allowed us to obtain a reliable description of the adaptation of the yeast mitochondrial proteome and phosphoproteome to different carbon sources.

2. Material and methods

2.1. Cell culture of yeast

The yeast wild strain W 303 (a ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3, 112 can1-100) was grown either in 2% glucose medium (YPGA) to an $OD_{600 nm} = 6$, or 2% galactose medium (YPGAL) to an $OD_{600 nm} = 6$ or 2% lactate medium (YLAC) to an $OD_{600 nm} = 4.5$ media as described in Lemaire and Dujardin [19]. Four independent biological replicates were performed in each growth condition, leading to 12 samples in total.

2.2. Extraction of mitochondria

Extraction of mitochondria was performed using the protocol originally developed by Meisinger et al. [20] and widely used in proteomic studies in yeast (see Reinders et al., [21]). Briefly, crude mitochondrial fraction was prepared by differential centrifugation and adjusted to a protein concentration of 5 mg/mL in 250 mM sucrose/1 mM EDTA/10 mM Mops, pH 7.2. After treatment with 10 pestle strokes in a glass-Teflon potter, mitochondria were loaded on top of a three-step sucrose gradient. The proteins were then precipitated by 10% TCA, washed by acetone and stored at 20 °C.

2.3. In solution digestion

Precipitated proteins from each sample were suspended in buffer A (0.1% ZALS I, 6 M urea, 2 M thiourea, 10 mM DTT, 30 mM Tris–HCl pH 8.8, 5 mM NH₄HCO₃). Protein concentration was measured using the 2-D Quant Kit (GE Healthcare, Piscataway, NJ, USA) with BSA as a standard. For each sample, 1.3 mg of protein was incubated in the dark for 1 h with iodoacetamide to a final concentration of 40 mM and then diluted 8-fold with 50 mM NH₄HCO₃. Samples were digested in-solution overnight at 37 °C by adding 40 g of trypsin in 200 L of 50 mM NH₄HCO₃ (trypsin/protein ratio: 1/32.5). Trypsic digestion was stopped by addition of TFA to pH 2. An aliquot of each sample was kept at 20 °C for further study of the global proteome.

2.4. Stable isotope dimethyl labeling of trypsic peptides

dimethyl labeling procedure as described in Boersema [18]. Briefly the peptides are labeled on their primary amines which are converted to dimethylamines. Several isotopomers of formaldehyde and cyanoborohydride were used to add a specific mass (28, 32 or 36 Da) to the labeled peptide. Each SepPak C18 cartridge column (3 cc; Waters) was conditioned with 2 mL of acetonitrile (ACN) and equilibrated with 2 × 2 mL of buffer B (0.6% acetic acid in bi-distilled water). Each sample was loaded in a separate column and washed with 2 mL of buffer B. Each column was flushed 7 times by 1 mL of a labeling solution. The columns were then washed with 2 mL of buffer B. Peptides were eluted with 2 × 500 L of buffer C (0.6% acetic acid in 80% ACN). Light, intermediate and heavy labeled peptides were mixed in a 1:1:1 ratio. One mix per biological replicate was prepared. Each mix contained samples from the three growth conditions, and each growth condition was alternatively labeled with a light, intermediate and heavy isotope in the four replicates. Light label corresponds to lactate medium in replicates 1 and 2, to glucose medium in replicate 3 and to galactose medium in replicate 4. Inter label corresponds to galactose medium in replicates 1 and 2, to lactate medium in replicate 3 and to glucose medium in replicate 4. Heavy label corresponds to glucose medium in replicates 1 and 2, to galactose medium in replicate 3 and to lactate medium in replicate 4.

2.5. Sample fractionation by strong cation exchange chromatography

Labeled peptides were dried by vacuum centrifugation and re-suspended in 500 L of buffer D (ACN/H₂O: 30/70, 0.5% formic acid, pH 2). It was fractionated by Strong-Cation Exchange Chromatography according to Bonhomme et al. [22], using a Zorbax BioSCX-Series II column (0.8 mm inner diameter × 50 mm length; 3.5 m particle size) on a Ultimate LC system combined with a Famos autosampler and a Switchos II microcolumn switch system (LC Packings, Sunnyvale, CA, USA). Chromatographic separation was made by a binary buffer system, constituted by buffer D and buffer E (buffer E: ACN/H₂O: 30/70, 0.5% formic acid, 50 mM ammonium formate, pH 5) at a flow rate of 200 L/min for 80 min. Sample was automatically collected in a 96 well plate collector, using an on-line Probot system (LC Packings) to form 12 fractions.

2.6. Enrichment of phosphopeptides by Immobilized Metal ion Affinity Chromatography

Each fraction was dried by vacuum centrifugation and re-suspended in 300 L of loading buffer (H₂O/ACN: 70/30, with 250 m M acetic acid). For each fraction, 80 L of Phos-Select Iron Affinity Gel [22] was washed 4-fold with loading buffer and added to the fraction. Peptides were incubated with Phos-select Affinity Gel during 1 h, using a tube rotator. Phos-select Affinity Gel was washed in SigmaPrep spin column (Sigma Aldrich, St Louis, USA), twice with 200 L of loading buffer and once with 200 L of bidistilled water. Phosphopeptides were then eluted in SigmaPrep spin column with 2 × 30 L of elution buffer (H₂O/ACN: 70/30, 0.4 M ammonium hydroxide). Eluted phosphopeptides were dried by vacuum centrifugation and kept at 20 °C until LC–MS/MS analysis. Twenty four percent of the identified peptides were phosphorylated in the enriched fractions. This result shows that the enrichment was very effective, since only 4 phosphopeptides can be detected in non-enriched samples. Interestingly, 88% of the unphosphorylated peptides contained at least one Asp or Glu, which confirms the known limit of the IMAC methodology with regards to the strong affinity for acidic peptides.

2.7. LC-MS/MS analysis

Each sample was resuspended in 20 L of 0.1% formic acid in 2% ACN (solvant E) then 4 L were loaded at 7.5 L/min on a precolumn cartridge (stationary phase: C18 PepMap 100, particles of 5 m; column: 100 m i.d., 1 cm length; Dionex) using a NanoLC-Ultra system (Eksigent, AB SciEX Massachusetts, USA). Peptides were desalted with solvent Eduring 3 min and loaded on a separating PepMap C18 column (stationary phase C18 PepMap 100, particles of 3 m; column 75 m i.d., 150 mm length; Dionex) prior to gradient chromatography. The buffers used were 0.1% formic acid in water (solvent F) and 0.1% formic acid in ACN (solvent G). A 37 min-long linear gradient from 5 to 30% Gat 300 nL/min was used for peptide separation. Including the regeneration step at 95% G and the equilibration step at 95% F; each run took 45 min. Eluted peptides were analyzed with a Q-Exactive mass spectrometer (Thermo Electron, Courtaboeuf, France) using a nano-electrospray interface. Ionization was performed with a 1.3-kV spray voltage applied to an uncoated capillary probe (10 i.d.; New Objective, Woburn, MA, USA). Xcalibur 2.1 interface was used to monitor data-dependent acquisition of peptide ions. This included a full MS scan covering the 300 to 1400 mass-to-charge ratio (m/z) with a resolution of 70,000 and a MS/MS step (normalized collision energy: 30%; resolution: 17,500). The MS/MS step was reiterated for the 8 major ions detected during the full MS scan. The dynamic exclusion was set to 45 s. For the analysis of total protein content, 1 g of digest from each of the 12 samples was directly submitted to LC-MS. The methods were the same as those described for phosphopeptides, except that the duration of the LC gradient separation was increased to 1 h.

2.8. Identification of peptides and phosphorylation sites

Database searches were performed using X!Tandem CYCLONE (http://www.thegpm.org/TANDEM). Cys carboxyamidom ethylation and light, intermediary and heavy dimethylation of peptide N-termini and lysine residues were set as static modifications while methionine oxidation and phosphorylation of tyrosine were set as variable modifications. Serine and threonine residues phosphorylation was search as variable modification motifs including phosphate loss. Precursor mass tolerance was 10 ppm and fragment mass tolerance was 0.02 Th. Identifications were performed using the Saccharomyces Genome Database, (http://www.yeastgenome.org/, release number: R63-1-1, release date: 20100105, S288C_reference_genome_R63-1-1_20100105) to which common contaminants were added. Identified proteins were filtered and grouped using the X!Tandem pipeline v3.3.0 (http://pappso.inra.fr/bioinfo/xtandempipeline/). Data filtering was achieved according to a peptide E value smaller than

0.01. Using such a threshold, the false discovery rate (FDR) was estimated to 0.5%.

2.9. Relative quantification of peptides and proteins

MassChroQ [23] was used for the alignment of LC–MSruns and peptide quantification by integration of extracted ion current (10 ppm window) in the peak detected at the expected retention time. Normalization was performed to take into account possible global variations between samples: for each LC–MS run the ratio of all peptide values to their value in a chosen reference LC–MS run was computed, and normalization was performed by dividing peptide values by the median value of peptide ratios.

Only peptides which have been quantified in at least 3 replicates per condition were kept for protein quantification. Only proteins quantified with at least two peptides were kept. Statistic tests were performed on \log_{10} -transformed data. The effect of growth condition on each protein was tested by using its normalized peptide values in a mixed model of analysis of variance, with growth conditions as a fixed effect and the peptides and the sample as random effects. We used the fdrtool library of the R package to compute the classical False Discovery Rate [24]. The effect of the growth condition was considered significant when the q-value (False Discovery Rate adjusted p-value) was <0.01.

2.10. Relative quantification of phosphopeptides and statistical analyses

As for the analysis of protein abundance, the quantification of phosphopeptides was performed using MassChroQ [23]. The alignment was performed between LC-MS/MS runs originating from the same SCX fraction of the different replicates. In the following, a replicate designates the mix of 3 samples corresponding to 3 different growth conditions, each sample being labeled with a different isotope, and a triplex designates the set of isotopes for a same m/z in the same fraction. As there were 12 SCX fractions, each replicate was represented by 12 LC-MS runs. For a given peptide, a triplex in a fraction was quantified only when at least 2 isotopes were detected. For normalization, we used a method similar to the one used for protein quantification, i.e. based on the principle that the median ratio between isotopic peptides within a replicate (i.e. within a mix of 3 samples labeled with different isotopes) must be equal to 1 [22]. After log₁₀-transformation of normalized data, phosphopeptide variations according to the growth condition were determined by using a mixed model of analysis of variance with the treatment (i.e. the corresponding isotope) as a fixed effect and with the triplex and replicate as random effects. Finally, the relative level of phosphorylation of a protein was computed by dividing the phosphopeptide by the unphosphorylated protein content estimated by the two ANOVA models. As phosphopeptides and peptides used to measure protein abundance are different, the computed ratio does not represent a real estimation of the relative level of protein phosphorylation, but this normalization allowed making the phosphorylation value independent from protein amount variation. A simple ANOVA model was used to analyze changes, with only the growth condition as a fixed effect. It was considered significant when the FDR adjusted

 $p\mbox{-value was}\xspace<0.05.$ The analysis of qualitative variations was based on the detection of MS peaks.

A K-means clustering was done on proteins whose abundance changed significantly according to growth conditions. Another was done on phosphorylation sites whose level varied according to growth conditions. For these 2 K-means analyses, the dissimilarity criterion was the Pearson correlation and the maximal iterations were 50.

3. Results and discussion

3.1. Variations of mitochondrial protein abundances during fermentative and respiratory growth

We quantified 724 proteins, of which 75% (544 proteins) were known to be mitochondrial proteins and only these were used for further data treatment (see Supplemental data S1). The other 25% proteins were essentially from the polysomes (11%) which are known to be bound to mitochondria [25]. The other contaminants were essentially of cytoplasmic (8%) or nuclear (2%) origin.

Among these 724 proteins, the abundance of 368 displayed no change according to the growth medium while 176 proteins varied significantly. A classification was performed on this set of 176 proteins which defined 4 clusters (Fig. 1 and Supplemental data S2). For each cluster, the different abundance factors relating to the three growth media were compared pairwise (see Table 1). This approach allowed defining two major groups (see Fig. 1 and Table 1) showing that the most extreme differences are between glucose and lactate media. One group includes proteins more abundant in glucose than in lactate by a factor varying between 1.9 and 7.5 (cluster 1; 68 proteins i.e. 39%). The second group is defined by proteins more abundant in lactate than in glucose (clusters 2 to 4; 108 proteins i.e. 61%) with an average abundance factor varying from 0.26 to 0.42. Interestingly, we highlighted significant differences between the two fermentative substrates studied as, in most of the cases (clusters 1 to 3), protein abundance in galactose medium displays a different pattern than in glucose medium (average abundance factor varying from 0.55 to 2.9). In clusters 1 and 3, the galactose medium was intermediary between the glucose and lactate media. In cluster 2, the same pattern is observed for galactose and lactate. Finally, cluster 4 is the only one which contained proteins whose abundance in galactose and glucose were almost similar.

Few studies have already compared protein amounts between fermentation and respiration at the steady-state level [12,26,27]. Moreover these analyses were performed on whole cell extracts and only some few data on mitochondrial proteins were found. Our study allows for the first time an overall comparison of mitochondrial protein abundances in fermentation and respiration together with a deeper analysis of differences between two fermentative substrates which suggest that galactose could be finally considered as a substrate displaying an intermediate metabolism between fermentation (glucose medium) and respiration (lactate medium). This is supported by the data indicating that the contribution of respiration has been shown to be larger during growth on galactose than in glucose [28].

Fig. 1 - Significant changes of protein abundances according to the substrate. Pie graph of the clusters built for proteins whose abundance was significantly affected by the substrate (K-means clustering) (G = glucose; Gal = galactose; L = lactate). Box plots are depicted beside their respective shares. The number of proteins associated to each of the four defined clusters is given.

The protein composition of the clusters will be presented and discussed later in the section concerning the comparison between variation of mitochondrial protein abundances and protein phosphorylation according to their metabolic pathways. To facilitate this comparison, the clusters were defined by their major trend. Cluster 1 was considered as lactate (LAC), clusters 2 and 3 were gathered and defined as glucose (GLU) and cluster 4 as lactate⁺ (LAC⁺).

3.2. Mitochondrial protein phosphorylation display qualitative and quantitative variations between fermentative and respiratory growth

The mitochondrial phosphoproteome of yeast cultivated in three different sources of carbon was investigated using the

Table 1 – Variations of protein abundances according to the cluster. The mean and standard deviation of the ratio between the abundance in one condition and the abundance in the other are shown for every comparison between two substrates and for every cluster.				
	Glucose/ lactate	Galactose/ lactate	Galactose/ glucose	
Cluster 1	4.7 ± 2.8	2.0 ± 0.58	0.55 ± 0.09	
Cluster 2	0.42 ± 0.08	0.92 ± 0.11	2.5 ± 0.67	
Cluster 3	0.26 ± 0.08	0.57 ± 0.09	29 ± 0.72	

0.32 ± 0.11

 1.4 ± 0.30

 0.28 ± 0.12

Cluster 4

multiplex stable isotope dimethyl labeling procedure for relative quantification which labeling efficiency was estimated between 93 and 97.7%. Our mitochondrial phosphoproteome analysis led to the identification of 670 phosphorylation sites, observed in at least one of the 12 samples (Supplemental data S3, S4 and S5). Ninety eight percent of the spectra that identified the same phosphopeptide were found in at most three SCX fractions and 50% were found in the same fraction. The phosphopeptides were identified in 299 proteins of which 150 displayed one site of phosphorylation, 72, two sites, 27, three sites and 50, four sites or more (http://moulon.inra.fr/ protic/yeast_mitochondria, http://www.proteomexchange.org and Supplemental data S3). In total, 71% of them were serine, 16% were threonine and 0.6% were tyrosine. 12.4% of the residues could not be precisely localized in the peptide sequence.

We considered here only the 289 phosphosites which were present in at least 3 biological replicates in 1, 2 or 3 conditions (Supplemental data S6 and S7). Among them, 214 were not identified in previous studies [11,21,29] (Supplemental data S6). Thus our present work enlarges significantly the map of yeast mitochondrial phosphosites.

3.2.1. Variations in the three growth conditions

Among the 289 phosphosites reproducibly quantified in 1, 2 or 3 conditions, the majority (238 phosphosites) were reproducibly quantified in the three growth conditions and were subjected to quantitative examination using analysis of variance. To estimate

as precisely as possible the variations of protein phosphorylation independent of protein amount variations, all phosphopeptide data were normalized according to protein abundance by dividing the phosphopeptide quantitative values by the protein abundance values. The mean coefficient of variation of the log₁₀-transformed ratio was 1.86%.

39 phosphorylation sites significantly varied according to carbon substrate (Supplemental data S8) while 199 displayed no significant change under our experimental conditions (Supplemental data S9). A classification based on the normalized quantification of these 39 phosphorylation sites was performed (Fig. 2 and Supplemental data S10). We could isolate five clusters of phosphorylation sites. Clusters P1 to P4 displayed the same pattern as those observed for the clusters 1 to 4 defined for protein abundances. Indeed, the abundance factors of the phosphopeptides were of the same order of magnitude than those of protein abundances for a given cluster (see Table 2). An additional cluster P5 included three sites that were less phosphorylated in galactose than in glucose (a decrease by a factor 5) and lactate (a decrease by a factor 2.5). This suggests that a specific regulation could occur in galactose, independently from the two other conditions.

3.2.2. Variations in one or two growth conditions

In addition to the 238 sites reproducibly quantified in the three growth conditions, we also observed 51 sites showing a variation in 1 or 2 conditions as they were absent in the 4 biological replicates of the(se) condition(s) (see Table 3).

In the following sections, we gathered phosphorylation sites displaying variations either in one or two growth conditions

Table 2-Variations of phosphopeptide abundances according to the cluster. The mean and standard deviation of the ratio between the abundance in one condition and the abundance in the other are shown for every comparison between two substrates and for every cluster.

		Glucose/ lactate	Galactose/ lactate	Galactose/ glucose
Clu	ster P1	4.5 ± 1.5	2.1 ± 0 24	0.60 ± 0.15
Clu	ster P2	0.37 ± 0.08	1.1 ± 0.18	3.4 ± 0.67
Clu	ster P3	0.44 ± 0.50	0.45 ± 0.18	2.2 ± 0.44
Clu	ster P4	0.18 ± 0.04	0.21 ± 0.06	1.1 ± 0.11
Clu	ster P5	2.8 ± 1.1	0. 42 ± 0.08	0.20 ± 0.05

(51 residues, Table 3) or in the three simultaneously (39 residues, Supplemental data S5). As for the protein abundances, we grouped the sites according to their major trend. The 29 sites detected only in glucose and/or galactose and the 7 sites of cluster P1 were considered as LAC, the 16 sites detected only in lactate and galactose and 24 sites of clusters P2 + P3 as GLU; the 2 sites only detected in lactate and glucose and the 3 sites of cluster P5 as GAL and finally the 4 only detected in lactate and the 5 sites of cluster P4 as LAC⁺.

3.3. Variations of mitochondrial protein abundances and protein phosphorylation according to their metabolic pathways

Proteins whose amounts vary according to conditions were associated with the main metabolic pathways (Fig. 3, panel A) according to the MIPS functional classification (http:// mips.helmholtz-muenchen.de/genre/proj/yeast/) and SGD

Fig. 2 – Significant changes of phosphorylation level according to the substrate for the 39 varying residues quantified in the 3 growth conditions. Pie graph of the clusters built for phosphorylation sites whose abundance was significantly affected by the substrate (K-means clustering) (G = glucose; Gal = galactose; L = lactate). Box plots are depicted beside their respective shares. The number of phosphorylation sites associated to each of the five defined clusters is given.
JOURNAL OF PROTEOMICS 106 (2014) 140-150

Table 3 – Phosphorylation sites reproducibly quantified in only 1 or 2 conditions. Positions of the phosphorylated amino acids were determined from precursor proteins. Phosphorylation sites unambiguously located on the peptide sequence are indicated by p in bold in the sequence.

Growth condition	Gene	Metabolic pathway	Phosphorylation site	Phosphopeptide
		Mitochondria		
	CBP3	biogenesis	S44	ET A Q D p SPELLAK
Chusene	HER1	Unknown	S1192	VGLEpSLYGDELNSR
(5)	TIF4631	Protein synthesis	T177	LKETSDSpTSTSTPTPTPSTNDSK
(3)		Cell rescue, defense		
	WWM1	and virulence	S131	YYPQQAPMPAAAPQQAYYGTAPpSTSK
	YSP2	Unknown	S399	NVNANSNpSETENDNDRDDR
		Amino acid		
	BAT1	metabolism	\$26	LATGAPLDApSKLK
	CYC7	Energy	\$57	GYpSYTDANINK
	0.404	Amino acid	0050	
	CYS4	metabolism Mitochondria	\$350	FDpSSKLEASTTK
	EC N	biogenesis	\$113	
	1001	Cellular	6116	
		communication /		
	GPB2	signal transduction	S24	VAVp SPFSSALEGEER
		C-compound and		•
		carbohydrate		
	GPM1	metabolism	S116	pSFDVPPPPIDASSPFSQK
	HER1	Unknown	S1013	ADNpSFPNIGDSTVSANYNDGIRPSLK
		Cell rescue, defense		
	H SP60	and virulence	Y495	LIDEpYGDDFAK
Galactose +		Cell rescue, defense		
Glucose	H SP60	and virulence	T377 or T379	GSIDIpTTpTNSYEK
(24)		Amino acid		
	ILV2	metabolism	\$52	SASPLPApSKRPEPAPSFNVDPLEQPAEPSK
		Cellular		
		communication /		
	IRA1	signal transduction	S497	IFpSLDDISSFNSSR
	MDS3	Unknown	5618	LSpSSGSLDNYFEK
	PURO	Protoin foto	300	
	SSC1	Protein fate		IJENAEGoSP
	TDH1	Energy	T199	GGRDTASGNIIPSSTGAAK
	TIF4631	Protein synthesis	\$908	DAPPASKDpSEITTR
	TOM70	Protein fate	T228 + (T230 or T232)	FGDIDpTApTApTPTELSTQPAK
	TOM71	Protein fate	S76	QSEAFAGQNEDEADLKDDGSVVpSGSNKR
	TOM71	Protein fate	S96	AKpSGEGFDYPSLPNGEPDIAQLK
	YLH47	Unknown	S71	TTDGNQESASKVpSPVKEK
	ZRG8	Unknown	\$403	VYSLNNNpSDEYSVNEK
	ZRG8	Unknown	S163	TTDSPLPAIK
	ZRG8	Unknown	5019	FEET PSLKSNK
	ACH1	Lipid metabolism	5397	MLNGLGGpSADFLR
	AC01	metabolism	\$208	
		Lipid metabolism	S514	SVoSTASLEEVSK
	CIT1	Energy	T239	IDTSTDPNADYGK
	CIT2	Enerav	S14 or Y15	NVApSpYLQSNSSQEK
	COR1	Energy	T172	VLEHLHSTAFQNpTPLSLPTR
	COX4	Energy	T58	EGTVPpTDLDQETGLAR
	CYB2	Energy	T390	AMKKpTNVRRSQGASR
Lootate	GUT2	Energy	T438	GSApTQGVVR
Galactose	HER1	Unknown	S157	SSpSISTSLNER
(16)	MCR1	Energy	\$37	NQHpSFVFNESNK
()	MDV/1	biogenesis	\$27 or \$29 or T31	
	MDV1	biogenesis	327 01 329 01 131	pSNpSNpTQDVLTNNGPTK
		C-compound and		
		carbohydrate		
	PDH1	metabolism	\$250	KpSWAAGDAVSR
		C-compound and		
	DD L14	carbonydrate	T.54	
		Protein foto	101	
			5096 5185	
1.1.1	0114	Cellular	5105	
Lactate +		communication /		
Glucose	CYR1	signal transduction	T389	
(2)	SUR7	Unknown	S221	LASTYpSIDNSR
	CAT2	Lipid metabolism	S25	MHpSAIVNYSTQK
	CIT2	Energy	S8	TVPYLNpSNR
	0112	Energy		
Lactate	0112	C-compound and		
Lactate (4)	0112	C-compound and carbohydrate		
Lactate (4)	ICL2	C-compound and carbohydrate metabolism	T82 or s83 or S87 or S88	GSLPANpTpSIYPpSpSYQAR

(http://www.yeastgenome.org/). The pathways were affected differentially and two major patterns could be identified. Firstly, proteins involved in protein fate, amino acid metabolism,

transport, C-compound and carbohydrate, vitamins and cofactors metabolism were mainly LAC. Secondly, proteins involved in energy, protein synthesis and mitochondria biogenesis were

¹⁴⁶

Fig. 3 – Regulation of proteins abundance and protein phosphorylation status for different metabolic pathways. Distribution of varying proteins (A) and varying phosphorylation sites (B) in their 4 trends of regulation (LAC, GLU, LAC⁺, GAL) for every metabolic pathway. For every metabolic pathway, the number of proteins and the number of phosphorylation sites associated to each trend are precised.

mostly GLU. For the other pathways (lipid metabolism, cell rescue, defense and virulence, nucleotide metabolism, cell cycle and DNA processing) the proteins did not appear to be grouped in any specific cluster, or the number of the proteins observed was too small to reach any significant conclusion. Accordingly, the metabolic pathway displaying the most variation of protein amount was energy metabolism that included enzymes of the respiratory chain and TCA cycle. They were all GLU , i.e. more abundant in lactate and less in glucose, but differed by their abundance in galactose medium. It was of particular interest to note that the external NADH dehydrogenase Nde1p, the inhibitory peptide of the ATP synthase Inh1p and the TCA cycle enzyme Cit1p are accumulated in galactose medium, contrary to their respective functional homologs Nde2p, Stf1p and Cit3p (78%, 79% and 62% of homology, respectively). This suggests that growth in galactose medium might require the specific function of one specific homolog.

Phosphorylation sites whose status changed according to the carbon substrate were also associated with the metabolic pathway of the protein containing the residue (Fig. 3, panel B). Proteins of energy metabolism show the highest number of quantified sites displaying different phosphorylation levels. They were mainly dephosphorylated under glucose conditions. The other metabolic pathways did not show a general trend.

Our analysis gives deeper results on the mitochondrial changes at both proteomic and phosphoproteomic levels for every metabolic pathway. The most regulated metabolic pathway at both proteomic and phosphoproteomic levels was energy metabolism with 60 proteins exhibiting different abundances according to conditions and 28 phosphosites (20 phosphoproteins) showing different levels of phosphorylation as a function of growth medium. As the accumulation of the respiratory complexes has been shown to be modified in fermentescible conditions compared to a respirable one [1], we particularly focused our attention on the regulation of proteins involved in the respiratory chain. Interestingly, it must be noted that most of the protein chaperones involved in the assembly of the respiratory complexes were not regulated in the same way as the OXPHOS proteins, as no significant variation in their amount has been detected on the three different carbon sources (see Supplemental data S1).

3.4. Phosphorylation of proteins belonging to the oxidative phosphorylation display major variations between fermentative and respiratory growth and phosphorylation regulation is site-dependent

31 proteins involved in the respiratory chain were reproducibly quantified in the 3 growth conditions and showed different abundances according to the condition (Table 4). They are all GLU-, i.e. more abundant in lactate compared to glucose, which account for an increase in the oxidative phosphorylation during growth in respiratory conditions.

19 of these proteins were phosphorylated, displaying 37 phosphosites, which suggests an important role of phosphorylation in the regulation of the respiratory chain (Table 4). 12 of these residues located on 7 proteins exhibited a varying level of phosphorylation depending on the carbon source. For most of them, the level of phosphorylation globally varied in the same direction as protein amounts, as proteins were more abundant and more phosphorylated in respiratory conditions, except for 2 proteins. Rip1p was more abundant in lactate but more phosphorylated in glucose. Atp2p was also more abundant in lactate, but showed different phosphorylation patterns according to the residue: one residue was more phosphorylated in lactate (T43) but the two others (S35 and T40) were specifically less phosphorylated in galactose. Interestingly, 2 proteins (Cor1p and Atp2p) displayed several phosphorylation sites that were differentially regulated according to the substrate. Thus the variation of phosphorylation according to carbon substrate was site-dependent and not proteindependent. Considering the position of the phosphosites on the complexes, most of the 37 quantified phosphosites are located on the matrix side, where the extramembrane parts of the complexes predominate while only one site, localized on Rip1p, is located in the intermembrane space (Fig. 4). When it was possible to look at the precise position in the structure, for Atp2p for example, we observed that the phosphorylation sites were at the periphery of the subunit which is in agreement with a good accessibility to kinases. Relations between kinases and their targets are still poorly documented in mitochondria: in particular for the mitochondrial proteins encoded by the nucleus, the question to know if phosphorylation occurs before

147

148

JOURNAL OF PROTEOMICS 106 (2014) 140-150

Table 4 – Phosphorylation of OXPHOS proteins whose abundance change according to growth conditions. Phosphorylationsites displaying a significant quantitative variation were noted in bold with 1 asterisk and those displaying a consistentqualitative variation were noted in bold with 2. Positions of the phosphorylated amino acids were determined fromprecursor proteins. Phosphorylation sites unambiguously located on the peptide sequence are indicated in bold and by p inthe sequence. Otherwise, the different possibilities are noted in the sequence.ORFGenePhosphorylation siteGroup of regulation for levelPhosphopeptide

ORF	Gene	Phosphorylation site	Group of regulation for level of phosphorylation	Phosphopeptide
YML120C	NDI1	S27		pSpTGVENSGAGPTSFK
YMR145C	NDE1	S265		AASLpSPKDPER
YDL085W	NDE2			
YKL148C	SDH1	S524*	GLU	TQpSpSLDEGVR
		S449**	GLU	LGANp SLLDLW FGR
YLL041C	SDH2	T21ou T23*	GLU	ApTApTTAAATHTPR
		T24**	GLU	ATATpTAAATHTPR
YKL141W	SDH3	T30 ou T28		ATATTAAApTHpTPR
YDR178W	SDH4			
YOR065W	CYT1			
YEL024W	RIP1	S24*	GLU ⁺	Ip SQp SLLA SK
YBL045C	COR1	S247*	GLU	AAFLGpSEVR
		T172**	GLU	VLEHLHSTAFQNpTPLpSLPTR
		S94 ou S95 ou S98		EGLALpSpSNIpSR
		S135		ANLLSpSpSNFEATK
	0.050	T24		
YPR191W	QCR2	\$334		NAVQNESVSpSPIELNFDAVKDFK
YDR529C	QCR7			
YJL166VV	QCR8			
YHR001W-A	QCR10	S5 S8		AYTSHLSSK AYTSHLpSSK
Q0250	COX2			
YGL187C	COX4	T58**	GLU	EGTVPpTDLDQETGLAR
YNL052W	COX5A	S92		RPVLNKGDpSSFIAK
		S93		GDSpSFIAK
YGL191W	COX6A = COX13			
YLR038C	COX6B = COX12	S7		ADQENpSPLHTVGFDAR
YLR395C	COX8	• ·		
YBL099W	ATP1	S178		RPSVHEPVQTGLK
		138 ou 537		
		507		
		143		
		547	CAL	AGPTEVSPSILEER
I JRIZIVV	ATFZ	T40	GAL	ASAAQSPIFIGA
		\$35*	GAL	An SA A OST PITCK
		\$30	OAL	ASAAOpSTRITCK
		5209		FTOAGoSEVSALLGR
YBR039W	ATP3	S226		TIFOSPOSEG KEFIDTDANVPR
YDR298C	ATP5	S48		NDSSIDAAFOSI OK
YI R295C	ATP14	T92		AYTEONVEDTAHVAK
YDL004W	ATP16	S29 ou S30		AEAAApSpSGLK
YDR377W	ATP17	S23		NIGPSAPNAK
YML081C-A	ATP18			
YPR020W	ATP20			
YDR322C-A	ATP21 = TIM11			
	INH1	S33	GLU	GpSGSEDSFVKR
		S38		GSGSEDpSFVKR

or after their translocation to the mitochondria can be asked. However, some kinases have been shown to be located in the mitochondria (e.g. pyruvate dehydrogenase kinase [30] and protein kinase B, that phosphorylates Atp2p [31]) which seems rather in favor of a regulation within the organelle.

We have been able for the first time to quantitatively analyze variations of respiratory chain at proteomic and phosphoproteomic levels during a change in carbon source. Among the 37 phosphorylation sites discussed here, 34 have not been described yet (see Supplemental data S4). The comparison of these modifications suggests an important role for phosphorylation in the regulation of the respiratory complexes and this study is essential to target the phosphorylation sites which may be involved in this process. Some phosphorylation sites, located on Rip1p and Atp2p, are of

JOURNAL OF PROTEOMICS 106 (2014) 140-150

Fig. 4 – Localization of phosphorylation sites on yeast OXPHOS proteins whose abundance vary according to conditions. The presented phosphoproteins exhibited different abundance according to grow th conditions. Their phosphorylation sites also displayed either a consistent qualitative variation or a significant quantitative variation. Residues represented by a yellow point are those more phosphorylated in respiratory medium. The one in green has a higher level of phosphorylation in glucose medium. Those in gray are less phosphorylated in galactose, specifically. C II = succinate ubiquinone reductase. C III = ubiquinone cytochrom e c reductase. C IV = cytochrom e c oxidase. C V = ATP synthase. Respiratory complexes presented in their dimeric form are noticed by a subscript 2. Phosphorylation site of Inh1p is not localized in its structure since only bovine structure of Inh1p is available.

particular interest since modifications of protein abundances and of phosphorylation levels are not on the same way and further experiments to elucidate the role of these residues are currently under investigation.

4. Conclusions

We performed a combined approach of quantitative proteomic and phosphoproteomic analysis of mitochondria from yeast grown on three different carbon sources: glucose, galactose and lactate. We highlighted significant differences of the proteome between the two fermentative substrates studied which suggest that galactose could be finally considered as a substrate displaying an intermediate metabolism between fermentation (glucose medium) and respiration (lactate medium). Proteins involved in a same metabolic pathway seem to exhibit a specific pattern of accumulation among the carbon source. The most regulated metabolic pathway at both proteomic and phosphoproteomic levels was energy metabolism ant particularly the proteins involved in oxidative phosphorylation. They are all more abundant in lactate and less in glucose but some differs by their abundance in galactose. Their phosphorylation level also varies according to the carbon substrate mostly in the same way as the protein accumulation with a few exceptions. Our extensive study provides for the first time confident quantitative data on mitochondrial phosphosites responses to different carbon substrates. It is a step forward in the analysis of regulation of mitochondrial proteins by phosphorylation.

Acknowledgments

This work has received financial support and encouragements from Pr Marc Le Maire and particularly from Dr Bruno Robert. We are grateful to Dr Francis Haraux for helpful discussions since the beginning of the project and for the design of the yeast respiratory chain presented in Fig. 4. We thank Mehdi Lembrouk and Thierry Balliau for technical assistance and Aurélie Stanislas for the achievement of the preliminary experiments. We acknowledge Dr Patrice Hamel and Dr Andrew Gall for critical reading of the manuscript. We thank Pr Alexander Tzagoloff, Dr Manuel Garrigos and Dr Andy Pascal for their support. We thank Attila Csordas and the PRIDE team for their assistance in making the data available in the PRIDE repository. This work was supported by the International PhD Program for Life Science of CEA (IRTELIS) for which we sincerely thank Dr Christophe Carles.

Appendix A. Supplementary data

All the data on the protein and phosphopeptide identification are available on the following link: http://moulon.inra.fr/ protic/yeast_mitochondria (login: mitochondria/password: review) The mass spectrometry proteomics data have been also deposited to the ProteomeXchange Consortium (http://www. proteomexchange.org) via the PRIDE partner repository [32] with the data identifiers PXD000714 and PXD000735 Project name: Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.jprot. 2014.04.022.

REFERENCES

- Schagger H, Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 2000;19:1777–83.
- [2] Acín-Pérez R, Fernández-Silva P, Peleato ML, Pérez-Martos A, Enriquez JA. Respiratory active mitochondrial supercomplexes. Mol Cell 2008;32:529–39.
- [3] Su B, Wang X, Zheng L, Perry G, Smith MA, Zhu X. Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochim Biophys Acta 1802;2010:135–42.
- [4] Winklhofer KF, Haass C. Mitochondrial dysfunction in Parkinson's disease. Biochim Biophys Acta 2009;1802:29–44.
- [5] DiMauro S, Bonilla E, Davidson M, Hirano M, Schon EA. Mitochondria in neuromuscular disorders. Biochim Biophys Acta 1998;1366:199–210.
- [6] Maechler P, Wollheim CB. Mitochondrial function in normal and diabetic beta-cells. Nature 2001;414:807–12.
- [7] Verma M, Kagan J, Sidransky D, Srivastava S. Proteomic analysis of cancer-cell mitochondria. Nat Rev Cancer 2003;3:789–95.
- [8] Takahashi H, Iwai M, Takahashi Y, Minagawa J Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2006;103:477–82.
- [9] Bodenmiller B, Wanka S, Kraft C, Urban J, Campbell D, Pedrioli PG, et al. Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci Signal 2010;3:rs4.
- [10] Schonberg A, Baginsky S. Signal integration by chloroplast phosphorylation networks: an update. Front Plant Sci 2012;3:256.
- [11] Oliveira AP, Ludwig C, Picotti P, Kogadeeva M, Aebersold R, Sauer U. Regulation of yeast central metabolism by enzyme phosphorylation. Mol Syst Biol 2012;8:623.
- [12] Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J, Hood L, et al. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteomics 2002;1:323–33.
- [13] Ohlmeier S, Kastaniotis AJ, Hiltunen JK, Bergmann U. The yeast mitochondrial proteome, a study of fermentative and respiratory growth. J Biol Chem 2004;279:3956–79.
- [14] Ohlmeier S, Hiltunen JK, Bergmann U. Protein phosphorylation in mitochondria. A study on fermentative and respiratory growth of Saccharomyces cerevisiae. Electrophoresis 2010;31:2869–81.
- [15] Pflieger D, Le Caer JP, Lemaire C, Bernard BA, Dujardin G, Rossier J Systematic identification of mitochondrial proteins by LC–MS/MS. Anal Chem 2002;74:2400–6.

- [16] Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, et al. The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 2003;100:13207–12.
- [17] Reinders J, Zahedi RP, Pfanner N, Meisinger C, Sickmann A. Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. JProteome Res 2006;5:1543–54.
- [18] Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJ Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 2009;4:484–94.
- [19] Lemaire C, Dujardin G. Preparation of respiratory chain complexes from Saccharomyces cerevisiae wild-type and mutant mitochondria: activity measurement and subunit composition analysis. Methods Mol Biol 2008;432:65–81.
- [20] Meisinger C, Sommer T, Pfanner N. Purification of Saccharomyces cerevisiae mitochondria devoid of microsomal and cytosolic contaminations. Anal Biochem 2000;287:339–42.
- [21] Reinders J, Wagner K, Zahedi RP, Stojanovski D, Eyrich B, van der Laan M, et al. Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Mol Cell Proteomics 2007;6:1896–906.
- [22] Bonhomme L, Valot B, Tardieu F, Zivy M. Phosphoproteome dynamics upon changes in plant water status reveal early events associated with rapid growth adjustment in maize leaves. Mol Cell Proteomics 2012;11:957–72.
- [23] Valot B, Langella O, Nano E, Zivy M. MassChroQ: a versatile tool for mass spectrometry quantification. Proteomics 2011;11:3572–7.
- [24] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. JRoy Stat Soc B 1995;57:289–300.
- [25] Margeot A, Garcia M, Wang W, Tetaud E, di Rago JP, Jacq C. Why are many mRNAs translated to the vicinity of mitochondria: a role in protein complex assembly? Gene Cross-Talk between Nucleus and Organelles, 354; 2005 64–71.
- [26] Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels J. A sampling of the yeast proteome. Mol Cell Biol 1999;19:7357–68.
- [27] Prokisch H, Scharfe C, Camp II DG, Xiao W, David L, Andreoli C, et al. Integrative analysis of the mitochondrial proteome in yeast. PLoS Biol 2004;2:e160.
- [28] Lagunas R. Misconceptions about the energy metabolism of Saccharomyces cerevisiae. Yeast 1986;2:221–8.
- [29] Amoutzias GD, He Y, Lilley KS, Van de Peer Y, Oliver SG. Evaluation and properties of the budding yeast phosphoproteome. Mol Cell Proteomics 2012;11:1–13.
- [30] Muller G, Bandlow W. Protein phosphorylation in yeast mitochondria: cAMP-dependence, submitochondrial localization and substrates of mitochondrial protein kinases. Yeast 1987;3:161–74.
- [31] Bijur GN, Jope RS. Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J Neurochem 2003;87:1427–35.
- [32] Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, Foster JM, et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in. Nucleic Acids Res 2013;41:D1063–9.

Résultats et Discussion - Partie A

IV. Discussion sur le niveau d'accumulation des protéines mitochondriales selon le substrat carboné

Dans une première partie, nous avons comparé l'abondance des protéines mitochondriales dans les trois conditions de culture (glucose 2%, galactose 2% et lactate 2%). Nous avons classé ces protéines selon leur appartenance à une voie métabolique définie selon MIPS (http://mips.helmholtz-muenchen.de/genre/proj/yeast).La voie métabolique présentant le plus de variations selon les conditions de culture est la voie métabolique énergie. Elle regroupe les protéines impliquées dans le cycle TCA, la phosphorylation oxydative ou encore la conversion du pyruvate en éthanol ou acétate, dont nous avons étudié les variations en détail. Dans un premier temps, nous avons comparé l'abondance des protéines dans les deux conditions extrêmes (glucose et lactate) afin de vérifier la pertinence de nos résultats par rapport aux données de la littérature. Nous avons ensuite comparé l'abondance des protéines en galactose par rapport aux deux conditions extrêmes afin de situer le métabolisme de ce substrat par rapport aux deux autres.

1. Comparaison lactate/ glucose : Le glucose est un substrat fermentaire

Le glucose est un substrat largement étudié, connu pour réprimer nombre de gènes et particulièrement ceux impliqués dans la respiration (cycle TCA et phosphorylation oxydative).

a) Données de la littérature

Consommation oxydative du glucose

Lorsque la concentration de glucose est inférieure à une concentration critique, les cellules de *S. cerevisiae* sont capables d'oxyder le glucose via la respiration (Polakis, Bartley, and Meek 1964).

Consommation fermentaire du glucose

Lorsque la concentration en glucose augmente et dépasse la concentration critique, l'effet glucose a lieu : celui-ci consiste en une baisse de la quantité en cytochromes et en complexes respiratoires ainsi qu'en une diminution de l'activité enzymatique des complexes respiratoires (Strittmatter 1957; Yin et al. 2003). Ceci est la conséquence d'une répression des gènes induite par le glucose (Gancedo 1998). Cette répression des complexes respiratoires, lorsqu'une certaine concentration en glucose est atteinte, induit un changement du métabolisme en faveur de la fermentation (Aon and Cortassa 1998). Le produit majoritaire alors formé est l'éthanol (De Deken 1966).

Le métabolisme fermentaire du glucose a été beaucoup étudié. *S. cerevisiae* est une souche Crabtree positive : même en condition d'aérobie, la présence de glucose au-delà de sa concentration critique entraîne une répression de la voie respiratoire et une consommation du glucose par la voie fermentaire (Ratledge 1991). En fait, la répression catabolique induit une baisse de la capacité respiratoire des cellules : la forte concentration en glucose associée à la faible capacité respiratoire des cellules empêcherait la cellule de consommer entièrement le glucose via la respiration, et elle utiliserait alors le métabolisme fermentaire.

Il est à noter toutefois que la concentration critique de glucose à laquelle se déroule le changement métabolique n'est pas la même dans toutes les études: selon les cas, 0.01% (Kasperski 2008) ou 0.05% (Polakis, Bartley, and Meek 1964) de glucose induit le changement métabolique.

L'effet glucose implique que la part de la respiration en présence de fortes concentrations de glucose est très faible en comparaison d'un milieu respiratoire dépourvu de sucres, comme le pyruvate (Fendt and Sauer 2010) (cf Tableau 16).

Table 1 Physiological data of 5. cereviside P14 during exponential batch growth on four carbon sources								
c-source	uptake rate [mmol/g/h]	biomass yield [g(<i>cdw</i>)/g(<i>c - source</i>)]	growth rate [1/h]	degree of respiration [AU]				
glucose	-16.3 ± 1.1	0.11 ± 0.01	0.33 ± 0.01	0.00 ± 0.00				
mannose	-12.8 ± 1.1	0.14 ± 0.03	0.32 ± 0.01	0.06 ± 0.00				
galactose	-4.5 ± 0.3	0.25 ± 0.02	0.20 ± 0.01	6.90 ± 1.30				
pyruvate	-2.5 ± 0.4	0.45 ± 0.04	0.10 ± 0.01	13.30 ± 2.66				

Table 1 Physiological data of S. cerevisiae FY4 during exponential batch growth on four carbon sources

Standard deviations were fitted from eight independent cultures. Error ranges for the degree of respiration were fitted with the input of eight independent cultures.

Tableau 16: Comparaison du métabolisme respiratoire de S. cerevisiae dans différentes conditions de culture.

Les substrats sont présents dans le milieu à 1% final. Pour le degré de respiration, AU=Arbitrary Units. (Fendt and Sauer 2010)

C'est pourquoi le glucose (utilisé généralement à une concentration supérieure à 0.05%) est associé à un substrat fermentaire. Il est à noter que dans nos conditions de culture, la concentration en glucose était de 2%.

b) Nos résultats de protéomique

Dans notre étude protéomique, 81 protéines de la voie métabolique énergie ont été quantifiées dans les trois conditions de culture. 60 d'entre elles ont une accumulation différente en lactate et en glucose (cf Figure 32): en particulier 53 sont plus abondantes en lactate qu'en glucose (clusters 2 à 4).

Figure 32: Répartition des protéines de la voie métabolique énergie dans les clusters de variation définis dans notre étude protéomique.

ns= non significative (pas de variation significative entre les 3 conditions);

C1: lactate<galactose<glucose;

C2: glucose<galactose=lactate; C3: glucose<galactose<lactate; C4: glucose=galactose<lactate.

Le nombre de protéines associées à chaque catégorie est indiqué sur le secteur correspondant.

Le boxplot représentant le profil de variation des protéines de chaque groupe est représenté: G=glucose; Ga=galactose; L=lactate.

Protéines plus abondantes en lactate

Les protéines des groupes C2, C3 et C4 (plus abondantes en lactate qu'en glucose) sont en grande majorité impliquées dans la respiration et le cycle TCA (cf Figure 33 et Tableau 17). Ce résultat est en accord avec les études précédentes qui ont montré une baisse du niveau d'expression des protéines de la respiration en glucose par rapport aux substrats respiratoires. Ce résultat suggère un faible taux de respiration en glucose, comme attendu d'après les données de la littérature.

Figure 33: Fonction énergétique des 53 protéines de la voie métabolique énergie plus abondantes en lactate qu'en glucose (groupes C2, C3, C4)

	TCA cycle	respiration	fermentation			
C2	2	17				
		ATP1, ATP14, ATP2, COR1, COX12, COX13, COX2, COX4,		1.5 1- 0.5- 0- -0.5- -1- •		· + ·
	וטחצ, ואטחז	MCR1, NDE1, QCR10, QCR2, QCR7, QCR8, RIP1, TIM11, CIR2		-1.3 + G	Gal	L
C3	7	19	1			
	CIT1, FUM1,	ATP16, ATP17, ATP18, ATP20, ATP3, ATP5, COX5A, COX8,		1.5 1- 0.5- 0- -0.5- -1-	Ē	—
	IDH1, KGD1, KGD2, LSC1, LSC2	CYB2, CYT1, GUT2, MIR1, NDI1, PET9, SDH1, SDH2, SDH3, SDH4, INH1	ALD4	-1.5 G	Gal	L
C4	1	6		1.		
	CIT3	AAC1, DLD1, ETR1, NDE2, STF1, YJL045W				•

Tableau 17: Protéines de la voie métabolique énergie plus abondantes en lactate qu'en glucose

C2, C3 et C4 correspondent aux groupes de variation définis dans notre analyse protéomique C2: glucose<galactose=lactate; C3: glucose<galactose<lactate; C4: glucose=galactose<lactate. Pour les 3 groupes de variation, le nombre de protéines de chaque fonction énergétique est indiqué. Le boxplot représentant le profil de variation des protéines est présenté à droite: G=glucose; Gal=galactose; L=lactate

Protéines plus abondantes en glucose

Nous avons trouvé 7 protéines de la voie métabolique énergie dans le groupe C1 : ce sont des protéines plus abondantes en glucose qu'en lactate (cf Figure 34 et Tableau 18). Parmi ces protéines, 4 sont impliquées dans la fermentation, c'est-à-dire dans la conversion du pyruvate en éthanol (ALD5, ALD6) ou en acétate (ADH3, ADH4). Ce résultat va dans le sens d'un métabolisme fermentaire du glucose.

Figure 34: Fonction énergétique des 7 protéines de la voie métabolique énergie plus abondantes en glucose qu'en lactate (groupe C1)

	TCA cycle	respiration	fermentation	autre	1.5		
C1	1	2	4		0,5	Ţ	
	4000		ADH3, ADH4,	-	-0,5-	Ţ	÷
	ACUZ	AIIVI45, USIVI1	ALD5, ALD6		-1-	•	<u> </u>

Tableau 18: Protéines de la voie métabolique énergie plus abondantes en glucose qu'en lactate C1 correspond au groupe de variation défini dans notre analyse protéomique C1: glucose>galactose>lactate.

Le nombre de protéines de chaque fonction énergétique est indiqué. Le boxplot représentant le profil de variation des protéines est présenté à droite: G=glucose; Gal=galactose; L=lactate

Le métabolisme en lactate et le métabolisme en glucose présentent de nombreuses différences car 75% environ des protéines de la voie métabolique énergie qui ont été quantifiées ont une abondance significativement différente dans ces deux milieux de culture (le ratio glucose/lactate est compris entre 0.18 et 0.5). Le lactate se caractérise par une augmentation des enzymes du cycle TCA et de la phosphorylation oxydative ; le glucose par une augmentation des enzymes produisant l'éthanol et l'acétate, étapes finales de la fermentation. Ces résultats sont en accord avec la littérature et avec le métabolisme attendu dans ces deux conditions.

2. Comparaison galactose/ lactate-glucose : Quel est le métabolisme énergétique en galactose : fermentaire ? respiratoire ? respiro-fermentaire ?

Le galactose est métabolisé par les protéines des gènes GAL qui le convertissent en glucose-6-phosphate afin d'entrer dans la glycolyse (Timson 2007). Cette voie métabolique (voie de Leloir) est activée en présence de galactose, en aérobie (van den Brink et al. 2009) (cf Introduction générale-I-3).

a) Données de la littérature

Consommation oxydative du galactose

S. cerevisiae présente la capacité d'oxyder le galactose, à un niveau plus fort que le glucose ; pour une même concentration en glucose ou en galactose, c'est en galactose que les enzymes de la chaîne respiratoire sont plus abondantes et plus actives (Strittmatter 1957).

Fendt et Sauer (Fendt and Sauer 2010) ont comparé l'abondance d'un certain nombre d'enzymes de la phosphorylation oxydative et du cycle TCA dans divers milieux de culture (glucose, galactose, pyruvate). 20 protéines montrent une variation d'abondance entre les milieux : pour 13 de ces enzymes, l'accumulation en galactose reste inférieure à celle observée en présence du pyruvate, substrat respiratoire.

Les enzymes de la respiration aurait une expression intermédiaire en galactose par rapport au glucose (niveau d'accumulation le plus faible) et au pyruvate (accumulation la plus grande) (Fendt and Sauer 2010). De plus, Fendt et Sauer ont montré que le taux de respiration est intermédiaire en galactose par rapport au glucose et au pyruvate (cf Tableau 19) (Fendt and Sauer 2010). Ceci est en accord avec la quantité des enzymes de la respiration dans les trois conditions.

La faible accumulation des enzymes de la respiration en glucose est due à une répression des gènes : l'effet répresseur serait aussi présent en galactose mais de façon plus faible qu'en glucose (Polakis, Bartley, and Meek 1964).

c-source	uptake rate [mmol/g/h]	biomass yield [g(<i>cdw</i>)/g(<i>c - source</i>)]	growth rate [1/h]	degree of respiration [AU]
glucose	-16.3 ± 1.1	0.11 ± 0.01	0.33 ± 0.01	0.00 ± 0.00
mannose	-12.8 ± 1.1	0.14 ± 0.03	0.32 ± 0.01	0.06 ± 0.00
galactose	-4.5 ± 0.3	0.25 ± 0.02	0.20 ± 0.01	6.90 ± 1.30
pyruvate	-2.5 ± 0.4	0.45 ± 0.04	0.10 ± 0.01	13.30 ± 2.66

Table 1 Physiological data of S. cerevisiae FY4 during	g exponential batch growth on four carbon sources

Standard deviations were fitted from eight independent cultures. Error ranges for the degree of respiration were fitted with the input of eight independent cultures.

Tableau 19: Comparaison du métabolisme respiratoire de S. cerevisiae dans différentes conditions de culture.

Pour le degré de respiration, AU=Arbitrary Units. (Fendt and Sauer 2010)

Consommation fermentaire du galactose

Des études ont montré que le galactose pouvait être fermenté par *Saccharomyces cerevisiae* (Polakis and Bartley 1965; Söhngen and Coolhaas 1924) et que le degré de fermentation augmentait avec la concentration en galactose (Sheffner and Lindegren 1952). Cependant, la fermentation (production d'éthanol) en aérobie est plus faible en milieu galactose qu'en milieu glucose: le tableau 20, ci-dessous, spécifie la quantité d'éthanol produite en présence de 0.9% de glucose, 0.9% galactose et 0.75% pyruvate (Polakis and Bartley 1965; Ostergaard et al. 2000).

Pour rappel, dans notre étude, le glucose et le galactose étaient présents à une concentration de 2%.

		Time		Yield	Concn. of medium at	different carbon time of harvest (µmoles/ml.)	n sources in ting the cells	added to medium consumed at time of	Ethanol produced (mµmole/3µg atoms of C of
Carbon	Medium	(br.)	Turbidity	(g. wet wt./100 ml. of medium)	Sugar	Pyruvate	Ethanol	(µmoles/ml.)	originally)
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)
Chaose	Complete	104	93	0.70	0	0-46	33-6	50	0.336*
(50 umoles/ml.)	compieto	16	200	1.29	0	< 0.1	3.7	50	-
(00 µ mores / min)		24	220	1-43	0	< 0.1	0-1	50	-
	Synthetic	12	35	0-21	31.2	0-38	20.1	18-8	0.535
		15	66	0-37	0	< 0.1	22.9	50	0.229*
		30	78	0-50	0	< 0.1	8.8	50	-
Galactose	Complete	14	40	0.29	31	0.51	7.8	19	0.202
(50 umoles/ml.)		27	180	1.29	0	<0.1	0-1	50	—
(00 p=00)	Synthetic	17	37	0.27	27	0-36	15-6	23	0.339
		27	78	0.68	0	<0.1	8-4	50	—
Pyruvate	Complete	27	45	0.39	—	11-9	5.3	70-1	0.075
(82 µmoles/ml.)	Synthetic	27	12	0-06	-	38-1	0.2	43-9	0.002
	• T.c	w estimatos b	acanea alucos	had been consumed	for at least	30-60 min. befo	re the harvest	ing of the cells.	

Table 2. Concentrations of different carbon sources in the growth medium at different stages of growth of yeast cells Each medium indicated in column (b) was supplemented with the carbon source indicated in column (a). The test for glutamate in the synthetic medium was negative and a coxoglutarate was not present in any media.

Tableau 20: Comparaison du métabolisme fermentaire de S. cerevisiae dans différentes conditions de culture.

50µmoles/mL de glucose ou galactose correspondent à 0.9% de sucres; 82µmoles/mL de pyruvate correspond à 0.75% de substrat. (Polakis and Bartley 1965)

Un métabolisme respiro-fermentaire

Une étude a conduit à l'idée que la fermentation et l'oxydation du galactose étaient deux processus compétitifs (Sheffner and Lindegren 1952).

Les données de la littérature suggèrent que le galactose pourrait être métabolisé par les deux voies et que ces deux modes de consommation du galactose pourraient se produire en parallèle.

b) Nos résultats de protéomique

Afin de comprendre le métabolisme en galactose, nous avons comparé la quantité des protéines de la voie métabolique énergie en galactose par rapport aux deux autres conditions : glucose et lactate.

 Les 19 protéines du groupe C2 ont une quantité similaire en galactose et en lactate, mais plus élevée qu'en glucose (cf Figure 35 et Tableau 21). Elles sont toutes impliquées dans le cycle TCA ou la phosphorylation oxydative : 17 de ces protéines sont des protéines de la chaîne respiratoire, notamment les sous-unités catalytiques des complexes respiratoires (Atp1p, Atp2p, Cox2p, Rip1p) ou d'autres sous-unités constitutives des complexes (Cor1p, Qcr2p, Qcr7p, Qcr8p, Qcr10p pour le complexe III; Cox4p, Cox12p, Cox13p pour le complexe IV; Atp14p, Tim11p pour le complexe V).

C2: glucose<galactose=lactate

Tableau 21: Protéines de la voie métabolique énergie du cluster C2

C2 correspond au groupe de variation défini dans notre analyse protéomique C2: glucose<galactose=lactate.

Le nombre de protéines de chaque fonction énergétique est indiqué. Le boxplot représentant le profil de variation des protéines est représenté: G=glucose; Gal=galactose; L=lactate.

 Les 27 protéines du groupe C3 ont une abondance intermédiaire en galactose par rapport au lactate et au glucose (Figure 36 et Tableau 22): 26 sont impliquées dans le cycle TCA ou la phosphorylation oxydative.

Figure 36: Fonction énergétique des 27 protéines de la voie métabolique énergie du groupe C3

C3: glucose<galactose<lactate

	TCA cycle	respiration	fermentation	autre			
C3	7	19	1				
	CIT1, FUM1, IDH1, KGD1, KGD2, LSC1, LSC2	ATP16, ATP17, ATP18, ATP20, ATP3, ATP5, COX5A, COX8, CYB2, CYT1, GUT2, MIR1, NDI1, PET9, SDH1, SDH2, SDH3, SDH4, INH1	ALD4		-1.5 1.5 0 -0.5 -1.1 -1.5 G	Gal	<u>ب</u>

Tableau 22: Protéines de la voie métabolique énergie du groupe C3

C3 correspond au groupe de variation défini dans notre analyse protéomique C3: glucose<galactose<lactate.

Le nombre de protéines de chaque fonction énergétique est indiqué. Le boxplot représentant le profil de variation des protéines est représenté: G=glucose; Gal=galactose; L=lactate.

• Les 7 protéines du groupe C4 ont une abondance aussi faible en glucose qu'en galactose par rapport au lactate (cf Figure 37 et Tableau 23): 6 sont impliquées dans la respiration mais ne sont pas directement des sous-unités des complexes respiratoires.

C4: glucose=galactose<lactate

	TCA cycle	respiration	fermentation	autre	1.			 -
C4	1	6			0,5	•		•
		AAC1, DLD1,			0.	•	_ —	
	CIT3	ETR1, NDE2,			-0,5-			
		STF1, YJL045W			-1.		•	
					-1,5+	G	Gal	L

Tableau 23: Protéines de la voie métabolique énergie du groupe C4

C4 correspond au groupe de variation défini dans notre analyse protéomique C4: glucose=galactose<lactate.

Le nombre de protéines de chaque fonction énergétique est indiqué. Le boxplot représentant le profil de variation des protéines est représenté: G=glucose; Gal=galactose; L=lactate.

• Dans le groupe C1 sont regroupées les protéines plus abondantes en glucose qu'en lactate ; leur accumulation est intermédiaire en galactose (cf Figure 38 et Tableau 24): 4 protéines impliquées dans la fermentation y sont regroupées.

Figure 38: Fonction énergétique des 7 protéines de la voie métabolique énergie du groupe C1

C1: glucose>galactose>lactate

	TCA cycle	respiration	fermentation	autre	1.5	Ē		
C1	1	2	4		0.5	÷	İ	
	4002		ADH3, ADH4,		-0,5		Ţ	÷
	ACUZ	AIIVI45, USIVI1	ALD5, ALD6		-1-		•	÷
L			1			-		

Tableau 24: Protéines de la voie métabolique énergie du groupe C1

C1 correspond au cluster de variation défini dans notre analyse protéomique

C1: glucose>galactose>lactate.

Le nombre de protéines de chaque fonction énergétique est indiqué. Le boxplot représentant le profil de variation des protéines est représenté: G=glucose; Gal=galactose; L=lactate.

Vers un métabolisme oxydatif en galactose

Afin de comprendre l'implication du métabolisme oxydatif en galactose, nous nous sommes intéressés à l'abondance des enzymes de la respiration (cycle TCA et phosphorylation oxydative) en galactose : au total 19 protéines sont aussi abondantes en galactose qu'en lactate (C2) ; 26 protéines ont une abondance plus faible en galactose qu'en lactate (milieu respiratoire) mais plus forte qu'en glucose (milieu fermentaire) (C3) (cf Figure 39).

Ceci suggère que les cellules cultivées en galactose utilisent le cycle TCA et la phosphorylation oxydative pour produire l'énergie, dans une mesure plus faible qu'en lactate mais plus importante qu'en glucose. Ceci serait en accord avec l'hypothèse selon laquelle le galactose est un sucre moins répresseur que le glucose, et que le galactose est consommé, du moins en partie, via un métabolisme oxydatif.

Seules 7 protéines ont une abondance nettement diminuée en galactose par rapport au lactate (C4) mais ces protéines ne sont pas des sous-unités des complexes respiratoires.

Figure 39: Répartition des protéines du cycle TCA et de la respiration dans les clusters de variation définis dans l'analyse protéomique

ns= non significatif: l'abondance des protéines ne varie pas significativement entre les conditions de culture

Vers un métabolisme fermentaire en galactose

Nous nous sommes ensuite intéressés aux enzymes de la fermentation (production d'éthanol et d'acétate) afin de voir si cette voie métabolique est impliquée dans le métabolisme énergétique du galactose. 4 protéines impliquées dans la fermentation ont une accumulation intermédiaire en galactose par rapport au glucose et au lactate: ces protéines sont plus abondantes en galactose qu'en lactate suggérant une augmentation de la fermentation en galactose par rapport au substrat respiratoire. Ce résultat serait en accord avec une utilisation fermentaire du galactose, plus faible que celle du glucose mais plus forte que celle du lactate.

L'ensemble des résultats que nous avons obtenus en spectrométrie de masse suggère une contribution fermentaire et une contribution respiratoire dans le métabolisme du galactose. Ce métabolisme que l'on pourrait qualifier de respiro-fermentaire proviendrait de deux processus :

- d'une part, d'une répression des protéines de la respiration et du cycle TCA plus faible que celle du glucose, autorisant l'expression de ces voies métaboliques. Néanmoins, la quantité des complexes respiratoires restent plus faibles par rapport à celles obtenues en présence du substrat respiratoire lactate,
- d'autre part, une augmentation des enzymes de la fermentation par rapport au lactate, autorisant la fermentation dans une proportion plus faible qu'en glucose.

De plus, nous avons analysé par gel BN-PAGE des mitochondries de levure isolées après des cultures en glucose 2%, galactose 2% et lactate 2%, et solubilisées en laurylmaltoside 2%. La quantité du complexe IV a été estimée suite à un test immunologique avec un anticorps anti-cox6p (cf Figure 40). Cette étude nous a permis de confirmer que le complexe IV est moins présent en glucose 2% tandis qu'il l'est significativement en galactose 2% et en lactate 2%.

Figure 40: BN-PAGE des mitochondries de *S. cerevisiae* W303-1A, après culture en YLAC, YPGalA et YPGA, solubilisées en laurylmaltoside 2%.

La présence du complexe IV est détectée par un test immunologique avec un anticorps anti-Cox6p.

Ces données biochimiques confirment en partie que l'expression des enzymes de la respiration est intermédiaire en galactose par rapport aux deux conditions extrêmes: lactate et glucose.

V. Statistiques générales sur la phosphorylation mitochondriale

Au total, nous avons quantifié 289 sites de phosphorylation mitochondriaux dans 1, 2 ou 3 conditions de culture. Ces sites sont répartis dans les différents compartiments mitochondriaux (Figure 41): 26% sont matriciels, 20% sont localisés dans la membrane externe, 14% dans la membrane interne, 4% dans l'espace inter-membranaire. Les 36% restants sont situés sur des protéines dont la localisation mitochondriale n'est pas clairement définie, d'après SGD (ref: http://www.yeastgenome.org).

Figure 41: Localisation des sites de phosphorylation mitochondriaux quantifiés dans 1, 2 ou 3 conditions de culture

EIM=Espace inter-membranaire

non spécifié signifie que la localisation de la protéine phosphorylée n'est pas clairement identifiée.

81 sites de phosphorylation sont sur des protéines présentant une double localisation cellulaire (Figure 42). En plus de la mitochondrie, les autres compartiments cellulaires contenant ces sites sont principalement le cytosol (41%) ou la membrane plasmique (21%) et, dans une moindre mesure, le noyau (12%), ou l'eisosome (10%), ou le reticulum endoplasmique (7%), ou le peroxisome (5%), ou l'appareil de Golgi (4%). Nous pouvons nous demander si la phosphorylation des protéines présentant une double localisation cellulaire pourrait influencer leur localisation soit dans la mitochondrie soit dans l'autre compartiment identifié.

Figure 42: Deuxième localisation cellulaire des phosphoprotéines mitochondriales.

Le nombre de résidus phosphorylés concernés pour chaque double localisation est mentionné.

Cependant, la majorité des sites de phosphorylation sont sur des protéines uniquement mitochondriales: la fonction de ces résidus phosphorylés serait probablement uniquement mitochondriale.

Nous avons étudié la variation du niveau de phosphorylation des 289 sites selon le milieu de culture. Au total 89 résidus ont un niveau de phosphorylation variable; ils ont été répartis en 4 groupes de variation (Figure 43). Les 35 sites LAC- ont un niveau de phosphorylation faible en lactate, intermédiaire en galactose et élevé en glucose; au contraire les 40 sites GLU- ont un niveau faible en glucose, intermédiaire en galactose et élevé en lactate; les 5 sites GAL- ont un niveau faible spécifiquement en galactose; les 9 sites LAC+ ont un niveau élevé spécifiquement en lactate.

Figure 43: Répartition des 89 sites de phosphorylation dont le niveau varie selon les conditions selon leur profil de variation

Afin de comprendre le rôle de la phosphorylation dans chacune des conditions de culture, nous avons analysé les données sur les sites de phosphorylation dont le niveau varie selon la condition de culture.

Enfin, nous avons essayé de comprendre le mécanisme de phosphorylation dans la mitochondrie. Pour cela, nous avons analysé les séquences phosphorylées de nos protéines afin d'essayer de prédire quelle(s) kinase(s) pourrai(en)t être responsables de ces modifications post-traductionnelles.

1. Quel rôle peut avoir la phosphorylation mitochondriale?

Afin de comprendre le rôle de la phosphorylation, nous avons regardé si un type de variation était associé à un compartiment mitochondrial/une fonction métabolique dans la mitochondrie, ou encore si la variation de la phosphorylation pouvait être corrélée à une variation d'abondance de la protéine.

a) La variation de la phosphorylation est-elle associée à une fonction métabolique?

Parmi les 40 sites GLU-, 18 sont localisés au niveau de la matrice ou de la membrane interne (cf Figure 44).

Figure 44: Localisation mitochondriale des 40 sites de phosphorylation ayant un profil GLU-

14 des sites GLU- localisés au niveau de la matrice ou de la membrane interne sont sur des protéines de la voie métabolique énergie, notamment des enzymes du cycle TCA ou de la phosphorylation oxydative (cf Tableau 25).

Protéine	Localisation	Voie métabolique	Résidu phosphorylé	Variation de la phosphorylation
AIM45	matrice	Energy/Respiration	S76	GLU-
ATP15	matrice	Energy/Respiration	S34	GLU-
ATP2	matrice	Energy/Respiration	T43	GLU-
SDH1	matrice	Energy/Respiration	S524	GLU-
SDH2	matrice	Energy/Respiration	T21 ou T23	GLU-
SDH2	matrice	Energy/Respiration	T24	GLU-
CIT1	matrice	Energy/TCA pathway	T239	GLU-
ALD4	matrice	Energy/Fermentation	S96 ou S99	GLU-
ALD4	matrice	Energy/Fermentation	S500	GLU-
PIM1	matrice	Protein fate	S902	GLU-
SSC1	matrice	Protein fate	T64	GLU-
ACO1	matrice	AA metabolism	S298	GLU-
ATP4	IM	Energy/Respiration	S217	GLU-
COR1	IM	Energy/Respiration	T172	GLU-
COR1	IM	Energy/Respiration	S247	GLU-
COX4	IM	Energy/Respiration	T58	GLU-
GUT2	IM	Energy/Respiration	T438	GLU-
CAT2	IM	Lipid metabolism	S514	GLU-

Tableau 25: Voie métabolique des 18 sites de phosphorylation ayant un profil GLU- et étant localisés dans la matrice ou la membrane interne

Le cycle TCA et la phosphorylation oxydative interviennent peu dans le métabolisme de la cellule en glucose, par rapport au lactate: pour ces 12 sites, l'augmentation de leur phosphorylation en lactate pourrait favoriser le métabolisme respiratoire.

Parmi les 35 sites LAC-, 17 ne sont pas assignés à un compartiment mitochondrial précis; les autres se répartissent entre tous les compartiments mitochondriaux (Figure 45). D'autre part, les phosphoprotéines possédant un site LAC- ne font pas partie d'une même voie métabolique. Ces données ne suggèrent pas que l'augmentation du niveau de phosphorylation en glucose soit liée à une fonction mitochondriale précise.

Figure 45: Localisation mitochondriale des 35 sites de phosphorylation ayant un profil LAC-

b) La variation de la phosphorylation est-elle associée à une variation d'abondance de la protéine phosphorylée?

45 sites de phosphorylation dont le niveau varie selon la condition de culture sont localisés sur des protéines dont l'abondance varie aussi selon le milieu. Notamment, 29 sites de phosphorylation présentent le même sens de variation que les protéines sur lesquelles ils sont situés (cf Tableau 26). Pour ces protéines, leur phosphorylation pourrait favoriser leur accumulation (hausse de leur synthèse ou baisse de leur dégradation), leur import dans la mitochondrie, ou favoriser leur localisation mitochondriale par rapport à une autre localisation cellulaire.

5 de ces sites sont sur des protéines présentant une double localisation cellulaire. Il serait intéressant de vérifier si la modification du niveau de phosphorylation de ces résidus modifie ou non le niveau d'abondance de la protéine dans le compartiment mitochondrial.

Pour les 24 autres sites de phosphorylation, leur rôle pourrait être de moduler l'accumulation de la protéine et/ou l'import dans la mitochondrie.

Voie		Plus abondante en	Site de	Plus phosphorylé en
métabolique	Protéine		phosphorylation	•••
	Cys4p	glucose	S350	glucose
AA motabolism	Bat1p	glucose	S26	glucose
AA metabolism	Aco1p	lactate	S298	lactate
	llv2p	glucose	S52	glucose
		_		
C-compound and	Gpm1p	glucose	S116	glucose
carbohydrate	Pdh1p	lactate	S250	lactate
metabolism	Pdh1p	lactate	T51	lactate
			T82 ou S83 ou	
	Icl2p	lactate	S87 ou S88	lactate
	Cor1p	lactate	S247	lactate
	Cor1p	lactate	T172	lactate
			S135 ou S136 ou	
	Etr1p	lactate	S137	lactate
	Inh1p	lactate	S33	lactate
	Cox4p	lactate	T58	lactate
	Gut2p	lactate	T438	lactate
	Atp2p	lactate	T43	lactate
Energy	Sdh1p	lactate	S524	lactate
	Sdh1p	lactate	S449	lactate
	Mcr1p	lactate	S37	lactate
	Sdh2p	lactate	T24	lactate
	Sdh2p	lactate	T21 ou T23	lactate
	Cyb2p	lactate	T390	lactate
	Cit1p	lactate	T239	lactate
	Ald4p	lactate	S500	lactate
	Ald4p	lactate	S96 ou S99	lactate
Linid motobalism	Ach1p	lactate	S397	lactate
Lipid metabolism	Cat2p	lactate	S25	lactate
	Tom71p	glucose	S76	glucose
Protein fate	Tom71p	glucose	S96	glucose
	Ssc1p	glucose	S61	glucose

Tableau 26: Phosphoprotéines mitochondriales présentant le même sens de variation selon les conditions de culture à la fois au niveau de l'abondance de la protéine et du niveau de phosphorylation.

2. Quelles kinases pourraient être responsables de la phosphorylation mitochondriale?

113 familles de kinases ont été identifiées dans la levure (Hunter and Plowman 1997). Elles se différencient par leur mode d'activation et la nature de leur site actif, notamment par le degré d'hydrophobicité et la charge portés par ce domaine. En particulier, le site actif de la kinase interagit avec la séquence de la protéine entourant le résidu phosphorylable. Plusieurs types d'interaction peuvent intervenir, par exemple, des interactions électrostatiques, liaisons hydrogène, interactions hydrophobes... Les résidus qui entourent le site de phosphorylation doivent être de nature complémentaire aux résidus formant le site actif de la kinase pour favoriser l'interaction : la séquence du substrat doit correspondre à une séquence consensus de la kinase (Ubersax and Ferrell 2007).

Nous avons cherché à identifier les kinases qui pourraient être à l'origine des sites de phosphorylation quantifiés dans notre étude. Pour cela, nous avons recherché la présence de séquence consensus au niveau d'un site de phosphorylation. Cette donnée constitue le premier degré de spécificité de l'interaction kinase/substrat.

a) Prédiction des kinases à partir de leurs séquences consensus

Stratégie de prédiction

Nous avons cherché à prédire les kinases responsables de la phosphorylation des protéines mitochondriales. Une question se pose: à quel stade de maturation de la protéine la phosphorylation a-t-elle lieu : est-elle phosphorylée dans le cytosol avant son import dans la mitochondrie ou bien dans la mitochondrie, par une kinase localisée dans cet organelle?

7 sites de phosphorylation ont été identifiés dans la préséquence de protéines, séquence attendue comme clivée au cours de l'import de la protéine dans la mitochondrie. On s'attendrait alors à ce que ces résidus soient phosphorylés dans le cytosol. Cependant, le fait d'identifier ces séquences dans nos données remet en cause le clivage systématique de la préséquence lors de l'import mitochondrial : ou bien la protéine est importée, du moins en partie, avec sa préséquence et celle-ci pourrait alors être phosphorylée aussi bien dans le cytosol que dans la mitochondrie ; ou bien la préséquence est effectivement clivée au cours de l'import. Dans ce cas, le site de phosphorylation que nous identifions ne correspond pas à un site localisé sur la protéine « mature » mais à un site situé sur la » protéine précurseur » en cours d'import. De plus il a été montré que, dans le cas de RIP1, la protéine non maturée pouvait être assemblée dans le complexe III et que le complexe ainsi formé était fonctionnel (Nett and Trumpower 1996). Ceci irait dans le sens de l'hypothèse selon laquelle des protéines non matures pourraient, dans certaines conditions, être présentes dans la mitochondrie. Les sites de phosphorylation que nous identifions sur la préséquence des protéines pourraient correspondre à des protéines se trouvant dans ce cas de figure.

Des études précédentes ont montré la présence, dans la mitochondrie, de kinases aussi identifiées dans d'autres compartiments cellulaires (Horbinski and Chu 2005). Ces kinases appartiennent à différents groupes de kinases suggérant que nombre de kinases cytosoliques peuvent être importées dans la mitochondrie. D'autre part, des mitochondries isolées, incubées en présence d'ATP, sont capables de phosphoryler des résidus, ce qui suggère la présence de kinases dans les mitochondries mêmes (Phillips et al. 2011).

En l'absence de données fiables sur le lieu de phosphorylation des protéines mitochondriales, nous avons pour la suite laissé cette question ouverte et considéré que les deux processus peuvent se dérouler (phosphorylation intra et extra-mitochondriales).

Nous avons cherché à prédire les kinases pouvant être responsables des sites de phosphorylation à l'aide de STRIP (<u>http://biodev.cea.fr/strip</u>, mis au point par Raphaël Guerois, CEA/iBiTec-S), comparateur de 5 prédicteurs de phosphorylation décrits ci-après. Lorsque le résidu phosphorylé n'a pas pu être localisé précisément sur la séquence de la protéine, la prédiction a été effectuée sur les différentes positions probables, de façon indépendante. Donc, au total, la prédiction a été réalisée sur 391 résidus mitochondriaux.

Site de prédiction	Référence	
NetPhosK	(Blom et al. 2004)	
PredPhospho	(Kim et al. 2004)	
Ppsp	(Xue et al. 2006)	
Scansite	(Obenauer, Cantley, and Yaffe 2003)	
KinasePhos	(Huang et al. 2005)	

Les prédicteurs de kinases analysent la partie de la séquence protéique qui entoure le résidu phosphorylé (sérine ou thréonine). Ils comparent cette séquence aux séquences consensus des différentes kinases: lorsqu'il y a homologie, ils associent la ou les kinase(s) au site de phosphorylation analysé, avec un score qui traduit l'homologie entre la séquence protéique et la séquence consensus de la kinase. Pour chaque résidu analysé, STRIP nous donne la ou les familles de kinase(s) potentielle(s) renvoyée(s) par chaque prédicteur, avec le score associé.

Pour chaque résidu, j'ai comparé les résultats de chaque prédicteur et conservé le groupe de kinases correspondant au plus grand nombre de familles renvoyées par les prédicteurs. L'ensemble des groupes et familles de kinases de la levure ont été répertoriées dans l'Introduction générale V.2, comme définies par Brinkworth et al. (Brinkworth, Munn, and Kobe 2006). Les kinases de chaque famille sont détaillées dans l'annexe I (Hunter and Plowman 1997). Le groupe "kinases uniques" contient les kinases de levure n'ayant pas d'homologues humains: ces kinases n'ont sûrement pas été conservées dans l'évolution; une hypothèse est qu'elles auraient un rôle dans l'adaptabilité des levures au milieu de culture, fonction non présente chez l'homme (Hunter and Plowman 1997). Au contraire, certains prédicteurs ont renvoyé à des kinases humaines n'ayant pas d'homologue chez la levure: ces résultats n'ont pas été pris en compte.

Résultats de la prédiction

Au total 270 sites de phosphorylation ont été associés à au moins une famille de kinases (Figure 46). Le groupe de kinases ayant le plus de séquences consensus au sein de nos données est le groupe AGC, en particulier la famille PKC. Un nombre non négligeable de résidus a été associé aux kinases du groupe STE (famille Ste20p) et CMGC (notamment la famille MAPK). D'autres kinases ont été suggérées mais de façon moins récurrentes: groupes CaMK, NEK et famille CK2. Peu de sites ont été associés au groupe "kinases uniques" mais ceci peut être dû au fait que certains prédicteurs utilisent les bases de données humaines dans lesquelles ce groupe de kinases n'apparait pas.

Figure 46: Kinases pouvant être à l'origine des sites de phosphorylation quantifiés, d'après les sites de prédiction

Au total, des kinases appartenant aux 7 groupes de kinases de levure ont été associées à nos données. Les protéines mitochondriales pourraient être phosphorylées par différents types de kinases. Cependant, pour chaque groupe, un nombre restreint de familles a été corrélé: au total 12 familles de kinases ont été prédites dans nos données sur un total de 30 familles potentielles. Ceci suggère tout de même une certaine spécificité des kinases vis-à-vis des protéines mitochondriales. Cette spécificité pourrait être due à la capacité d'une partie seulement des kinases à être importée dans la mitochondrie (pour les phosphorylations intra-mitochondriales) ou à d'autres facteurs discutés plus loin (Résultats et Discussion Partie A-V-2-c).

Les groupes et familles de kinases ont été suggérés dans les différents compartiments mitochondriaux (matrice, membrane interne, membrane externe). Ces prédictions suggèrent que toutes les familles de kinases prédites sont capables de phosphoryler des protéines dans chaque compartiment mitochondrial et qu'elles ne sont pas spécifiques d'un compartiment donné. Dans le cas des phosphorylations intra-mitochondriales, les kinases concernées pourraient être alors importées dans les différents compartiments de la mitochondrie.

Les résidus phosphorylés présentant un niveau de phosphorylation variable selon les conditions de culture ont aussi été soumis aux prédictions de kinase. Les mêmes kinases ont été suggérées, quelque soit le type de variation. La différence de phosphorylation dans les trois conditions de culture ne proviendrait pas de la nature de la kinase mais peut-être d'une régulation différentielle des kinases selon la condition de culture.

Ces prédictions basées sur les séquences consensus restent limitées: dans de nombreux cas, certains prédicteurs associent une kinase à un résidu phosphorylé tandis que d'autres n'en trouvent pas: ces prédictions restent subjectives et dépendent largement des critères entrés pour chaque site. D'autre part, il arrive parfois que des prédicteurs différents suggèrent des familles de kinases et même des groupes de kinases différents pour un même résidu. Ceci montre encore que les kinases suggérées vont dépendre des paramètres recherchés par le site de prédiction et que, ne se baser que sur la séquence primaire de quelques résidus entourant l'acide aminé phosphorylé manque de spécificité.

b) Prédictions de kinases à partir de motifs sur-représentés

Afin de se soustraire à la subjectivité des sites de prédiction, nous avons essayé d'analyser nos données à l'aide d'un deuxième logiciel : Motif-X (http://motif-x.med.harvard.edu: (Chou and Schwartz 2011)). Ce logiciel compare l'ensemble des séquences primaires des protéines, entourant les sites de phosphorylation que nous avons détectés, et recherche des similarités entre ces séquences. Ces similarités sont appelées motifs sur-représentés.

Nous avons utilisé ce logiciel afin de mettre en évidence des motifs sur-représentés dans nos données. Notre hypothèse est que, si les résidus que nous avons identifiés comme phosphorylés présentent des similarités de séquence primaire, celles-ci pourraient être importantes pour la kinase responsable et ces résidus phosphorylés pourraient provenir de l'action d'une même kinase. Nous avons considéré qu'un motif était significatif et sur-représenté si le p-value était inférieur à 0,001 et s'il était présent dans au moins 10% des séquences analysées.

Nous avons effectué l'analyse sur les 391 résidus que nous avons préalablement analysés par les sites de prédiction de kinase. Au total, 8 motifs ont été identifiés: 5 pour les sérines phosphorylées, et 3 pour les thréonines phosphorylées (cf Tableau 27).

motif	résidu phosphorylé	résidu caractéristique	abbréviation	occurrence
S A	S	A(+4)	SA	39
К S	S	K(-7)	KS	26
A S	S	A(-3)	AS	24
G S	S	G(-4)	GS	22
R S	S	R(-4)	RS	17
TP	Т	P(+1)	ТР	20
T-T	Т	(T+2)	TT	13
T-A	Т	A(+2)	ТА	10

Tableau 27: Motifs sur-représentés dans nos données mis en évidence à l'aide de Motif-X

Dans la description du motif, le résidu en gras est le résidu phosphorylé.

La nature du résidu caractéristique et sa position par rapport au résidu phosphorylé est représenté. "occurrence" indique le nombre de fois où ce motif a été détecté dans nos données

Ces résultats montrent une certaine tendance dans les motifs pouvant être phosphorylés et suggèrent que les sites de phosphorylation présentant le même motif peuvent être la cible d'une même famille de kinases. En particulier, plusieurs études ont suggéré que les kinases des familles MAPK et CDK (du groupe CMGC), par exemple, phosphorylaient des résidus localisés à côté d'une proline (Ubersax and Ferrell 2007): les 20 résidus présentant le motif "TP" pourraient être des substrats de ces kinases. Il pourrait être intéressant pour la suite d'analyser des mutants de kinase de la famille MAPK et/ou CDK afin d'identifier leurs cibles et de voir si les sites de phosphorylation ayant un motif TP dans notre analyse en font partie. Les kinases de ces deux familles sont présentées en annexe I dans le tableau extrait de l'étude d'Hunter (Hunter and Plowman 1997).

Les sites de phosphorylation présentant le même motif n'appartiennent pas à des protéines localisées dans un même compartiment cellulaire. De la même façon qu'avec les sites de prédiction de kinases à partir des séquences consensus, ceci suggère qu'une kinase n'est pas spécifique d'un compartiment mitochondrial donné et qu'elle pourrait être importée dans les différents compartiments dans le cas d'une phosphorylation intra-mitochondriale. De plus, les motifs sur-représentés sont localisés sur des protéines n'ayant pas la même fonction métabolique: si une même kinase est à l'origine de ces sites, cette kinase ne serait pas activée pour favoriser un seul processus métabolique.

D'autre part, les sites de phosphorylation ayant le même motif ne présentent pas la même variation de leur niveau de phosphorylation selon le milieu de culture. Ceci suggère qu'une famille de kinases serait active quelle que soit la condition de culture: les variations de phosphorylation observées dans notre étude ne proviendraient pas de la nature de la kinase mais d'autres facteurs. L'adressage de la kinase envers une protéine peut être différent dans une condition car la protéine-cible peut avoir une conformation différente, ou interagir avec d'autres molécules dans cette condition par exemple. Il est également possible d'envisager que d'autres protéines-cibles de la kinase pourraient être plus abondantes dans cette condition: la compétition entre les différents substrats de la kinase pourrait modifier leur interaction avec l'enzyme. De plus, la kinase est localisée dans un compartiment cellulaire et y phosphoryle les résidus suite à un stimulus: ce peut être ce facteur, plus en amont de la cascade de phosphorylation qui varie selon les conditions et entraine des variations du niveau de phosphorylation (Ubersax and Ferrell 2007).

Ces données nous fournissent d'autres informations sur la spécificité potentielle entre substrat et kinase. Ainsi 4 des motifs (SA, KS, GS, RS) sont caractérisés par un acide aminé situé à plus de 3 résidus de la sérine phosphorylée. Or, les différents logiciels de prédiction n'analysent que les 3 résidus de part et d'autre de l'acide aminé phosphorylé. Ceci montre que les séquences consensus actuelles, sur lesquelles sont basées les prédictions de kinases, peuvent être insuffisantes pour prédire les kinases responsables des sites de phosphorylation.

De plus, un des motifs est caractérisé par une proline en position +1 après la thréonine (motif TP). La proline forme un coude dans la protéine repliée: pour ces séquences, les résidus adjacents à la thréonine dans la protéine repliée ne correspondront pas forcément aux résidus adjacents dans la séquence primaire de la protéine. Il faudrait analyser la structure 3D de la protéine afin d'identifier les résidus réellement adjacents à l'acide aminé phosphorylé dans la protéine repliée: ce sont eux qui pourraient avoir un rôle dans l'interaction entre la kinase et la protéine. Ceci montre l'insuffisance des séquences consensus actuelles qui ne se basent que sur la séquence primaire.

c) La spécificité des kinases vis à vis des substrats requiert d'autres paramètres

Les séquences consensus utilisées par les prédicteurs se basent généralement sur la nature des 6 acides aminés entourant le résidu phosphorylé dans la séquence primaire (3 résidus avant et 3 résidus après). Cependant ces prédictions sont incomplètes et ne correspondent pas forcément aux protéines *in-vivo*. D'autres facteurs peuvent influencer le ciblage d'une kinase vis-à-vis d'un substrat. Ces facteurs ont été discutés dans plusieurs revues (Pinna and Ruzzene 1996; Ubersax and Ferrell 2007) et sont présentés ci-après.

Les domaines

L'interaction entre une kinase et son substrat ne se limite pas à celle existant entre le site actif de la kinase et la séquence entourant le résidu phosphorylé. D'autres domaines de la kinase, en dehors de son site actif, interagissent avec des motifs particuliers de la protéine cible localisés loin du site de phosphorylation (Pinna and Ruzzene 1996). Par exemple, les motifs SH2 ou SH3 des kinases Src se lient aux régions riches en proline d'une protéine et facilitent l'interaction entre la kinase et la protéine (Terasawa et al. 1994). Généralement, ce processus augmente la spécificité de la kinase visà-vis du substrat. Ce type d'interaction est donc un élément régulateur important dans l'adressage d'une kinase à une protéine cible. De plus, la nature et la localisation des motifs sur la séquence de la protéine présentent une grande variabilité, ce qui permet une importante flexibilité des interactions et de l'activité enzymatique de la kinase.

La présence d'un site de phosphorylation sur une protéine, induit par une première kinase, peut induire la phosphorylation d'un second résidu, adjacent au premier site de phosphorylation, par

une autre kinase. Cet exemple constitue un cas particulier de l'interaction discutée ci-dessus : le premier site de phosphorylation de la protéine constitue le motif reconnaissable par la 2^{ème} kinase ; ceci va permettre l'interaction entre la protéine et la 2^{ème} kinase qui peut alors agir sur un deuxième résidu de la protéine.

Dans notre étude, de nombreuses protéines présentent plusieurs sites de phosphorylation, souvent dans une même région de la protéine. De plus, les kinases prédites pour ces protéines multiphosphorylées sont généralement différentes entre les différents sites de la protéine. Le mécanisme de phosphorylation de ces protéines pourrait correspondre au cas décrit ci-dessus.

Une protéine intermédiaire

Parfois l'interaction entre la kinase et sa cible nécessite aussi l'interaction avec une protéine intermédiaire (Ubersax and Ferrell 2007). Par exemple, l'interaction de la kinase Ste11p avec la protéine intermédiaire Ste5p va permettre à Ste11p d'engendrer une cascade de phosphorylation conduisant à l'activation de la kinase Fus3p (Schwartz and Madhani 2004). La nature, la localisation, l'expression ou encore les modifications post-traductionnelles des protéines intermédiaires varient, induisant une régulation plus fine de l'interaction entre kinase et substrat.

Le repliement de la protéine

D'une part, les protéines sont en 3 dimensions et les acides aminés adjacents au résidu phosphorylé dans la séquence primaire, ne le sont plus forcément une fois la protéine repliée. Il faudrait analyser la structure 3D de la protéine afin d'identifier les acides aminés qui entourent vraiment le résidu phosphorylé dans la protéine repliée. Ce sont eux qui doivent être réellement complémentaires des résidus du site actif de la kinase et interagir avec celui-ci (Pinna and Ruzzene 1996).

D'autre part, la protéine adopte une certaine conformation une fois repliée. Elle doit coïncider avec la conformation du site actif de la kinase. Par exemple, le site actif des tyrosine kinases diffère de celui des Ser/Thr kinases par sa localisation en profondeur dans la structure: les sérines et thréonines ne peuvent y accéder, ce qui explique la spécificité des tyrosine kinases envers les tyrosines (Ubersax and Ferrell 2007).

La localisation de la kinase dans le même compartiment que le substrat

Un élément important pour l'action d'une kinase envers une protéine cible est la localisation de la kinase dans le même compartiment cellulaire que le substrat. Ce niveau de régulation est assuré par différents moyens. D'une part, ce peut être les petites molécules à l'origine de l'activation d'une kinase (AMPc, cycline) qui modulent la localisation cellulaire de la kinase. D'autre part, nombre des protéines dites AKAPs ou AKIPs, présentes dans différents compartiments cellulaires, sont capables d'interagir avec des kinases PKA et ainsi d'influer leur localisation (Wong and Scott 2004).

La compétition entre les différentes cibles

De nombreuses protéines au sein d'un même compartiment cellulaire sont la cible potentielle d'une même kinase. Elles constituent donc des inhibiteurs compétitifs pour la réaction enzymatique. Le rapport de concentration des différentes cibles peut moduler leur niveau de phosphorylation (Ubersax and Ferrell 2007).

Enfin, certaines kinases restent sûrement à découvrir et ne peuvent donc pas être prédites avec ces prédicteurs. Notamment les kinases uniques qui n'ont pas été conservées au cours de l'évolution pourraient avoir un rôle dans l'adaptation au substrat, caractéristique de la levure. Elles seraient des kinases potentielles pour notre étude. Or elles ont été peu mises en évidence au cours des prédictions, car beaucoup de prédictions sont faites à partir de bases de données humaines et que les séquences consensus de ces kinases sont moins connues, ou du moins, moins exploitées.

La majorité des sites de phosphorylation quantifiés et qui présentent une variation du niveau de phosphorylation selon les conditions de culture, sont localisés sur des protéines de la voie métabolique énergie. Ceci suggère un rôle important de la phosphorylation dans cette fonction. Nous nous sommes particulièrement intéressés aux sites de phosphorylation de la chaîne respiratoire.

VI. Phosphorylation de la chaîne respiratoire

48 sites de phosphorylation ont été quantifiés dans 1, 2 ou 3 conditions de culture sur l'ensemble des complexes respiratoires: 16 sont localisés sur des sous-unités catalytiques (Sdh1p, Sdh2p, Rip1p, Atp1p, Atp2p), 26 sur des sous-unités non catalytiques. De plus, 1 site est situé sur une protéine impliquée dans le transfert d'électrons (Cyc7p), et 3 sur des protéines impliquées dans l'assemblage ou la régulation des complexes respiratoires (Cox20p, Inh1p). Le nombre élevé de sites de phosphorylation sur les protéines de la phosphorylation oxydative suggère un rôle important de cette modification post-traductionnelle dans la respiration. Les caractéristiques de ces 48 sites de phosphorylation sont présentées en Annexe VI).

1. Quel peut être le rôle de la phosphorylation de la chaîne respiratoire?

Nous avons essayé d'émettre différentes hypothèses sur le rôle des phosphorylations. La phosphorylation pourrait être un élément régulateur de la chaîne respiratoire qui lui permettrait, soit de moduler la stabilité de ses différents constituants (1^{ère} hypothèse), soit d'ajuster son activité (2^{ème} hypothèse) selon les besoins énergétiques.

Pour essayer de répondre à la première hypothèse, selon laquelle la phosphorylation modifierait la stabilité des complexes respiratoires, nous avons comparé la variation du niveau de phosphorylation des sites quantifiés avec celle des protéines contenant ces sites de phosphorylation.

a) La variation de la phosphorylation est-elle associée à la variation d'abondance de la protéine phosphorylée?

Parmi les sites quantifiés, 11 sites de phosphorylation ont soit un profil GLU-, soit un profil LAC+: ils sont plus phosphorylés en lactate et moins phosphorylés en glucose (cf Tableau 28). 9 de ces sites sont notamment localisés sur des protéines qui sont plus abondantes en lactate qu'en glucose, ce qui suggère un rôle de ces 9 sites de phosphorylation dans l'accumulation des protéines. De plus, les complexes respiratoires sont responsables de la phosphorylation oxydative, processus majeur lors de la croissance des cellules en lactate, mais intervenant peu lors de la croissance des cellules en glucose. Ces sites de phosphorylation pourraient avoir comme rôle de favoriser la phosphorylation oxydative. Notamment, 5 sites sont localisés sur 3 sous-unités catalytiques des complexes

respiratoires (Sdh1p, Sdh2p, Atp2p) renforçant cette l'hypothèse selon laquelle la phosphorylation pourrait réguler l'activité des complexes respiratoires.

Variation phosphorylation: GLU-			
Protéine	Résidu phosphorylé	Variation protéine	
Sdh1p	S524	GLU-	
Sdh2p	T21 ou T23	GLU-	
Sdh2p	T24	GLU-	
Cor1p	S247	GLU-	
Cor1p	T172	GLU-	
Cox4p	T58	GLU-	
Atp2p	T43	GLU-	
Atp15p	S34	n.s.	
Atp4p	S217	n.s.	
Inh1p	S33	GLU-	
Variation phosphorylation: LAC+			

Variation phosphorylation: LAC+			
Protéine	Résidu phosphorylé	Variation protéine	
Sdh1p	S449	GLU-	

Tableau 28: Sites de phosphorylation OXPHOS dont le niveau de phosphorylation est plus élevé en lactate qu'en glucose

n.s=non significatif: correspond aux protéines dont l'abondance ne varie pas significativement selon les conditions de culture

Quatre sites de phosphorylation ont un profil de variation plus atypique.

D'une part, le résidu S24 situé sur la préséquence de Rip1p, et d'autre part, le résidu S57 localisé sur l'isoforme 2 du cytochrome c (Cyc7p) ont un profil LAC- c'est-à-dire qu'ils sont plus phosphorylés en glucose et en galactose qu'en lactate (cf Tableau 29).

Variation phosphorylation: LAC-				
Protéine Résidu Variation				
	protéine			
Rip1p	S24	GLU-		
Cyc7p S57 n.q.				

Tableau 29: Sites de phosphorylation OXPHOS dont le niveau de phosphorylation est plus élevé en glucose qu'en lactate

n.q= non quantifié: correspond aux protéines dont l'abondance n'a pu être quantifiée dans les 3 conditions de culture

En particulier, le niveau de phosphorylation de Rip1p ne varie pas dans le même sens que l'abondance de la protéine : Rip1p est plus abondante en lactate qu'en condition fermentaire (glucose). Une hypothèse est que ce site de phosphorylation, sur la préséquence de la protéine, limiterait l'import et/ou l'accumulation de la protéine. Ainsi, en condition fermentaire, son état

phosphorylé pourrait limiter l'accumulation de Rip1p dans la mitochondrie et par la suite l'assemblage du complexe III.

D'autre part, deux sites de phosphorylation sur Atp2p ont un profil GAL-, ils sont spécifiquement moins phosphorylés en galactose par rapport au glucose et au lactate (cf Tableau 30).

Variation phosphorylation: GAL-				
Protéine Résidu Variation				
Atp2p	T40	GLU-		
Atp2p	S35	GLU-		

Tableau 30: Sites de phosphorylation OXPHOS dont le niveau de phosphorylation est plus faible en galactose qu'en glucose et lactate

Leur rôle est plus difficile à comprendre car, d'après notre analyse protéomique, l'abondance des protéines et le métabolisme énergétique en galactose semblent intermédiaires par rapport au glucose et au lactate, et ne semblent pas marginaux. Ces sites de phosphorylation, dont le niveau est spécifiquement différent en galactose, pourraient ne pas avoir de rôle dans le métabolisme énergétique ni dans l'accumulation des protéines.

Ces données montrent qu'un certain nombre de sites de phosphorylation varient comme l'abondance de la protéine, suggérant un rôle de la phosphorylation dans l'accumulation de la protéine. Toutefois, la majorité des sites de phosphorylation ne varient pas selon la condition de culture. Nous pouvons envisager d'autres rôles de la phosphorylation dans la chaîne respiratoire.Par exemple, la phosphorylation pourrait favoriser l'assemblage des complexes respiratoires. Pour cela, nous avons localisé les résidus phosphorylés sur la structure des complexes lorsque cela était possible.

b) Les sites de phosphorylation ont-ils une localisation caractéristique sur les complexes respiratoires?

Au total, 24 résidus phosphorylés ont pu être localisés sur la structure tridimensionnelle des protéines. 15 sites se situent à des endroits stratégiques de la protéine (interface avec une autre sous-unité et/ou avec un site actif, interface de formation du dimère) (cf Tableaux 31 et 32 et Annexe VII).

Parmi les résidus situés à un endroit intéressant de la protéine, seuls 3 présentent un niveau de phosphorylation variable selon les conditions. Ces deux caractéristiques (localisation caractéristique sur le complexe respiratoire et variation selon la condition de culture), qui suggèrent un rôle différent du résidu phosphorylé, ne semblent pas concerner les mêmes résidus dans notre étude.

La localisation des sites de phosphorylation est décrite plus en détail ici, permettant d'émettre des hypothèses sur le rôle de ces résidus.

13 sites de phosphorylation ont été localisés à l'interface avec une autre sous-unité. Ils ont été identifiés dans les différents complexes respiratoires : complexe III (Cor1p, Cor2p), complexe IV (Cox5ap, Cox12p) et complexe V (Atp1p, Atp2p, Atp15p). Ceci suggère un rôle de la phosphorylation dans l'interaction entre les sous-unités d'un complexe respiratoire, et dans l'assemblage ou la stabilité de ces complexes multi-protéiques.

La majorité de ces sites (12/13) ne présente pas un niveau de phosphorylation variable selon la condition de culture. Ces résidus pourraient être des sites de phosphorylation constitutifs,

A l'interface avec une autre sous-unité			
Protéine	Résidu phosphorylé	Autre sous-unité à l'interface	Variation du résidu phosphorylé
Cor1p	S247	Qcr8p	GLU-
Cor2p	S334	Cor1p	n.s
Cox5ap	S92	Cox3p	n.s
Cox5ap	S93	Cox3p	n.s
Cox12p	S7	Cox2p	n.s
Atp1p	S178	Atp2p	n.s
Atp1p	T38 ou S37	Atp2p	n.s
Atp1p	S57	OSCP	n.s
Atp1p	T43	OSCP	n.s
Atp1p	S47	OSCP	n.s
Atp2p	S299	Atp1p et Atp3p	n.s
Atp15p	T52	Atp3p	n.s
Atp15p	S34	Atp3p	n.s

phosphorylés quel que soit la condition de culture pour stabiliser les complexes respiratoires, par exemple.

Tableau 31: Sites de phosphorylation OXPHOS situés à l'interface avec une autre sous-unité du complexe respiratoire

n.s= non significatif, correspond aux sites de phosphorylation dont le niveau de phosphorylation n'est pas significativement différent selon les conditions.

D'autres localisations moins courantes ont été identifiées pour les sites de phosphorylation (cf Tableau 32). La Ser449 sur Sdh1p est proche du site actif FAD du complexe II ; la Ser178 sur Atp1p est située proche de l'interface catalytique α/β de l'ATP synthase et des zones de fixation d'ADP et d'ATP. Ces sites de phosphorylation pourraient intervenir dans l'insertion des sites actifs ou dans la formation des interfaces catalytiques et maintenir le complexe bien assemblé et fonctionnel.

Enfin, un site de phosphorylation a été identifié à l'interface de dimérisation du complexe IV, sur la sous-unité Cox4p. Ce site pourrait moduler la formation et la stabilité de cette forme supramoléculaire. Il est intéressant de noter ce sont les mêmes sous-unités du complexe IV qui sont présentes dans l'interface du dimère de complexe IV d'une part, et dans l'interface complexe IIIcomplexe IV des supercomplexes, d'autre part. Ce site de phosphorylation pourrait aussi être présent à l'interface complexe IV et moduler sa formation et/ou sa stabilité.

	A l'interface avec un site actif			
Protéine	Résidu phosphorylé	Site actif à l'interface	Variation du résidu phosphorylé	
Sdh1p	S449	FAD	LAC+	
Atp1p	S178	α/β	n.s	
	Aut	tre localisation		
Protéine	Résidu phosphorylé	Autre localisation	Variation du résidu phosphorylé	
Cox4p	T58	Interface dimérique du complexe IV	GLU-	

Tableau 32: Sites de phosphorylation OXPHOS situés à l'interface avec un site actif ou à une autre localisation intéressante

n.s= non significatif, correspond aux sites de phosphorylation dont le niveau de phosphorylation n'est pas significativement différent selon les conditions de culture.

D'autre part, nous avons quantifié deux sites de phosphorylation sur Inh1p, peptide inhibiteur de l'hydrolyse d'ATP par l'ATP synthase, et un site de phosphorylation sur Cyc7p, isoforme du cytochrome *c* assurant le transfert d'électrons entre les complexes III et IV (cf Tableau 33). Ces deux protéines sont des petites protéines solubles qui se lient aux complexes respiratoires. Les sites de phosphorylation pourraient intervenir dans l'interaction de ces protéines avec les complexes respiratoires, ou encore dans la stabilité de ces liaisons.

Sur une protéine en interaction avec un complexe respiratoire			
Protéine	Résidu phosphorylé	Autre sous-unité à l'interface	Variation du résidu phosphorylé
Inh1p	S38	Complexe V	n.s
Inh1p	S33	Complexe V	GLU-
Сус7р	S57	Complexe III et Complexe IV	GLU-

Tableau 33: Sites de phosphorylation localisés sur des protéines en interaction avec un complexe respiratoire

n.s=non significatif, correspond aux sites de phosphorylation dont le niveau de phosphorylation ne varie pas significativement entre les conditions

Au total 27 sites de phosphorylation de la chaîne respiratoire présentent soit une variation du niveau de phosphorylation selon le milieu de culture et/ou sont localisés dans une zone clef du complexe respiratoire, soit sont situés sur une petite protéine en interaction directe avec un des complexes respiratoires (Inh1p, Cyc7p).

En ce qui concerne les 21 sites de la chaîne respiratoire sur lesquels aucune hypothèse n'a été formulée, 17 n'ont pu être localisés sur la structure des complexes en l'absence de données cristallographiques dans les régions concernées. L'amélioration des structures permettra par la suite de les localiser et peut-être de proposer un rôle potentiel de ces résidus.

2. Les sites de phosphorylation de la chaîne respiratoire sont-ils accessibles aux kinases?

Parmi les 24 résidus localisables sur la structure des complexes respiratoires, seuls 4 de ces résidus sont enfouis dans la structure: un site sur Sdh1p (S449), un sur Cor1p (S94 ou S95 ou S98), un sur Atp1p (T38 ou S37) et un sur Atp2p (S299). Les 20 autres sont externes, accessibles aux kinases potentielles (cf Tableau 34). Une hypothèse est que les sites internes non accessibles aux kinases une fois le complexe replié, auraient été phosphorylés avant l'import et le repliement des protéines dans mitochondrie; au contraire les sites phosphorylés externes la pourraient être phosphorylés/déphosphorylés une fois le complexe formé.

De plus, les trois sites de phosphorylation sur les protéines ne faisant pas directement partie des complexes respiratoires mais interagissant avec eux (Cyc7p, Inh1p) sont aussi accessibles aux kinases potentiellement localisées dans la mitochondrie (cf Tableau 35).

Parmi les 23 résidus accessibles aux kinases (Tableaux 34 et 35), 21 sont plutôt situés du côté matriciel et 2 du côté de l'espace inter-membranaire. Les sites externes, potentiellement accessibles aux kinases sont majoritairement situés du côté matriciel suggérant la présence de kinases mitochondriales surtout dans ce compartiment. Néanmoins la présence de résidus phosphorylés sur Cox12p et Cyc7p, protéines de l'espace inter-membranaire, suppose une qu'une activité de phosphorylation pourrait aussi avoir lieu dans ce compartiment.

	Résidus externes				
Protéine	Résidu phosphorylé	Compartiment mitochondrial	Variation du résidu phosphorylé		
Sdh1p	S524	matrice	GLU-		
Atp2p	T40	matrice	GAL-		
Atp2p	T43	matrice	GLU-		
Atp15p	S34	matrice	GLU-		
Atp1p	S178	matrice	n.s		
Atp1p	S57	matrice	n.s		
Atp1p	T43	matrice	n.s		
Atp1p	S47	matrice	n.s		
Atp2p	S39	matrice	n.s		
Atp15p	T52	matrice	n.s		
Atp16p	S29 ou S30	matrice	n.s		
Cor1p	S247	matrice	GLU-		
Cor1p	T172	matrice	GLU-		
Cox4p	T58	matrice	GLU-		
Cor1p	S135	matrice	n.s		
Cor2p	S334	matrice	n.s		
Cox5ap	S92	matrice	n.s		
Cox5ap	S93	matrice	n.s		
Atp3p	S226	matrice	n.s		
Cox12p	S7	EIM	n.s		

Tableau 34: Sites de phosphorylation OXPHOS localisés sur la face externe des complexes respiratoires

n.s=non significatif ; EIM=espace inter-membranaire

Sur une protéine en interaction avec un complexe respiratoire				
Protéine	Résidu phosphorylé	Compartiment mitochondrial	Variation du résidu phosphorylé	
Inh1p	S38	matrice	n.s	
Inh1p	S33	matrice	GLU-	
Cyc7p	S57	EIM	GLU-	

Tableau 35: Sites de phosphorylation localisés sur une protéine en interaction avec un complexe respiratoire

n.s=non significatif ; EIM=espace inter-membranaire

VII. Bilan

En conclusion, la mitochondrie de *Saccharomyces cerevisiae* présente de nombreux résidus phosphorylés, sur des protéines impliquées dans diverses fonctions mitochondriales comme le transport de protéine, le métabolisme énergétique ou encore le métabolisme des acides aminés. Une partie du phosphoprotéome mitochondrial de *Saccharomyces cerevisiae* est variable selon la condition de culture de la levure. Ces résultats suggèrent un rôle de la phosphorylation dans les fonctions mitochondriales. Nous nous sommes intéressés plus particulièrement aux sites de phosphorylation de la chaîne respiratoire.

D'une part, parmi les résidus dont le niveau de phosphorylation est variable selon les conditions, la majorité d'entre eux ont un niveau de phosphorylation plus élevé en condition respiratoire qu'en condition fermentaire. Il serait intéressant d'étudier plus précisément le rôle de ces sites de phosphorylation : leur niveau variable de phosphorylation pourrait être une conséquence du métabolisme ou avoir une influence sur la chaîne respiratoire. Dans le cas de cette seconde hypothèse, la phosphorylation pourrait intervenir au niveau de l'accumulation et/ou de l'activité des protéines.

D'autre part, de nombreux sites de phosphorylation ont un niveau de phosphorylation similaire entre les différentes conditions. Nous avons localisé ces résidus sur la structure des complexes respiratoires: nombre d'entre eux sont à des positions stratégiques du complexe, par exemple à l'interface entre deux sous-unités. La phosphorylation de ces résidus pourrait intervenir pour former et/ou stabiliser le complexe indépendamment du métabolisme énergétique de la cellule.

Nous avons essayé de prédire les kinases à l'origine des sites de phosphorylation identifiés : les bases de données actuelles permettent de réaliser des prédictions seulement à partir des séquences primaires de protéines. Ceci nous a permis d'effectuer une première analyse mais d'autres paramètres à l'origine de la spécificité kinase/substrat sont à prendre en compte afin d'obtenir des prédictions plus fiables.

La phosphorylation est une modification post-traductionnelle répandue dans la mitochondrie. Nos données suggèrent plusieurs rôles possibles de la phosphorylation qu'il faudrait étudier au cas par cas. Certains résidus ont un niveau de phosphorylation indépendant du métabolisme de la cellule tandis que d'autre ont un niveau variable selon la condition de culture. Nous avons vu dans l'introduction de ce chapitre que cette étude pourrait servir de modèle pour comparer le phosphoprotéome d'une cellule normale (métabolisme respiratoire) et d'une cellule cancéreuse (métabolisme fermentaire). Ceci pourrait permettre de mieux comprendre le fonctionnement de la cellule tumorale et notamment le changement métabolique qui se déroule durant l'oncogenèse.

Dans ce cadre, il serait particulièrement intéressant d'étudier les sites de phosphorylation qui varient selon les conditions métaboliques. Deux aspects pourraient être étudiés : tout d'abord analyser si les sites de phosphorylation ont un rôle régulateur du métabolisme, puis identifier la(les) kinase(s) à l'origine de cette phosphorylation. Ces dernières pourraient constituer des cibles thérapeutiques pour modifier le fonctionnement d'une cellule cancéreuse en faveur de la respiration et ainsi diminuer le phénotype cancéreux.
Résultats et Discussion - Partie B

Résultats et Discussion - Partie B

Etude de deux sous-unités nucléaires du complexe IV : Cox13p et la phosphoprotéine Cox12p Résultats et Discussion - Partie B

I. Objectif du projet

La cytochrome c oxydase est constituée chez la levure *S. cerevisiae* de 11 sous-unités dont 3 sont codées par le génome mitochondrial (Cox1p, Cox2p et Cox3p) et dont les deux premières forment le cœur catalytique, responsable de l'oxydation du cytochrome *c* et de la réduction d'O₂ en H₂O. Le rôle des autres sous-unités codées par le génome nucléaire (Cox4p, Cox5p, Cox6p, Cox7p, Cox8p, Cox9p, Cox12p et Cox13p) n'est pas encore bien déterminé. C'est le cas en particulier pour les sous-unités Cox12p et Cox13p auxquelles nous avons choisi de nous intéresser pour des raisons développées ci -après.

Les gènes *COX12* et *COX13* ont été respectivement découverts en 1992 et 1993 (LaMarche et al. 1992; Taanman and Capaldi 1993). Depuis, peu d'études ont été menées sur le rôle de ces sousunités au niveau du complexe IV. De plus, deux sites de phosphorylation ont été identifiés sur Cox12p, dont un dans notre laboratoire, sans que leur rôle ne soit élucidé.

Au cours de ce projet, nous avons cherché à mieux comprendre le rôle et la régulation de ces deux sous-unités.

Dans un premier temps, nous avons analysé les mitochondries des souches délétées soit pour *COX12*, soit pour *COX13*, soit simultanément pour ces deux gènes et observé d'éventuelles différences structurales et fonctionnelles du complexe IV. Puis nous avons comparé les mitochondries des mutants phosphomimétiques de Cox12p, qui miment soit l'état phosphorylé permanent soit l'état déphosphorylé permanent des résidus identifiés comme phosphorylés dans des études précédentes. (Reinders et al. 2007) (Lemaire,C et al., résultats non publiés).

Nous avons ainsi cherché à répondre aux questions suivantes :

Les sous-unités Cox12p et Cox13p:

- Sont-elles nécessaires à l'assemblage et/ou à la stabilité du complexe IV ?
- Sont-elles impliquées dans la formation des structures supramoléculaires incluant le complexe IV ?
- Sont-elles nécessaires au fonctionnement de la chaîne respiratoire en général, et à l'activité du complexe IV en particulier ?

La phosphorylation de Cox12p:

- Module-t-elle la stabilité de Cox12p et/ou celle du complexe IV ?
- > A-t-elle une influence sur l'organisation supramoléculaire de la chaîne respiratoire ?
- Entraîne-t-elle une variation de l'activité du complexe IV?

II. Analyse du complexe cytochrome c oxydase par BN-PAGE et spectrométrie de masse

L'analyse des mitochondries WT solubilisées en laurylmaltoside par BN-PAGE montre que le monomère du complexe IV se présente sous la forme d'un doublet (cf Figure 47) dont la composition a été déterminée par spectrométrie de masse (collaboration avec Michel Zivy, plateforme PAPPSO, Gif-sur-Yvette) (données non présentées).

Figure 47: Analyse du complexe IV du WT par BN-PAGE après révélation de l'activité « in gel ».

Les mitochondries WT ont été solubilisées en laurylmaltoside 2%. Le gel est en gradient 5-10% d'acrylamide.

La bande haute (« HMW band ») est majoritaire et correspond au monomère constitué de l'ensemble des sous-unités tandis que la bande basse (« LMW band ») correspond au monomère auquel il manque les sous-unités Cox12p et Cox13p.

La bande LMW suggère :

- soit que les sous-unités Cox12p et Cox13p sont peu stables et peuvent être en partie perdues pendant le processus de solubilisation par le laurylmaltoside
- soit qu'il existe un intermédiaire stable dans l'assemblage du CIV qui ne comporte pas les sous-unités Cox12p et Cox13p et que celles-ci pourraient intervenir dans une étape finale du processus d'assemblage.

Ce doublet de complexe IV révélé par BN-PAGE suite à une solubilisation des mitochondries en laurylmaltoside avait déjà été observé chez la levure (cf Tableau 36) (Horan et al. 2005). Les sousunités du complexe IV avaient été identifiées dans les deux bandes du doublet par tests immunologiques.

	Bande haute	Bande basse
Cox1p	+	+
Cox2p	+	+
Cox3p	+	+
Cox4p	-	+
Cox5p	+	+
Сох6р	+	+
Cox7p et/ ou Cox9p	+	+
Cox8p	+	+
Cox6ap =Cox13p	+	-
Cox6bn = Cox12p	non recherché	non recherché

Tableau 36: Composition du doublet du complexe IV observé par Horan et al. après une analyse BN-PAGE des mitochondries solubilisées en laurylmaltoside.

(Horan et al. 2005) identification des sous-unités par tests immunologiques.

La composition des deux formes du complexe IV indiquée par Horan et al. est en accord avec nos résultats concernant l'absence de Cox13p (Cox6ap) dans la bande basse. Cependant, la détection de Cox12p (Cox6bp) dans le doublet n'avait pas été effectuée dans cette expérience. De plus, un

anticorps reconnaissant à la fois Cox7p et Cox9p avait été utilisé, ne permettant pas de définir avec précision la présence de Cox7p et de Cox9p dans les deux bandes.

Chez les plantes (*Arabidopsis thaliana* et *Phaseolus vulgaris*), deux formes de complexe IV solubilisé en laurylmaltoside ont été observées après la migration en gel 2D BN-PAGE/SDS-PAGE (cf Figure 48) (Eubel, Jänsch, and Braun 2003). Les sous-unités présentes dans les deux bandes ont été identifiées par spectrométrie de masse.

Arabidopsis

Figure 48: Schéma de la composition du doublet du complexe IV après une analyse par gel 2D BN-PAGE/SDS-PAGE de mitochondries de plantes solubilisées en laurylmaltoside.

Identification des sous-unités par spectrométrie de masse. (Eubel, Jänsch, and Braun 2003).

D'après l'analyse bidimensionnelle, la bande haute (IVa) contient 12 protéines tandis que la bande basse (IVb) n'en contient que 10. Notamment, les deux bandes ont un commun la présence de COX I, COX II, COX III et COX Vb. La bande basse se caractérise par l'absence d'une protéine, COXVIb qui est l'homologue de Cox12p (=Cox6bp) chez la levure. La composition des deux formes n'a pas été étudiée plus en détails.

Ainsi les deux formes du complexe IV ont été observées à plusieurs reprises et chez différents organismes : il serait intéressant de savoir si la forme de plus bas poids moléculaire est un intermédiaire d'assemblage ou si elle est due à une déstabilisation partielle du complexe IV au cours de la solubilisation en laurylmaltoside.

L'analyse de la structure tridimensionnelle du dimère du CIV révèle que Cox12p est en périphérie du complexe IV dans l'espace inter membranaire tandis que Cox13p possède un segment transmembranaire avec son extrémité N terminale du côté matriciel et son extrémité C-terminale du côté de l'espace inter-membranaire (cf Figure 49).

Elles sont toutes deux en interaction avec une sous-unité membranaire d'origine mitochondriale: la sous-unité catalytique Cox2p dans le cas de Cox12p, et Cox3p, dans le cas de Cox13p. D'autre part, elles sont toutes les deux situées au niveau de l'interface de dimérisation du complexe IV. De plus, elles sont proches l'une de l'autre. Leur proximité la plus grande se fait entre les résidus 90-95 de Cox13p et les résidus 70-75 de Cox12p : ces deux régions sont distantes de moins de 3Å.

Figure 49: Modèle de la structure cristallographique du complexe cytochrome c oxydase de *S. cerevisiae* sous forme dimérique

(modélisation réalisée à partir de la structure de la cytochrome c oxydase de cœur de bœuf (pdb 1occ) et par homologie des séquences par Francis Haraux)

Cependant, le rôle de ces deux sous-unités est peu connu:

- Cox12p peut être absente de l'enzyme purifiée sans en modifier l'activité enzymatique; pourtant la délétion du gène perturbe l'assemblage du complexe IV actif (baisse des hèmes a + a3 de 50%, diminution de l'activité enzymatique de 93% (cf Figure 50)) et ralentit de façon significative la croissance sur milieu respiratoire. Cox12p semblerait avoir un rôle au cours de la formation du complexe IV, mais ne semblerait pas indispensable une fois l'enzyme formée (LaMarche et al. 1992).

Figure 50: Caractérisation de la souche Acox12 par rapport au WT, expériences réalisées par LaMarche et al

(LaMarche et al. 1992)

- Cox13p peut également être absente du complexe IV purifié sans modifier son activité. La délétion de *COX13* a peu d'impact sur l'accumulation des autres sous-unités COX, ni sur l'activité du complexe IV (Taanman and Capaldi 1993). Néanmoins, cette sous-unité semble impliquée dans la régulation allostérique du complexe IV par le ratio ADP/ATP. Dans les mitochondries WT, l'ATP interagit avec Cox13p et lorsque la concentration en ATP augmente, l'activité COX diminue. Dans la souche $\Delta cox13$, l'addition d'ATP en concentrations croissantes entraine l'augmentation de l'activité COX, signe d'une dérégulation allostérique (Beauvoit et al. 1999).

Nous avons cherché à connaître plus précisément le rôle de ces sous-unités. Pour cela nous avons construit les souches délétées soit pour le gène *COX12*, soit pour le gène *COX13*, soit pour les deux gènes simultanément (collaboration avec Patrice Hamel, O.S.U., USA).

III. Quel est le rôle de Cox12p et de Cox13p dans le complexe IV et la chaîne respiratoire?

1. Résultats

a) Croissance des souches en milieu fermentaire (YPGA), respiro-fermentaire (YPGaLA) et respiratoire (YPGly)

Tout d'abord le niveau de croissance de la souche sauvage et des mutants, sur milieux fermentaire, respiro-fermentaire et respiratoire ont été comparés à 28°C et 36°C (cf Figure 51).

Figure 51: Test sur boite de la croissance des souches en milieu fermentaire (YPGA), respiro-fermentaire (YPGalA) et respiratoire (YPGly) à 28°C et 36°C.

Dilutions sériées (nd ; d1/10ème ;d1/100ème ;d1/100ème)

Les trois mutants ont une croissance similaire au WT en YPGA et en YPGalA, à 28°C et à 36°C.

Sur milieu YPGly à 28°C, la souche $\Delta cox12$ présente un retard de croissance par rapport au WT. Ce retard de croissance est encore plus marqué dans le mutant $\Delta cox12\Delta cox13$ alors que le mutant $\Delta cox13$ ne semble pas présenter de retard de croissance. Cet effet est encore plus marqué à 36°C : à cette température les souches $\Delta cox12$ et $\Delta cox12\Delta cox13$ poussent très faiblement sur milieu YPGly.

Le mutant $\Delta cox12\Delta cox13$ poussant très faiblement sur milieu respiratoire, les analyses biochimiques ont été réalisées à partir des souches cultivées en YPGaLA. Ce milieu de culture intermédiaire entre milieu fermentaire et milieu respiratoire, permet aux souches déficientes pour la respiration de pousser, tout en synthétisant assez de complexes respiratoires pour pouvoir les étudier.

b) Accumulation de Cox12p et de Cox13p lors de l'absence de l'autre sous-unité

Les deux sous-unités Cox12p et Cox13p sont proches l'une de l'autre dans la structure du complexe IV et l'analyse par BN-PAGE des mitochondries WT solubilisées en laurylmaltoside révèle la présence d'un monomère dans lequel ces deux sous-unités sont absentes simultanément. L'absence d'une des deux sous-unités déstabiliserait-elle l'accumulation de la seconde ?

Pour cela, nous avons effectué deux tests immunologiques : le premier a été réalisé avec un anticorps anti-Cox12p sur les souches sauvage et $\Delta cox13$ (cf. Figure 52), et le deuxième avec un anticorps anti-Cox13p sur les souches sauvage et $\Delta cox12$ (cf Figure 53).

Nous avons essayé de normaliser la quantité de Cox12p et Cox13p par la quantité de Cox2p: pour cela nous avons effectué un test immunologique avec un anticorps anti-Cox2p sur la même membrane. Cependant ce test n'a pas été concluant, car les valeurs obtenues pour les deux dépôts d'une même souche n'étaient pas reproductibles. Ceci peut être dû au fait que Cox2p est une protéine membranaire, la technique du western blotting n'étant pas parfaitement adaptée pour ce genre de protéines. Finalement, nous avons choisi de normaliser la quantité de Cox12p par la quantité de protéines déposée sur le gel.

				WT			Δcox13		
	Anti-Cox12p			40µg	60µg	moyenne	40µg	60µg	moyenne
	W303-1A	∆cox13	Accumulation Cox12p	152	238		97	160	
40µg 60µg			Accumulation Cox12p / quantité protéines déposée	3.8	4	3.9	2.4	2.7	2.5
	-274, 88534 19228	18499 - CONTRACTOR	%			100%			64%

Figure 52: Test immunologique et quantification de Cox12p dans la souche sauvage et dans la souche $\Delta cox13$.

Deux dépôts de chaque souche ont été réalisés: soit 40μg soit 60μg de protéines mitochondriales totales. Les deux valeurs obtenues ont été moyennées et l'estimation de la quantité de Cox12p dans le mutant Δ*cox13* a été exprimée en pourcentage par rapport à la souche sauvage.

Une diminution de Cox12p de 35% est observée dans la souche $\Delta cox13$ par rapport à la souche sauvage. Ce résultat suggère une déstabilisation de la sous-unité Cox12p lorsque Cox13p est absente.

			WT			Δcox12			
Anti-Cox13p		40µg	60µg	moyenne	40µg	60µg	moyenne		
W303-1A Δcox12	Accumulation Cox13p	145	115		43	151			
40µg 60µg	Accumulation Cox13p / quantité protéines déposée	3.6	2.9	3.2	1.1	3.8	2.5		
	%			100%			78%		

Figure 53: Test immunologique et quantification de Cox13p dans la souche sauvage et dans la souche Δ*cox12*.

Deux dépôts de chaque souche ont été réalisés: soit 40µg soit 60µg de protéines mitochondriales totales. Les deux valeurs obtenues ont été moyennées et l'estimation de la quantité de Cox13p dans le mutant $\Delta cox12$ a été exprimée en pourcentage par rapport à la souche sauvage.

Les quantifications que nous avons obtenues avec l'anticorps anti-Cox13p ne sont pas reproductibles : la quantité de Cox13p, rapportées à la quantité de protéines mitochondriales, est différente entre les deux dépôts d'une même souche, pour la souche $\Delta cox12$. Cette expérience ne nous permet pas de conclure quant à la stabilité de Cox13p selon la présence ou non de Cox12p et devrait être reproduite.

c) Assemblage/stabilité du complexe IV en l'absence de Cox12p et/ou Cox13p

D'après le modèle d'assemblage du complexe IV proposé par Su et al. (Su, McStay, and Tzagoloff 2014), chacune des trois sous-unités mitochondriales (Cox1p, Cox2p et Cox3p) seraient, dans un premier temps, assemblées dans un module, puis les trois modules s'associeraient ensemble par la suite. Cox13p serait présente dans le module d'assemblage de Cox3p. Cox12p n'apparait ni dans le module de Cox3p ni dans celui de Cox1p ; le module de Cox2p n'a pas été caractérisé à ce jour. Nous nous sommes demandés si Cox12p et Cox13p joueraient un rôle dans l'assemblage et/ou la stabilité du complexe IV. L'absence de Cox12p et/ou Cox13p :

- induit-elle une diminution du complexe IV assemblé ?
- modifie-t-elle la composition du complexe assemblé ?

Pour répondre à la première question, nous avons mesuré l'absorption des hèmes dans la souche sauvage et dans les souches mutées $\Delta cox12$, $\Delta cox13$ et $\Delta cox12\Delta cox13$, afin d'estimer la quantité de complexe assemblé. Pour la seconde question, nous avons analysé par BN-PAGE les mitochondries des 4 souches solubilisées en laurylmaltoside, afin d'estimer le poids moléculaire du complexe IV assemblé.

Spectres d'absorption des hèmes

Le spectre d'absorption des hèmes a été enregistré sur les cellules W303, $\Delta cox12$, $\Delta cox13$, $\Delta cox12\Delta cox13$ cultivées en YPGalA et récoltées à une concentration de 8.10⁷ cellules/mL (cf Figure 54). Pour chacune des souches, les valeurs maximales d'absorption correspondant aux hèmes c+c1 (550nm), à l'hème b (560nm), aux hèmes a+a3 (602nm) ont été mesurées. Elles sont directement proportionnelles à la concentration des hèmes. Toutes les valeurs ont été normalisées par rapport à la quantité de cellules.

La comparaison des spectres d'absorption entre deux souches permet d'identifier une différence dans la concentration des hèmes entre les deux.

Les hèmes a, a3, b et c1 sont des entités constitutives des complexes respiratoires assemblés. La mesure d'absorption de ces hèmes nous renseigne sur une différence dans la composition de la chaîne respiratoire. En particulier, le spectre des hèmes a+a3 est le reflet du niveau d'assemblage du complexe IV et celui des hèmes b et c1 du complexe III.

Cependant, à température ambiante, la résolution des spectres d'absorption n'est pas suffisante pour permettre la dissociation des hèmes c et c1.

Pour identifier une modification d'assemblage du complexe III entre deux souches, nous comparons les concentrations en hème b dans ces deux souches. La stœchiométrie hème b : hème c1 étant

supposée être la même entre les différentes souches, nous pouvons rapporter la variation de la concentration des hèmes c+c1 à celle de la concentration de l'hème b afin identifier une quelconque modification dans l'accumulation du cytochrome c.

Nous avons mesuré l'absorption des hèmes à température ambiante pour la souche sauvage ainsi que pour les trois souches mutées $\Delta cox12$, $\Delta cox13$ et $\Delta cox12$ $\Delta cox13$. Cette expérience a été réalisée deux fois de façon indépendante.

Figure 54: Spectres d'absorption des hèmes de la souche sauvage et des trois mutants, entre 500 et 650nm.

Résultat d'une expérience.

Les suspensions cellulaires ont toutes été concentrées telles que la concentration cellulaire finale soit de 1.10⁹ cellules/mL. Toutefois, afin de s'affranchir d'une éventuelle fluctuation dans la concentration cellulaire des échantillons, nous avons rapporté la quantité d'hèmes a+a3 à celle des hèmes b dans chaque échantillon (cf Tableau 37). Ainsi, nous estimons la quantité de complexe IV par rapport à celle de complexe III dans la souche sauvage et dans chacun des mutants, ce qui nous permet d'observer si la stabilité du complexe IV est spécifiquement modifié en l'absence de Cox12p et/ou Cox13p.

	a+a3 /b							
	Expérience 1	Expérience 2	Moyenne	%				
wт	0.35	0.36	0.35	100%				
∆cox12	0.27	0.36	0.31	88%				
∆cox13	0.68	0.25						
∆cox12 ∆cox13	0.31	0.30	0.30	86%				

Tableau 37: Ratio des hèmes a+a3/b dans le WT et les souches Δ*cox12*, Δ*cox13* et Δ*cox12*Δ*cox13*

Dans le mutant $\Delta cox12$, on observe en moyenne une légère diminution du ratio a+a3/b. Ceci suggère une légère déstabilisation du complexe IV par rapport au complexe III en l'absence de Cox12p. Néanmoins les deux valeurs obtenues ne sont pas identiques et il faudrait multiplier le nombre de spectres afin de valider cette hypothèse.

Dans le mutant $\Delta cox13$, les ratios a+a3/b obtenus dans les deux expériences sont très différents: dans le premier cas l'absence de Cox13p semblait largement stabiliser le complexe IV par rapport au complexe III, en comparaison du WT, tandis que dans le deuxième cas l'effet inverse est observé. Il faudrait recommencer cette expérience pour émettre des hypothèses sur la stabilité du complexe IV en présence ou en absence de Cox13p. Pour l'instant nous ne pouvons pas nous prononcer.

Dans le mutant $\Delta cox12 \Delta cox13$, on observe une baisse du ratio a+a3/b, ce qui suggère, comme dans le mutant $\Delta cox12$ que le complexe IV est déstabilisé par rapport au complexe III.

Les deux mutants dans lesquels *COX12* a été délété, présentent une diminution de la quantité d'hèmes a+a3 par rapport à celle d'hèmes b. L'absence de Cox12p semble être associée à une déstabilisation du complexe IV par rapport au complexe III.

Analyse BN-PAGE des mitochondries solubilisées en laurylmaltoside

Afin de comparer l'assemblage du complexe IV monomérique entre la souche sauvage et les mutants, nous avons analysé les mitochondries solubilisées en LM 2% par BN-PAGE (cf Figure 55).

Figure 55: Analyse du complexe IV du WT et des trois mutants par BN-PAGE après révélation de l'activité « in gel ».

Les mitochondries ont été solubilisées en laurylmaltoside 2%. Le gel est en gradient 5-10% d'acrylamide.

Les poids moléculaires des trois formes observées ont été estimés à partir de la distance de migration des trois bandes observées (vHMW, HMW et LMW), et de celle des marqueurs de poids moléculaires. Le poids moléculaire des trois bandes est proche mais la résolution des BN-PAGE ne permet d'en faire qu'une estimation grossière.

	MW estimé
vHMW band	248 kDa
HMW band	230 kDa
LMW band	214 kDa

Dans les trois mutants, le complexe IV est également révélé sous la forme d'un doublet mais qui diffère en partie de celui observé dans la souche sauvage. Nous observons une bande basse majoritaire de même poids moléculaire que la bande basse du WT (LMW band) mais une bande haute minoritaire de plus haut poids moléculaire que la bande haute du WT (vHMW band).

L'absence de Cox12p et/ou Cox13p entraîne majoritairement la formation d'un monomère incomplet caractérisé au moins par l'absence de la sous-unité dont le gène a été délété. Il est possible que d'autre(s) sous-unité(s) soi(en)t aussi absentes dans ce complexe mais l'analyse par spectrométrie de masse de la composition de la bande LMW chez les 3 mutants n'a pas été réalisée pour le moment. D'autre part, dans les trois mutants, une fraction minoritaire du complexe IV se présente dans une forme de plus haut poids moléculaire que le monomère complètement assemblé. La trop faible abondance de cette forme, absente dans les mitochondries WT, ne permet pas d'envisager l'analyse de sa composition ni par spectrométrie de masse ni par gel bidimensionnel et tests immunologiques.

Nous pouvons émettre l'hypothèse que Cox12p et Cox13p ont un rôle dans l'assemblage du complexe IV. Leur absence pourrait altérer, du moins en partie, le mécanisme d'assemblage et notamment l'association des trois modules d'assemblage, centrés respectivement autour de Cox1p, Cox2p et Cox3p (modèle de Su et al. (Su, McStay, and Tzagoloff 2014)).

Dans ce cas, la bande de plus haut poids moléculaire (vHMW) pourrait correspondre à l'association d'un ou deux modules d'assemblage seulement. Le haut poids moléculaire de cette bande pourrait être dû à la présence de protéines chaperones qui ne seraient pas encore dissociées du fait que le complexe IV serait encore incomplet.

Afin de vérifier l'abondance de chacune des formes (vHMW, HMW et LMW) dans la souche sauvage et dans les trois souches mutées, le gel BN-PAGE a été transféré sur nitrocellulose et un test immunologique avec un anticorps anti-Cox6p a été effectué (cf Figure 56).

	WT	∆cox12	∆cox13	Δcox12 Δcox13	
	-]]		vHMW band HMW band LMW band
Total	3776	7395	7751	12267	
∨HMW	-	1340 (18%)	1513 (20%)	3347 (27%)	
нмw	2349 (62%)	-	-	-	
LMW	1427 (38%)	6055 (82%)	6238 (80%)	8920 (73%)	

Figure 56: Analyse du complexe IV du WT et des trois mutants par BN-PAGE après test immunologique Cox6p.

Les mitochondries ont été solubilisées en laurylmaltoside 2%.

Cette expérience confirme que la majorité du complexe IV sauvage (>60%) est sous forme HMW. La grande majorité des complexes IV (>70%) dans les souches $\Delta cox12$, $\Delta cox13$ et $\Delta cox12\Delta cox13$ sont sous forme LMW. Le niveau d'activité observé précédemment semble proportionnel à la quantité de complexe assemblé.

d) Conséquences pour la chaîne respiratoire

L'absence de Cox12p et/ou Cox13p modifie l'assemblage du complexe IV. Nous nous sommes demandé si ce complexe « LMW » présentait les mêmes caractéristiques que le complexe « HMW » présent dans la souche sauvage :

- Est-il capable de se dimériser ?
- Est-il capable de s'associer avec le dimère du complexe III en supercomplexes ?
- A-t'il la même activité enzymatique ?

Organisation supramoléculaire du complexe IV

Dans un premier temps, nous avons regardé si le complexe IV présent dans les souches $\Delta cox12$, $\Delta cox13$ et $\Delta cox12\Delta cox13$ pouvait former des structures supra-moléculaires.

Pour cela, nous avons analysé les mitochondries des mutants et du WT solubilisées en digitonine 2% par BN-PAGE afin d'étudier leur organisation supra moléculaire (cf Figure 57).

Les mitochondries ont été solubilisées en digitonine 2%. Le gel est en gradient 5-10% d'acrylamide.

Le complexe IV du WT est présent sous forme monomérique et dimérique, à la fois seul (IV_1 et IV_2) et associé au complexe III dans des supercomplexes (III_2IV_1 et $IV_1II_2IV_1$).

D'une part, l'ensemble des formes supramoléculaires observées dans les trois mutants semblent être de plus bas poids moléculaires que les formes correspondantes observées dans le WT. Ceci est en accord avec l'absence de certaines sous-unités dans le complexe IV des mutants.

Le mutant $\Delta cox12$ présente les quatre mêmes formes de complexe IV que le WT. Au contraire, on observe une diminution de la bande correspondant au dimère du complexe IV seul (IV₂) et une augmentation de celle correspondant au dimère du complexe IV associé au complexe III (III₂IV₂) dans les mutants $\Delta cox13$ et $\Delta cox12\Delta cox13$ par rapport au WT et au $\Delta cox12$.

Activité du complexe IV in-vitro

Afin d'observer une quelconque modification de l'activité enzymatique du complexe IV, l'activité *in-vitro* du complexe IV des mitochondries WT et des mutants a été mesurée. Les valeurs ont été normalisées par la concentration en protéines mitochondriales: elles sont exprimées en nmoles cyt c oxydé/min/mg protéines mitochondriales (cf Figure 58).

Figure 58: Activité in-vitro du complexe IV de la souche sauvage et des trois mutants Dans le tableau en bas de la figure les activités sont exprimées en nmoles cyt c oxydé/min/mg protéines mitochondriales.

Dans le diagramme, les pourcentages sont exprimés par rapport à l'activité in-vitro du complexe IV de la souche WT.

L'absence de Cox13p n'entraîne pas de baisse significative de l'activité *in-vitro*. Par contre, dans nos conditions, l'absence de Cox12p entraîne une diminution de 20% de l'activité. L'absence simultanée des deux sous-unités a un effet plus drastique que l'absence seule de Cox12p et entraîne une baisse de 50%.

Trois hypothèses peuvent être faites pour expliquer une diminution d'activité *in-vitro* du complexe IV dans un mutant par rapport à la souche WT : soit la quantité de complexe IV est plus faible dans la souche mutée; soit c'est le complexe IV formé dans ce mutant qui a une activité « rapportée » plus faible (activité « rapportée » fait ici référence à l'activité rapportée à la quantité de complexe IV) ; soit la différence d'activité *in-vitro* est due aux deux effets simultanément.

Activité "rapportée" du complexe IV

La mesure *in-vitro* de l'activité du complexe IV d'une part, et l'estimation de la concentration des hèmes a+a3 d'autre part, nous permet d'estimer l'activité du complexe IV rapportée à la quantité d'hèmes a+a3, que nous appellerons par la suite activité "rapportée". Cette mesure n'a pu être effectuée que pour les mutants $\Delta cox12$ et $\Delta cox12\Delta cox13$ car la mesure des hèmes a+a3 n'a pas aboutie pour le mutant $\Delta cox13$. Les mesures de l'activité *in-vitro* et du ratio des hèmes a+a3/b sont représentées dans la figure 59 pour la souche sauvage et les trois mutants.

Figure 59: Variation de l'activité in-vitro du complexe IV et du ratio hèmes a+a3/b dans les mutants $\Delta cox12$, $\Delta cox13$ et $\Delta cox12\Delta cox13$ par rapport au WT

Les résultats sont exprimés en pourcentage par rapport au WT. Pour la souche $\Delta cox13$, le ratio hèmes a+a3/b n'a pas pu être estimé.

Par rapport à la souche sauvage, le mutant $\Delta cox12$ présente une diminution de 20% de l'activité du complexe IV *in-vitro* et une diminution de 12% en moyenne du ratio hèmes a+a3/b. Ceci suggère que la diminution d'activité observée serait due à une légère déstabilisation du complexe IV lors de l'absence de Cox12p. L'activité "rapportée" ne serait pas affectée lorsque Cox12p est absent du complexe IV. Toutefois, il faudrait accumuler plus de spectres d'absorption des cytochromes pour valider la déstabilisation du complexe IV et confirmer cette hypothèse.

Le mutant $\Delta cox13$ ne présente pas de variation significative d'activité *in-vitro*. Le ratio hèmes a+a3/ b n'ayant pas pu être mesuré, nous n'avons pas pu estimer la variation d'activité "rapportée" dans ce mutant.

Le mutant $\Delta cox12 \Delta cox13$ présente une diminution de 50% de l'activité du complexe IV *in-vitro*. Le ratio hèmes a+a3/b est diminué d'environ 15% dans le mutant par rapport au WT. Ceci suggère que le complexe IV est légèrement déstabilisé lors de l'absence simultanée de Cox12p et Cox13p. Néanmoins ce facteur ne suffit pas à expliquer la baisse d'activité *in-vitro* observée. L'activité "rapportée" serait diminuée lors de l'absence simultanée des deux sous-unités.

2. Discussion

a) Insertion de Cox12p et Cox13p dans le complexe IV

Lors de la solubilisation des mitochondries de la souche sauvage en laurylmaltoside 2%, deux formes du complexe IV sont observées, l'une majoritaire contenant l'ensemble des sous-unités du complexe IV et la deuxième marquée par l'absence de Cox12p et Cox13p.

Cette deuxième forme interpelle : est-elle due à la déstabilisation de Cox12p et Cox13p lors de la solubilisation des mitochondries WT en laurylmaltoside ? Constitue-t-elle un intermédiaire d'assemblage, ce qui suggère que ces deux sous-unités interviendraient dans la dernière étape du processus ?

Plusieurs arguments de la littérature sont en faveur de la première hypothèse.

- LaMarche et al (LaMarche et al. 1992) et Taanman et al (Taanman and Capaldi 1993) avaient montré respectivement que Cox12p et Cox13p pouvaient être dissociés lors de la purification du complexe IV en présence de laurylmaltoside, ce qui montre un effet du détergent sur la stabilité de ces sous-unités.

- Su et al (Su, McStay, and Tzagoloff 2014) ont proposé un modèle d'assemblage du complexe IV *chez Saccharomyces cerevisiae* : la première étape du processus consisterait à assembler les sous-unités nucléaires en trois modules centrés autour d'une des sous-unités mitochondriales : Cox1p, Cox2p et Cox3p. La deuxième étape serait l'association des trois modules dans un ordre non encore défini. Cox13p a été trouvée associée au module Cox3p ce qui réfute l'hypothèse selon laquelle elle serait insérée en dernière étape. Cependant ni l'appartenance de Cox12p a un module ni la composition du module de Cox2p n'ont été identifiés dans ce modèle : Cox12p et Cox2p étant en interaction dans le complexe assemblé, nous pouvons supposer que Cox12p est une sous-unité du module Cox2p. Mais cela reste à démontrer.

Ces études sont plutôt en faveur de la première hypothèse et laissent à penser que, dans la souche WT, Cox12p et Cox13p sont sensibles à la présence de laurylmaltoside. Ce détergent induirait en partie leur dissociation du complexe. Il serait intéressant d'utiliser d'autres détergents pour solubiliser les mitochondries afin de voir si on observe aussi ce phénomène ou s'il est spécifique du laurylmaltoside (Moller, Le Maire, and Andersen 1986).La bande basse observée dans les mitochondries WT serait due à l'expérimentation et ne représenterait pas un intermédiaire d'assemblage. La question de l'insertion de Cox12p et Cox13p dans le complexe IV reste ouverte.

Nous avons analysé les mitochondries des mutants $\Delta cox12$, $\Delta cox13$ et $\Delta cox12\Delta cox13$ par BN-PAGE suite à leur solubilisation en laurylmaltoside. Dans ces trois mutants, la forme majoritaire est un monomère incomplet, caractérisé au moins par l'absence de la sous-unité dont nous avons délété le gène : toutefois une forme minoritaire de plus haut poids moléculaire (vHMW) est présente. Cette dernière pourrait représenter un intermédiaire d'assemblage.

D'après le modèle exposé précédemment, il pourrait correspondre à l'association de deux modules auxquels sont encore associées des protéines chaperones du fait de l'absence du troisième module. La forme vHMW est détectée suite à une révélation de l'activité « in-gel » ce qui montre la présence au moins de Cox1p et Cox2p. Nous pouvons supposer que les modules de Cox1p et Cox2p seraient présent dans l'assemblage vHMW: d'après cette hypothèse ce serait le module Cox3p qui ne serait pas assemblé dans la bande vHMW. Des expériences supplémentaires sont nécessaires pour identifier la présence de Cox3p dans cette bande et tester cette hypothèse. Ces expérimentations sont délicates à cause de la faible abondance de cette forme.

De plus, le double mutant $\Delta cox12\Delta cox13$ a le même profil de migration que les simples mutants $\Delta cox12$, et $\Delta cox13$ ce qui suggère que le même intermédiaire d'assemblage vHMW est observé dans le cas de l'absence d'une des sous-unités ou dans le cas de l'absence simultanée des deux sous-unités. Ceci pourrait s'expliquer par la présence de Cox12p et Cox13p dans le même module d'assemblage. D'après le modèle de Su et al., il s'agirait alors du module Cox3p.

D'après ces hypothèses, l'absence de Cox12p et/ou Cox13p pourrait altérer partiellement l'assemblage du complexe IV, en gênant en partie l'association du module Cox3p aux modules Cox1p et Cox2p.

Cependant, il est à noter que la forme majoritairement observée dans les trois mutants est la forme LMW. Il serait bien sûr nécessaire d'analyser les bandes LMW des mutants pour valider notre hypothèse, mais en admettant que les bandes LMW des mutants soit analogues à celle du WT, nous pouvons penser que la grande majorité des sous-unités du complexe IV, y compris Cox3p sont présentes dans cet assemblage. Ainsi, la majorité du complexe IV assemblé lors de l'absence de Cox12p et/ou Cox13p contiendrait simultanément Cox1p, Cox2p et Cox3p: d'après le modèle énoncé, l'ensemble des modules seraient assemblés. Cox12p et Co13p affecteraient l'assemblage d'une minorité seulement du complexe IV.

b) Rôle de Cox12p et Cox13p dans le complexe IV (stabilité, activité et assemblage supramoléculaire)

Au regard de la croissance des souches en milieu respiratoire, l'absence de Cox12p seule semble avoir plus de conséquences pour la chaîne respiratoire que l'absence de Cox13p seule: un retard de croissance est observé dans la souche $\Delta cox12$ et non dans la souche $\Delta cox13$ sur milieu respiratoire. Le mutant $\Delta cox12\Delta cox13$ a une croissance quasi-nulle en milieu respiratoire, ce qui suppose que l'absence conjointe des deux sous-unités Cox12p et Cox13p entraine un plus grand défaut de la respiration dans ce mutant.

Afin de comprendre la cause du retard de croissance en milieu respiratoire, les souches mutées ont été étudiées de manière plus approfondie en milieu YPGalA. Le défaut de respiration de la souche $\Delta cox12$ semble lié à l'activité du complexe IV: l'absence de Cox12p dans le mutant $\Delta cox12$ entraine une baisse de 20% dans l'activité *in-vitro* du complexe IV tandis que l'absence de Cox13p dans le mutant $\Delta cox13$ n'altère pas ce paramètre. Le double mutant $\Delta cox12\Delta cox13$ présente une diminution de 50% de l'activité *in-vitro* du complexe IV. Cette baisse d'activité réduirait le taux de la phosphorylation oxydative et la croissance sur milieu respiratoire.

Effet de l'absence de Cox12p

La diminution d'activité *in-vitro* du complexe IV en l'absence de Cox12p pourrait être due soit à une diminution du niveau d'accumulation du complexe IV assemblé, soit à une baisse de l'activité "rapportée" (faisant référence à l'activité rapportée à la quantité de complexe IV). La première hypothèse semble plus probable car une légère diminution du ratio hèmes a+a3/b est observée dans le mutant $\Delta cox12$ par rapport au WT en galactose. Cependant une multiplication des spectres est nécessaire pour confirmer la diminution d'hèmes a+a3. Nos résultats vont dans le sens d'une diminution des hèmes a+a3, associées à une diminution de l'activité *in-vitro*, comme l'avaient montré LaMarche et al. (LaMarche et al. 1992). Toutefois, les effets que nous mesurons sont plus faibles que ceux observés dans cette étude. Cependant, le milieu de culture dans lequel ont été cultivées les levures pour ces expériences n'est pas précisé ; il est probable que l'effet dû à l'absence de Cox12p ne soit pas similaire dans différentes conditions de culture. En effet dans nos expérimentations, le retard de croissance de la souche $\Delta cox12$ n'était pas similaire dans les trois conditions de culture : il était surtout visible en YPGIy, milieu dans lequel l'effet dû à l'absence de Cox12p doit être plus marqué.

L'activité du complexe IV rapportée à la quantité de complexe assemblé ne semble pas modifiée lors de l'absence de Cox12p.

Le complexe IV se présente sous les mêmes formes actives (IV_1 , IV_2 , III_2IV_1 et $IV_1III_2IV_1$) et dans les mêmes proportions en présence ou en absence de Cox12p: ce résultat est en accord avec l'hypothèse selon laquelle l'absence de Cox12p ne modifie pas l'activité "rapportée" du complexe IV.

Effet de l'absence de Cox13p

La souche $\Delta cox13$ ne semble pas présenter de déficience dans la chaîne respiratoire. En effet, la croissance de la souche est similaire au WT en milieu respiratoire (YPGly) et son temps de génération en lactate (milieu respiratoire) ne diffère pas significativement de celui du WT (2H50 versus 2H40) (donnée non présentée). En YPGaIA, la croissance de la souche ainsi que l'activité *invitro* du complexe IV sont inchangés par rapport au WT. Nos résultats confirment l'étude précédente selon laquelle la délétion de *COX13* a peu d'impact sur l'activité du complexe IV (Taanman and Capaldi 1993).

Nous n'avons pas pu déterminer le ratio des hèmes a+a3/b dans le mutant $\Delta cox13$. Ainsi nous ne pouvons pas faire d'hypothèse sur la quantité de complexe assemblé ni sur l'activité "rapportée" du complexe IV en l'absence de Cox13p seulement.

Cox13p est localisée au niveau de l'interface dimérique du complexe IV, qui est aussi l'interface complexe III-complexe IV dans les supercomplexes. Cette sous-unité pourrait influencer la formation ou la stabilité de ces formes supramoléculaires. Nous avons observé une modification de l'organisation supramoléculaire dans le mutant $\Delta cox13$ par rapport à la souche sauvage. Particulièrement une déstabilisation du dimère du complexe IV est observée. Le rôle de Cox13p (HsCox6ap) dans la dimérisation du complexe IV avait été suggéré chez l'humain (Nijtmans et al. 1998). Le supercomplexe IV₁III₂IV₁ semble au contraire stabilisé en l'absence de Cox13p. Nous pourrions envisager que dans le cas de l'absence de Cox13p, le complexe IV se stabilise par son association en supercomplexes. La modification des formes sous lesquelles se présente le complexe IV dans la mitochondrie pourrait moduler l'activité "rapportée" du complexe IV, mais cela reste à tester.

D'autre part, il est à noter que lors de nos mesures d'activité *in-vitro*, nous n'avons pas cherché à reproduire les expériences montrant que Cox13p était impliquée dans la régulation allostérique du complexe IV (Beauvoit et al. 1999). Pour cela, il serait nécessaire de faire les activités des souches en présence de concentrations en ATP variables.

Effet de l'absence simultanée de Cox12p et Cox13p

Ainsi, le double mutant $\Delta cox12\Delta cox13$ ne contient ni Cox12p ni Cox13p. Il présente un grave défaut dans la respiration car il ne peut pousser sur milieu respiratoire. En YPGalA, la mesure *in-vitro* de l'activité du complexe IV montre une diminution de 50% par rapport au WT. Le ratio hèmes a+a3/b semble diminuer de 15% dans le double mutant par rapport au WT pouvant partiellement expliquer la diminution d'activité *in-vitro*. Mais une diminution de l'activité "rapportée" doit également avoir lieu lors de l'absence simultanée de Cox12p et Cox13p.

De même que dans les deux mutants $\Delta cox12$ et $\Delta cox13$, l'assemblage du complexe IV monomérique est altéré dans le double mutant, de la même façon que dans les simples mutants, mais il est peu probable que ce soit cette altération qui entraine la baisse d'activité « rapportée ».

Cependant, les formes actives du complexe IV sont modifiées dans le double mutant par rapport au WT: de la même façon que dans la souche $\Delta cox13$, la souche $\Delta cox12\Delta cox13$ semble présenter une déstabilisation du IV₂ et une stabilisation du IV₁III₂IV₁. L'absence de Cox13p pourrait être à l'origine de la modification des formes actives. Une hypothèse est que la diminution d'activité "rapportée"

dans le double mutant pourrait être liée au changement de structures supramoléculaires. L'activité "rapportée" n'ayant pu être estimée dans le mutant $\Delta cox13$, nous ne pouvons vérifier si les deux caractéristiques (déstabilisation du IV_2 + stabilisation du $IV_1III_2IV_1$, et diminution d'activité "rapportée") sont aussi associées lors de l'absence seule de Cox13p.

L'absence simultanée de Cox12p et Cox13p entraîne une baisse d'activité *in-vitro*. Celle-ci serait due à une déstabilisation du complexe IV à cause de l'absence de Cox12p, d'une part, et à une diminution d'activité "rapportée" d'autre part. La diminution d'activité "rapportée" pourrait être une conséquence de la modification des formes actives du complexe IV lors de l'absence de Cox13p. Cette modification des formes actives se traduit par une déstabilisation du IV₂ et une stabilisation du IV₁III₂IV₁.

3. Bilan

L'ensemble des résultats obtenus a été regroupé sous forme de tableau ci-dessous :

	Quantité complexe IV	Assemblage majoritaire du complexe IV monomérique	Structures supramoléculaires majoritaires	Activité in- vitro	Activité spécifique
WT	100%	HMW	$\begin{array}{c} IV_1\\ IV_2\\ III_2IV_1\\ IV_1III_2IV_1 \end{array}$	100%	100%
Δcox12	88%	LMW	$\begin{array}{c} IV_1\\ IV_2\\ III_2IV_1\\ IV_1III_2IV_1 \end{array}$	80%	idem
Δ <i>cox13</i>	n.d	LMW	IV ₁ IV _{2 №} III ₂ IV ₁ IV ₁ III ₂ IV ₁ 7	95%	n.d
Δ <i>cox12</i> Δ <i>cox13</i> 86% LMW		LMW	IV ₁ IV ₂ ∖s III ₂ IV ₁ IV ₁ III ₂ IV ₁ ↗	50%	لا

Tableau38:Tableaurécapitulatifdesrésultatsobtenusenl'absencedeCox12pet/ouCox13pLes résultats sont exprimés en pourcentage par rapport aux valeurs obtenues dans le WT ; les paramètres en rouge sontceux qui ont diminués dans le mutant par rapport au WT, et ceux en bleu sont ceux qui ont augmenté

Et nous amènent aux conclusions suivantes concernant les rôles des sous-unités Cox12p et Cox13p:

- l'absence de Cox13p modifierait l'assemblage du complexe IV au niveau des structures supramoléculaires. Notamment la dimérisation du complexe IV semble défavorisée lors de l'absence de cette sous-unité et la formation du supercomplexe IV₁III₂IV₁ favorisée, suggérant une stabilisation du complexe IV par son association au complexe III.

- l'absence de Cox12p entraînerait une légère déstabilisation du complexe IV

Ainsi, Cox12p interviendrait essentiellement au niveau de la stabilité du complexe et Cox13p au niveau de sa dimérisation.

IV. Mutants de phosphorylation

A mon arrivée au laboratoire, des données de la littérature (Reinders et al. 2007) et des premières données de phosphoprotéomique obtenues en collaboration avec Delphine Pflieger (LAMBE, Evry) avaient conduit à l'identification de deux sites de phosphorylation sur Cox12p : Ser82 et Ser7, respectivement. Les mutants phosphomimétiques ont été construits en collaboration avec le laboratoire de Patrice Hamel (OSU, USA) afin de comprendre le rôle de ces sites de phosphorylation et peut-être de comprendre plus finement le rôle de Cox12p dans le complexe IV. Il est à noter que depuis, les expériences de spectrométrie de masse que nous avons réalisées, dont l'étude de phosphoprotéomique quantitative dans trois conditions de culture, nous ont permis de détecter quasi-systématiquement le résidu Ser7 de la protéine Cox12p comme phosphorylé (cf Figure 60) alors que nous n'avons jamais pu identifier le résidu Ser82 comme phosphorylé dans nos conditions.

1. Phosphorylation de la Ser7

Nous avons quantifié le résidu Ser7 comme étant phosphorylé par spectrométrie de masse dans 3 conditions de culture différentes: fermentaire (glucose), respiratoire (lactate) et métabolisme intermédiaire (galactose) (Figure 60).

pep1513; ADQENSPLHTVGFDAR; S6:+79.96633

Figure 60: "Boxplot" représentant la variation du niveau de phosphorylation de la Ser 7 selon les conditions de culture.

Le niveau de phosphorylation a été quantifié par LC-MS/MS. La séquence du peptide phosphorylé ainsi que le résidu phosphorylé sont indiqués en haut du "boxplot". Gal=galactose ; Glu=glucose ; Lac=lactate

La comparaison de ces données montre que le niveau de phosphorylation de ce résidu ne varie pas significativement selon les conditions. Son niveau de phosphorylation est similaire quel que soit le métabolisme énergétique de la cellule, fermentaire ou respiratoire. Ceci nous a interpellés quant au rôle de la phosphorylation *in-vivo*.

Ce résidu est dans la partie N-terminale de Cox12p (cf Figure 63). Il est à noter que Cox12p ne possède pas de pré-séquence et que sa maturation se fait par coupure de la méthionine initiatrice.

Nous n'avons pas pu localiser le résidu Ser7 dans la structure du complexe IV car la sousunité Cox12p n'est résolue qu'à partir du résidu His10. Nous avons toutefois localisé His10 dans la structure du complexe IV (cf Figure 61) afin d'émettre des hypothèses sur la localisation de la Ser7 et son rôle potentiel dans le complexe IV.

Figure 61: Localisation du résidu His10 sur la structure dimérique du complexe IV

(modélisation réalisée à partir de la structure de la cytochrome c oxydase de cœur de bœuf (pdb 1occ) et par homologie des séquences par Francis Haraux)

His10 est situé très proche de l'interface Cox2p-Cox12p ; c'est un résidu externe donc accessible aux kinases potentiellement présentes dans l'espace inter-membranaire. Cox12p ne possède pas de domaine transmembranaire et son maintien dans le complexe IV se fait sûrement à l'aide d'interactions protéine-protéine. La localisation de l'His10 (et par hypothèse de la Ser7) à l'interface Cox2p-Cox12p nous a amené à émettre deux hypothèses majeures sur le rôle de ce site de phosphorylation. La première est que le site de phosphorylation pourrait jouer un rôle dans l'insertion de Cox12p sur le complexe IV. La seconde est qu'il pourrait réguler la conformation de Cox2p et ainsi moduler la fixation du cytochrome c sur Cox2p et l'activité du complexe IV.

2. Phosphorylation de la Ser82

Reinders et al. avaient identifié ce résidu comme phosphorylé dans leurs expériences de spectrométrie de masse (Reinders et al. 2007). Il est à noter que nous n'avons jamais observé ce résidu phosphorylé dans toutes les expériences que nous avons réalisées.

Nous n'avons pas pu localiser non plus ce résidu dans le complexe IV : la structure de Cox12p s'arrête au résidu Ile80. Nous avons par contre localisé le résidu Ile80 dans la structure du complexe IV (cf Figure 62) afin d'émettre des hypothèses sur la localisation de la Ser82 et son rôle potentiel dans le complexe.

Figure 62: Localisation du résidu Ile80 sur la structure dimérique du complexe IV

(modélisation réalisée à partir de la structure de la cytochrome c oxidase de cœur de bœuf (pdb 1occ) et par homologie des séquences par Francis Haraux)

Ile80 est situé au niveau de l'interface de dimérisation du complexe IV. C'est aussi sur cette interface que se lie le complexe III pour former des supercomplexes. Ainsi la phosphorylation de la Ser82 pourrait influencer l'organisation supramoléculaire du complexe IV en modulant la formation de dimère du complexe IV et de supercomplexes.

Suite aux données sur la localisation des résidus sur la structure du complexe IV, nous nous sommes interrogés sur le rôle que pourraient avoir ces sites de phosphorylation.

- Sont-ils impliqués dans la stabilité de Cox12p?
- Ont-ils un rôle dans l'assemblage/la stabilité du complexe IV en général ?

- L'état de phosphorylation de ces résidus a-t-il des conséquences pour la chaîne respiratoire ? Notamment, influence-t-il la formation de structures supramoléculaires impliquant le complexe IV (dimère du complexe IV, supercomplexes III+IV) ou l'activité enzymatique du complexe IV ?

Pour répondre à ces questions nous avons obtenu en collaboration avec le laboratoire de Patrice Hamel (OSU, USA) quatre mutants phosphomimétiques: les deux premiers miment l'état phosphorylé permanent (S7E) et l'état déphosphorylé permanent (S7A) de la Ser7; les deux autres miment les états phosphorylé permanent (S82E) et déphosphorylé permanent (S82A) de la Ser82.

La localisation de la Ser7 et de la Ser82 sur la séquence primaire de Cox12p ainsi que le/les changement(s) de bases effectué(s) pour introduire les mutations sont présentés dans les Figures 63 et 64.

Figure 63: Séquence primaire de Cox12p dans la souche sauvage et dans les mutants S7A et S7E

Le(s) changement(s) de bases effectué(s) pour la génération des mutants sont indiqués.

Figure 64: Séquence primaire de Cox12p dans la souche sauvage et dans les mutants S82A et S82E

Le(s) changement(s) de bases effectué(s) pour la génération des mutants sont indiqués.

Nous avons comparé les différentes caractéristiques du complexe IV (accumulation des sous-unités, assemblage et quantité du complexe IV, organisation supramoléculaire, activité enzymatique) entre les deux mutants phosphomimétiques de chacun des résidus, Ser7 et Ser82.

Afin d'observer un effet dû à la phosphorylation, il nous est apparu plus judicieux de comparer les deux mutants entre eux plutôt que de les comparer à la souche sauvage. En effet, les mutants représentent soit 100% de l'état phosphorylé soit 100% de l'état déphosphorylé tandis que dans la souche sauvage, une proportion seulement du résidu est phosphorylée. De plus, le pourcentage de Ser7 et de Ser82 phosphorylés dans la souche sauvage est inconnu.

3. Conséquences de la phosphorylation de la Ser7 et de la Ser82

Accumulation de Cox12p

Dans un premier temps, nous avons regardé si l'état de phosphorylation de la Ser7 ou de la Ser82 de Cox12p avait une influence sur l'accumulation de la sous-unité elle-même.

Nous avons effectué un test immunologique avec un anticorps anti-Cox12p sur des mitochondries analysées par SDS-PAGE. Nous avons réalisé cette expérience dans les trois conditions de culture YPGA, YPGalA et YLAC (cf Figures 65 et 66).

Figure 65: Accumulation de Cox12p dans le mutant "phosphorylé permanent" S7A et le mutant "déphosphorylé permanent" S7E

Nous observons une différence du niveau d'accumulation de Cox12p dans les deux souches mais qui ne varie pas dans le même sens selon le milieu. En YLAC et en YPGA, l'accumulation de Cox12p est plus grande dans le mutant S7E par rapport au mutant S7A. Au contraire, en milieu YPGalA, elle est plus faible dans le mutant S7E par rapport au S7A.

L'état phosphorylé de la Ser7 semble favoriser l'accumulation de Cox12p en YPGA et en YLAC et la défavoriser en YPGaIA.

Figure 66: Accumulation de Cox12p dans le mutant "phosphorylé permanent" S82A et le mutant "déphosphorylé permanent" S82E

L'accumulation de Cox12p semble plus faible dans le mutant S82E par rapport au mutant S82A en YPGA. Au contraire elle semble plus grande dans le mutant S82E en YPGalA. En YLAC il semble y avoir une légère diminution de Cox12p dans le mutant S82E mais trop faible pour être significative.

L'état phosphorylé de la Ser82 semble favoriser l'accumulation de Cox12p en YPGalA mais la défavoriser en YPGA. Il ne semble pas influencer ce paramètre en YLAC.

Les variations de l'accumulation de Cox12p dans les mutants S7E et S82E par rapport aux mutants S7A et S82A respectivement sont synthétisées dans le tableau 39:

	YPGA	YPGalA	YLAC
		Accumulation Cox12	р
S7E/S7A	+	-	+
S82E/S82A	-	+	idem

Tableau 39: Bilan de l'accumulation de Cox12p dans les mutants phosphomimétiques de la Ser7 et de la Ser82 en YPGA, YPGaIA et YLAC

Les variations des mutants S7E et S82E sont représentées par rapport à celles des mutants S7A et S82A respectivement. Les « - » en rouge correspondent à une diminution dans le mutant S*E par rapport au S*A tandis que les « + » bleu représentent une augmentation.

Les changements d'accumulation de Cox12p observés entre les mutants phosphomimétiques de la Ser7 et de la Ser82 peuvent être dus à un effet de la phosphorylation sur la stabilité de la sous-unité elle-même ou sur celle du complexe IV en général. Nous avons cherché à comparer la quantité du complexe IV dans les différents mutants afin de répondre à cette question.

Spectres d'absorption des cytochromes

Nous avons estimé la quantité de complexe assemblé par la mesure du spectre d'absorption des hèmes. Elle a été enregistrée à température ambiante, sur les cellules des mutants S7A et S7E d'une part, et des mutants S82A et S82E d'autre part, récoltées en phase exponentielle à 8.10⁷ cellules/mL, dans les trois milieux de culture : YLAC, YPGalA et YPGA. Pour chacune des souches, les pics d'absorption correspondant aux hèmes c+c1 (550nm), à l'hème b (560nm), aux hèmes a+a3 (602nm) ont été mesurés.

Pour les mutants de la Ser7 et ceux de la Ser82, nous avons comparé le spectre d'absorption de la forme déphosphorylée (S7A ou S82A) avec celui de la forme phosphorylée (S7E ou S82E), et en particulier le ratio des hèmes a+a3/b. Ce paramètre nous permet d'estimer une variation du complexe IV par rapport au complexe III (cf Figures 67 et 68).

• En YPGA, la quantité d'hèmes a+a3 dans les quatre mutants phosphomimétiques, tout comme dans le WT, est trop faible pour être quantifiée.

• Spectres d'absorption des cytochromes des mutants S7 en YPGalA et YLAC :

Le spectre représente une expérience. Lorsque cela a été possible, deux expériences ont été réalisées. La quantité d'hèmes a+a3 a été rapportée à celle de b pour chaque échantillon.

En YPGalA, la forme phosphorylée de la Ser7 (S7E) présente une diminution de 30% du ratio des hèmes a+a3/b, suggérant une baisse dans la quantité de complexe IV assemblé par rapport au complexe III. Mais un seul spectre a pu être enregistré à cause d'un problème de croissance de la souche S7A. Il faudrait répéter cette expérience pour vérifier ce résultat.

En YLAC, on n'observe pas de baisse significative du ratio des hèmes a+a3/b dans le mutant S7E par rapport au mutant S7A.

• Spectres d'absorption des cytochromes des mutants S82 en YPGalA et YLAC :

Figure 67: Spectre d'absorption des cytochromes des mutants S7A et S7E en YPGalA et en YLAC.

Figure 68: Spectre d'absorption des cytochromes des mutants S82A et S82E en YPGalA et en YLAC.

Le spectre représente une expérience. Lorsque cela a été possible deux expériences ont été réalisées. La quantité d'hèmes a+a3 a été rapportée à celle de b pour chaque échantillon.

En YLAC et en YPGalA, les ratios des hèmes a+a3/b ne sont pas significativement différents entre les mutants S82A et S82E. La quantité de complexe IV ne semble pas être influencée par l'état phosphorylé de la Ser82 en YLAC et en YPGalA.

Les mesures du ratio hèmes a+a3/b pour les mutants S7 et les mutants S82 sont résumées dans le tableau 40:

	YPGA	YPGalA	YLAC
		Ratio hèmes a+a3/b	
S7A	n.d	100%	100%
S7E	n.d	69%	94%
S82A	n.d	100%	100%
S82E	n.d	110%	114%

Tableau 40: Bilan des ratios hèmes a+a3/b dans les mutants phosphomimétiques de la Ser7 et de la Ser82 en YPGA, YPGalA et YLAC.

Les valeurs en rouge correspondent à une diminution dans le mutant S*E par rapport au S*A.

Ainsi l'état de phosphorylation de la Ser7 et celui de la Ser82 ont peu d'influence sur la quantité de complexe IV. Seul, en YPGalA, le ratio des hèmes a+a3/b est diminué de 30% dans le mutant S7E par rapport au mutant S7A. Mais cette mesure n'a été réalisée qu'une fois: elle mérite d'être répétée avant de conclure quant à une déstabilisation éventuelle du complexe IV par rapport au complexe III dans cette condition.

Assemblage du complexe IV

L'état de phosphorylation de la Ser7 ou de la Ser82 influence peu la quantité de complexe IV assemblé. Mais qu'en est-il de l'assemblage du complexe ? Le complexe IV assemblé est-t-il similaire dans les mutants S7A et S7E d'une part, et dans les mutants S82A et S82 d'autre part ? En particulier, observe-t-on toujours les deux formes, haute et basse, identifiées dans la souche WT après solubilisation en laurylmaltoside ?

Notamment la Ser7 semblant proche de l'interface avec Cox2p, la phosphorylation de ce résidu pourrait jouer un rôle sur l'insertion de Cox12p dans le complexe IV.

Nous avons analysé les mitochondries des quatre mutants et du WT solubilisées en laurylmaltoside 2% afin d'étudier l'assemblage du complexe IV monomérique (cf Figure 69).

Figure 69: Analyse du complexe IV des mutants S7A et S7E par BN-PAGE suite à une révélation de l'activité in-gel.

Dans les quatre mutants phosphomimétiques (S7A, S7E, S82A et S82E) le profil BN-PAGE est identique à celui du WT et se caractérise par la présence d'un doublet; la forme majoritaire est celle de plus haut poids moléculaire contenant l'ensemble des sous-unités du complexe IV (HMW band). Cependant en YPGA, l'activité in-gel des deux mutants S7A et S7E est faible par rapport à celle du WT, gênant l'identification du complexe IV dans les mutants.

Nous avons proposé que la forme LMW serait, dans une souche WT, la conséquence d'une déstabilisation des sous-unités Cox12p et Cox13p par le laurylmaltoside. Nous nous sommes demandés si le comportement de la sous-unité Cox12p pouvait être modifié dans les mutants de phosphorylation : Cox12p-S7A serait-il plus facilement ou plus difficilement dissociée du complexe IV que Cox12p-S7E ? Qu'en serait-il pour les mutants S82A et S82E? Cette hypothèse est d'autant plus pertinente dans le cas des mutants S7A et S7E où le résidu Ser7 pourrait être impliqué dans l'interaction de Cox12p avec le complexe IV, par l'intermédiaire de Cox2p.

Quantifications des deux formes monomériques du complexe IV

Pour tester cette dernière hypothèse, nous avons effectué un test immunologique avec un anticorps anti-Cox6p sur les membranes BN-PAGE des mitochondries WT, S7A, S7E, S82A et S82E solubilisées en laurylmaltoside 2%, puis quantifié les deux bandes du doublet afin d'observer une éventuelle augmentation du complexe IV ne contenant pas Cox12p (bande LMW) (cf Figures 70 et 71).

Figure 70: Quantification des deux formes du complexe IV mis en évidence par test immunologique avec un anti- Cox6p dans le WT et les mutants S7A et S7E en YPGA, YPGaIA et YLAC

La proportion des formes HMW et LMW du complexe IV n'est pas significativement différente entre les deux mutants S7A et S7E en YPGalA et YLAC. En YPGA, le complexe IV est présent dans une concentration trop faible dans les deux mutants phosphomimétiques de la Ser7 pour pouvoir le quantifier.

La phosphorylation de la Ser7 ne semble pas significativement influencer la stabilité de Cox12p sur le complexe IV.

Figure 71: Quantification des deux formes du complexe IV mis en évidence par test immunologique Cox6p dans le WT et les mutants S82A et S82E en YPGA, YPGaIA et YLAC

La proportion de complexe IV dans la bande LMW n'est pas significativement différente entre les deux mutants de la Ser82, ce qui suggère que l'état de la phosphorylation de la Ser82 ne modifierait pas la dissociation de Cox12p en présence de laurylmaltoside ni l'interaction Cox12p-complexe IV.

	YPGA	YLAC							
	Assemblage monomérique majoritaire du complexe IV								
S7A	n.d	HMW	HMW						
S7E	n.d	HMW	HMW						
S82A	HMW	HMW	HMW						
\$82E	HMW	HMW	HMW						
	% de la forn	ne HMW par rapport à∣	HMW+LMW						
S7A	n.d	60%	70%						
S7E	n.d	63%	68%						
\$82A	71%	66%	71%						
\$82E	n.d	60%	69%						

Les résultats obtenus sur l'assemblage monomérique du complexe IV dans les mutants S7A et S7E d'une part, et dans les mutants S82A et S82E d'autre part sont résumés dans le tableau 42.

Tableau 41: Comparaison de l'assemblage monomérique du complexe IV dans les mutants phosphomimétiques de la Ser7 et de la Ser82

n.d=non détecté

Donc, peu d'effets ont été enregistrés au niveau du complexe IV (assemblage et quantité) lors de la phosphorylation/déphosphorylation de la Ser82 et de la Ser7.

Néanmoins, il est intéressant de regarder si l'activité enzymatique du complexe IV et/ou son organisation supramoléculaire sont influencées par la phosphorylation d'un des résidus.

En particulier, la Ser7 est proche de Cox2p sur la structure du complexe IV qui interagit avec le cytochrome c au cours de l'activité enzymatique, ce qui incite à regarder si cette activité est modifiée par la phosphorylation/déphosphorylation de la Ser7.

De plus, la Ser82 semble être proche de l'interface de dimérisation du complexe IV, qui est aussi l'interface complexe III-complexe IV dans les supercomplexes. Il semble important de vérifier que la formation/stabilité de ces structures reste inchangée par l'état de phosphorylation de la Ser82.

Activité in-vitro

L'activité *in-vitro* du complexe a été mesurée pour les mutants phosphomimétiques de la Ser7 (cf Tableau 42 et Figure 72) et de la Ser82 (cf Tableau 43 et Figure 73) dans les trois conditions de culture: YPGA, YPGaIA, YLAC.

	YPGA			YPGalA			YLAC		
	S7A	S7E	Ratio S7E/S7A	S7A	S7E	Ratio S7E/S7A	S7A	S7E	Ratio S7E/S7A
exp1	154 ± 13	127 ± 11	0,82	2350 ± 89	2452 ± 101	1,04	1517 ± 79	1881 ± 141	1,24
exp2	189 ± 7	164 ± 11	0,87	2607 ± 38	2535±118	0,97	2053 ± 38	2324 ± 66	1,13

• Activité in-vitro du complexe IV des mutants S7 en YPGA, YPGalA et YLAC

Tableau 42: Activité *in-vitro* du complexe IV pour le mutant S7A et le mutant S7E dans les trois conditions de culture: YPGA, YPGalA et YLAC

Chaque résultat d'expérience est le cumul de six mesures d'activités au moins. La moyenne et l'écart-type de ces six mesures sont indiqués pour chaque expérience. Le ratio consiste en l'activité du mutant S7E rapportée à celle du mutant S7A pour obtenues au cours de la même expérience.

Figure 72: Représentation de l'activité CIV *in-vitro* du mutant S7E par rapport à celle du mutant S7A en YPGA, YPGalA et YLAC.

Les valeurs représentées ici sont la conclusion de deux expériences dont les résultats sont indiqués dans le tableau cidessus.

Aucune différence significative n'est observée entre les deux mutants S7A et S7E en YPGA et en YPGalA. En YLAC, une légère hausse d'activité est enregistrée dans le mutant S7E par rapport au

mutant S7A: dans ce milieu de culture, l'état phosphorylé semble légèrement favorable à l'activité du complexe IV.

	YPGA			YPGalA			YLAC		
	S82A	S82E	Ratio S82E/S82A	S82A	S82E	Ratio S82E/S82A	S82A	\$82E	Ratio S82E/S82A
exp1	997 ± 61	702 ± 28	0,70	1971 ± 94	2476 ± 90	1,26	2055 ± 235	1827 ± 56	0.89
exp2	1019 ± 26	739 ± 27	0,72	2103 ± 108	2541 ± 76	1.21	2189 ± 141	1899 ± 79	0.87

• Activité in-vitro du complexe IV des mutants S82 en YPGA, YPGalA et YLAC

Tableau 43: Activité *in-vitro* du complexe IV pour le mutant S82A et le mutant 82E dans les trois conditions de culture: YPGA, YPGalA et YLAC

Deux expériences ont été réalisées. Chaque résultat d'expérience est le cumul de six mesures d'activités au moins. La moyenne et l'écart-type de ces six mesures sont indiqués pour chaque expérience. Le ratio consiste en l'activité du mutant S82E rapportée à celle du mutant S82A pour obtenues au cours de la même expérience.

Figure 73: Représentation de l'activité CIV in-vitro du mutant S82E par rapport à celle du mutant S82A en YPGA, YPGaIA et YLAC.

Les valeurs représentées ici sont la conclusion des deux expériences dont les résultats sont indiqués dans le tableau cidessus. En YPGalA l'activité du mutant S82E est légèrement plus élevée que pour le mutant S82A tandis qu'en YPGA elle semble plus faible. En YLAC, aucune différence significative dans l'activité CIV n'est observée entre les deux mutants.

	· · · · · · · · · · · · · · · · · · ·				
	YPGA	YPGalA	YLAC		
	Activité CIV in-vitro				
S7A	100%	100%	100%		
S7E	85%	101%	119%		
S82A	100%	100%	100%		
\$82E	71%	123%	88%		

Les activités *in-vitro* mesurées pour les quatre mutants phosphomimétiques en YPGA, YPGalA et YLAC sont synthétisées dans le tableau 44.

Tableau 44: Bilan de l'activité *in-vitro* du complexe IV mesurée dans les mutants phosphomimétiques de la Ser7 et de la Ser82 en YPGA, YPGaIA et YLAC

Activité rapportée

A partir des mesures d'activité *in-vitro* du complexe IV et du ratio hèmes a+a3/b, nous avons pu estimer l'activité rapportée à la quantité de complexe IV, dite activité « rapportée », pour les quatre mutants phosphomimétiques. Les ratios des hèmes a+a3/b ainsi que l'activité *in-vitro* du complexe IV sont résumés dans les tableaux 45, 46 et 47 et dans les figures 74 et 75 pour les mutants S7A et S7E d'une part et pour les mutants S82A et S82E d'autre part. Les données sont exprimées en pourcentage par rapport aux valeurs obtenues pour le mutant mimant l'état déphosphorylé permanent (S7A ou S82A).

• Activité « rapportée » des mutants S7 et S82 en YPGA

	YPGA		YPGA
	Activité <i>in vitro /</i> Ratio hèmes a+a3/b		Activité <i>in vitro /</i> Ratio hèmes a+a3/b
S7A	100% / n.d	\$82A	100% / n.d
S7E	85% / n.d	\$82E	71% / n.d

Tableau 45: Bilan de l'activité in-vitro et du ratio hèmes a+a3/b dans multants phosphomimétiques de la Ser7 et de la Ser82 en YPGA

En YPGA, la quantité des hèmes a+a3 n'a pas pu être estimée pour aucun des quatre mutants phosphomimétiques. Il n'est pas possible d'évaluer l'activité du complexe IV rapportée à la

quantité de complexe, dans cette condition. Or le mutant S82E présentait une baisse d'activité *in-vitro* par rapport au mutant S82A dans cette condition. Nous ne pouvons pas faire d'hypothèse sur l'origine de cette différence: est-elle due à une diminution de complexe assemblé ou à une diminution d'activité "rapportée"?

	YPGalA	YLAC	
	Activité <i>in vitro /</i> Ratio hèmes a+a3/b		
S7A	100% / 100%	100% / 100%	
S7E	101% / 69%	119% / 94%	

• Activité « rapportée » des mutants S7 en YPGalA et YLAC

Tableau 46: Comparaison de l'activité *in-vitro* du complexe IV et du ratio des hèmes a+a3/b dans les mutants S7A et S7E en YPGaIA et YLAC.

Les valeurs sont exprimées en pourcentage par rapport au S7A; les valeurs du mutant S7E sont en bleu lorsqu'elles suggèrent une augmentation de l'activité « rapportée ».

Figure 74: Représentation de l'activité *in-vitro* du complexe IV et du ratio hèmes a+a3/b dans les mutants phosphomimétiques de la Ser7 en YPGalA et en YLAC

Les activités *in vitro* sont représentées sous forme d'histogramme; les valeurs (exprimées en pourcentage par rapport aux données de S7A) sont en bas de l'histogramme.

Les ratios hèmes a+a3/b sont représentées sous forme de points sous lesquels les valeurs (exprimées en pourcentage par rapport aux résultats de S7A) sont indiquées.

En YPGalA, l'activité in-vitro du complexe IV est similaire dans les deux mutants malgré une baisse de 30% du ratio des hèmes a+a3/b dans le mutant S7E par rapport au mutant S7A: ceci suppose que le complexe IV serait déstabilisé par rapport au complexe III dans le mutant S7E en YPGalA et que l'activité "rapportée" serait supérieure dans le mutant S7E par rapport au S7A. Mais la mesure des hèmes n'ayant été obtenu qu'une seule fois, il serait nécessaire de répéter l'expérience pour valider cette hypothèse.
En YLAC, le ratio des hèmes a+a3/b n'est pas significativement différent entre les mutants, alors que l'activité du complexe IV *in-vitro* semble augmentée de 20% dans ce milieu. L'activité "rapportée" serait aussi augmentée dans le mutant S7E par rapport au mutant S7A en YLAC.

	YPGalA	YLAC
	Activité in vitro /	′Ratio hèmes a+a3/b
S82A	100% / 100%	100% / 100%
\$82E	123% / 110%	88% / 114%

• Activité « rapportée des mutants S82 en YPGalA et YLAC

Tableau 47: Comparaison de l'activité in-vitro du complexe IV et du ratio des hèmes a+a3/b dans les mutants S82A et S82E en YPGalA et YLAC.

Les valeurs sont exprimées en pourcentage par rapport aux données du S82A; les valeurs du mutant S82E sont en rouge lorsqu'elles présentent une diminution de l'activité « rapportée ».

Figure 75: Représentation de l'activité *in-vitro* du complexe IV et du ratio hèmes a+a3/b dans les mutants phosphomimétiques de la Ser82 en YPGaIA et en YLAC.

Les activités *in vitro* sont représentées sous forme d'histogramme; les valeurs (exprimées en pourcentage par rapport aux données de S7A) sont en bas de l'histogramme.

Les ratios hèmes a+a3/b sont représentés sous forme de points sous lesquels les valeurs (exprimées en pourcentage par rapport aux résultats de S7A) sont indiquées.

En YPGalA une augmentation de 20% de l'activité *in-vitro* du complexe IV est observée dans le mutant S82E par rapport au mutant S82A. Ceci pourrait être une due à une hausse de complexe IV et/ou à une augmentation de l'activité "rapportée" dans ce mutant. La mesure du ratio hèmes a+a3/b n'est pas significativement différent entre les deux mutants; mais le spectre d'absorption des hèmes n'a pu être enregistré qu'une fois. L'état actuel des résultats ne nous permet pas de conclure sur l'origine de la variation de l'activité *in-vitro* du complexe IV.

En YLAC, l'activité *in-vitro* du complexe IV est légèrement diminuée dans le mutant S7E par rapport au mutant S7A alors que le ratio des hèmes a+a3/b est légèrement augmentée. Ceci suggère que l'activité « rapportée » du complexe IV en YLAC serait diminuée dans le mutant S82E par rapport au mutant S82A.

Les expériences effectuées jusqu'à présent suggèrent quelques légers effets de la phosphorylation, que ce soit au niveau de la Ser7 ou de la Ser82 sur l'activité "rapportée" du complexe IV. Néanmoins, il faudrait répéter la mesure des spectres d'absorption des cytochromes afin de s'assurer de la variation de la quantité de complexe IV entre les mutants. Ceci permettrait une mesure plus fiable de l'activité "rapportée".

Organisation supramoléculaire du complexe IV

La phosphorylation semble peu influencer la quantité de complexe IV et son activité rapportée à la quantité de complexes.

Quelle est l'organisation supramoléculaire du complexe IV selon l'état de phosphorylation de la Ser7 et de la Ser82?

Les mitochondries des mutants phosphomimétiques de la Ser7 et de la Ser82, ainsi que du WT ont été analysées par BN-PAGE suite à leur solubilisation en DG 2%. Cette expérience a été réalisée suite à la croissance des levures en YPGA, YPGalA et en YLAC (cf Figures 76 et 77). La présence du complexe IV a été révélée par une mesure d'activité in-gel. L'intensité du gel YPGA était trop faible pour clairement distinguer les différentes formes supramoléculaires.

Résultats et Discussion - Partie B

Figure 76: Analyse du complexe IV du WT et des mutants S7A et S7E par BN-PAGE suite à une révélation de l'activité *in-gel*.

Les mitochondries ont été solubilisées en digitonine 2%.

L'organisation supramoléculaire est identique dans les deux mutants S7A et S7E et dans le WT: le complexe IV est présent sous forme dimérique et monomérique, à la fois seul (IV_1 et IV_2) et associé au complexe III (III_2IV_1 et $IV_1III_2IV_1$).

Figure 77: Analyse du complexe IV du WT des mutants S82A et S82E par BN-PAGE suite à une révélation de l'activité *in-gel.*

Les mitochondries ont été solubilisées en digitonine 2%.

En YLAC et YPGalA le profil supramoléculaire est identique dans le WT et les souches S82A et S82E: le complexe IV est présent sous forme dimérique et monomérique, à la fois seul et associé au complexe III.

Néanmoins, la migration du dimère du complexe IV semble légèrement différente entre S82A et S82E. En YPGalA, la bande du dimère de S82E est légèrement plus haute que celle du dimère de S82A. Les autres formes du complexe IV ont le même profil de migration dans les deux mutants. Ceci suggère que le dimère du complexe IV est différent dans les deux mutants.

Proportion des supercomplexes

Nous avons cherché à connaître la proportion des supercomplexes dans les différents mutants afin d'observer une éventuelle modification des formes actives du complexe IV selon la phosphorylation/déphosphorylation d'un résidu.

• Estimation du ratio supercomplexes/complexes

Dans un premier temps, nous avons quantifié l'activité *in-gel* des supercomplexes ($IV_1II_2IV_1 + III_2IV_1$) et des complexes seuls ($IV_2 + IV_1$) dans les quatre mutants phosphomimétiques. Puis le ratio supercomplexes/complexes a été comparé entre les mutants S7A et S7E d'une part (cf Tableau 48), et entre les mutants S82A et S82E (cf Tableau 49).

	YPGalA			YLAC		
	WT	S7A	S7E	WТ	S7A	S7E
supercomplexes	26208	38094	55672	31693	40563	39999
Complexes	133994	149040	167218	113931	137706	139657
Ratio S/C	0.20	0.25	0.33	0.28	0.29	0.29
% / S7A		100%	130%		100%	97%

Tableau 48 Quantification de l'activité in-gel des supercomplexes et des complexes, dans les mutants S7A et S7E en YPGalA et en YLAC

S/C=supercomplexes/complexes

En YLAC, le ratio supercomplexes/complexes (S/C) semble similaire entre les deux mutants de la Ser7 tandis qu'en YPGalA il présente une hausse de 30% dans le mutant S7E par rapport au mutant S7A, ce qui suggère une stabilisation des supercomplexes. Toutefois, il est à noter que les formes actives du complexe IV ne sont pas bien résolues pour le mutant S7E en YPGalA, à cause d'une solubilisation difficile des mitochondries de ce mutant dans cette condition. Il serait nécessaire d'optimiser leur solubilisation et de reproduire l'expérience pour confirmer ce résultat.

	YPGalA			YLAC		
	WT	S82A	S82E	WТ	S82A	S82E
supercomplexes	24307	25264	50301	57530	82730	80483
complexes	72948	52183	102192	75248	116180	99658
Ratio S/C	0.33	0.48	0.49	0.76	0.71	0.81
% / S82A		100%	102%		100%	113%

Tableau 49: Quantification de l'activité in-gel des supercomplexes et des complexes, dans les mutants S82A et S82E en YPGalA et en YLAC

S/C=supercomplexes/complexes

D'après l'activité CIV *in gel,* le ratio supercomplexes/complexes (S/C) ne semble pas significativement différent entre les mutants S82A et S82E en YLAC et en YPGaIA.

Toutefois, l'activité *in-gel* n'est pas la technique de choix pour la quantification : il est difficile de contrôler le temps d'incubation et il y a un risque de saturation.

• Estimation du ratio supercomplexes/monomères

Pour vérifier ces données, nous avons effectué un test immunologique avec un anticorps anti-Cox6p sur les membranes de BN-PAGE des mitochondries des souches sauvage et mutantes S7A et S7E solubilisées en digitonine 2%, en YLAC et en YPGalA. Nous avons quantifié les bandes révélant les supercomplexes et le monomère et comparé le ratio supercomplexes/monomères (S/M) entre les deux mutants (cf Tableau 50). Nous avons effectué la même expérience pour les mutants S82A et S82E (cf Tableau 51). Toutefois, il est à noter que l'anticorps anti-Cox6p ne reconnaît malheureusement pas la forme dimérique du complexe IV. Cette méthode donne accès seulement au ratio supercomplexes/monomères et non au ratio supercomplexes, comme observé avec l'activité *in-gel*.

	YPGalA			YLAC		
	WT	S7A	S7E	WТ	S7A	S7E
supercomplexes	45445	15890	24585	56953	100360	109245
Monomères	11027	3553	3195	31450	29306	53075
Ratio S/M	4.1	4.5	7.7	1.8	3.4	2.1
% / S7A		100%	172%		100%	60%

Tableau 50: Quantification de Cox6p des supercomplexes et des complexes, dans les mutants S7A et S7E en YPGalA et en YLAC

S/M= supercomplexes/monomères

Ces données montrent que le ratio supercomplexes/monomères (S/M) est fortement augmenté en YPGalA mais diminué en YLAC dans le mutant S7E par rapport au mutant S7A. Ceci suggère que la phosphorylation/déphosphorylation de la Ser7 a une influence sur la formation et/ou sur la stabilité des supercomplexes dans ces deux milieux de culture. Néanmoins, il faudrait reproduire l'expérience en YPGalA du fait de la mauvaise résolution des formes actives pour le mutant S7E.

	YPGalA			YLAC		
	W303	S82A	S82E	W303	S82A	S82E
Supercomplexes (SC)	14228	18050	15474	28099	30384	36526
Monomère (M)	31903	26377	34267	15473	35124	50298
Ratio (SC/M)	0.45	0.68	0.45	1.82	0.87	0.73
% / S82A		100%	66%		100%	84%

Tableau 51: Quantification de Cox6p des supercomplexes et du monomère, dans les mutants S82A et S82E en YPGalA et en YLAC

Le ratio supercomplexes/monomère diminue de 35% en YPGalA et de 15% en YLAC dans le mutant S82E par rapport au S82A. Dans ces deux milieux de culture, la forme phosphorylée de la Ser82 semble légèrement déstabiliser les supercomplexes et stabiliser le monomère du complexe IV.

Les ratios supercomplexes/complexes et supercomplexes/monomères mesurés dans les mutants phosphomimétiques de la Ser7 et de la Ser82 sont résumés dans le tableau 52.

Les ratios mesurés par la quantification de l'activité in-gel et par la quantification Cox6p diffèrent, ce qui est attendu car dans le premier cas c'est le ratio supercomplexes / (dimères +monomères) qui est mesuré tandis que dans le second cas il s'agit du ratio supercomplexes / monomères.

	YPalGA	YLAC		
	Ratio supercomplexes/complexes (estimé d'après la quantification de l'activité <i>in-gel</i>)			
S7A	100%	100%		
S7E	130%	97%		
S82A	100%	100%		
S82E	102% 113%			
	Ratio supercomplexes/monomères (estimé d'après la quantification de Cox6p)			
S7A	100%	100%		
S7E	172%	60%		
S82A	100%	100%		
S82E	66% 84%			

Tableau 52: Bilan de l'estimation supercomplexes/complexes et supercomplexes/monomères pour les mutants phosphomimétiques de la Ser7 et de la Ser82 en YPGalA et en YLAC.

Les données sont exprimées en pourcentage par rapport aux valeurs des mutants S*A. Les valeurs en rouge représentent une diminution du paramètre dans le mutant S*E par rapport au mutant S*A tandis que les valeurs en bleu représentent une augmentation.

4. Discussion

Nous avons cherché à étudier le rôle de deux sites de phosphorylation de Cox12p. D'une part la phosphorylation pourrait avoir un rôle sur l'accumulation de la protéine elle-même ou pourrait avoir un rôle plus global et moduler par exemple l'activité du complexe IV ou son interaction avec d'autres protéines.

a) Implication de la phosphorylation dans l'accumulation de Cox12p

Dans une première partie nous avons regardé le lien de la phosphorylation avec l'accumulation de la protéine. Dans notre étude de spectrométrie de masse nous avons quantifié Cox12p et trouvé que son abondance varie avec le métabolisme: elle est plus faible en glucose (milieu fortement répresseur dans lequel la part de la respiration est très faible), qu'en galactose et en lactate (milieux dans lesquels la part de la respiration est significative) (cf Figure 78).

YLR038C COX12 Subunit VIb of cytochrome c oxidase, which is

Figure 78: Variation de l'abondance de Cox12p en YPGaIA (Gal), YPGA (Glu) et YLAC (Lac)

Les valeurs ont été quantifiées par LC-MS/MS

La Ser7 a été quantifiée comme phosphorylée dans notre étude mais nous n'avons pas identifié la Ser82 comme phosphorylée. Le niveau de phosphorylation de la Ser7 ne varie pas selon les conditions. A première vue, la variation d'abondance selon le métabolisme ne serait pas liée juste à l'état de phosphorylation de la Ser7. Elle pourrait être la conséquence de la répression des protéines observée en conditions fermentaires (Gancedo 1998; Herrero, Fernández, and Moreno 1985).

Néanmoins ceci n'exclut pas une régulation de l'accumulation de Cox12p selon la phosphorylation de la Ser7 ou de la Ser82: elle pourrait être régulée à différents niveaux, le premier étant la répression catabolique, le deuxième pouvant être une régulation plus fine par la phosphorylation.

Pour cela, nous avons regardé le niveau d'accumulation de Cox12p dans les mutants mimant l'état phosphorylé permanent (S7E et S82E) et dans ceux mimant l'état déphosphorylé permanent (S7A et S82A) dans les trois conditions de culture YPGA, YPGalA, YLAC. Nous avons effectué un test immunologique avec un anticorps anti-Cox12p sur des mitochondries du WT et des mutants.

Tout d'abord, nous pouvons observer des nettes différences dans les trois conditions de culture, entre les mutants S7A et S7E d'une part, et entre les mutants S82A et S82E d'autre part. Ceci suggère un rôle de la phosphorylation dans l'accumulation de la protéine. Néanmoins, les effets observés

sont conditions-dépendantes et non métabolisme-dépendant, puisque le même sens de variation est observé entre glucose (condition fermentaire) et lactate (condition respiratoire) et non en galactose (condition respiro-fermentaire). En effet, la phosphorylation de la Ser7 parait favorable à l'accumulation de Cox12p en YPGA et YLAC et défavorable en YPGaIA. Celle de la Ser82 parait au contraire défavorable en YPGA et YLAC mais favorable en YPGaIA.

Ceci suggère que l'accumulation de Cox12p pourrait être régulée à plusieurs niveaux:

- par la répression catabolique entrainant une variation de l'abondance de la protéine avec le métabolisme
- par la phosphorylation qui peut dans chaque condition moduler l'accumulation de la protéine de façon indépendante du métabolisme

Nous pouvons émettre plusieurs hypothèses pour comprendre comment agit la phosphorylation sur l'accumulation de la protéine. En effet, l'accumulation que nous quantifions résulte d'un équilibre entre synthèse et dégradation de la protéine. La variation d'accumulation observée peut provenir d'un changement de l'un ou l'autre de ces paramètres.

 Une première hypothèse pour expliquer la variation de Cox12p serait que l'état de phosphorylation entraîne une variation de la synthèse de la protéine. Cela peut être un effet au niveau transcriptionnel (modulation du taux de transcription, de la stabilité des transcrits ou de la dégradation des transcrits) ou au niveau traductionnel (modulation du taux de traduction).

Mais la phosphorylation étant une modification post-traductionnelle, cette hypothèse est peu probable. Cependant nous avons généré des mutants phosphomimétiques: ils diffèrent de la souche sauvage au niveau du gène même de *COX12*. On ne peut exclure que les mutations génétiques que nous avons apporté à *COX12* puissent avoir un effet sur la transcription ou la traduction. Dans ce cas-là, l'effet observé ne peut être étendu au rôle de la phosphorylation et ne doit pas être considéré.

- 2) Une deuxième hypothèse pour expliquer la variation de Cox12p serait que l'état de phosphorylation pourrait influencer la stabilité de la protéine et son mécanisme de dégradation. Par exemple, l'état de phosphorylation pourrait moduler l'interaction avec une protéase et favoriser ou au contraire défavoriser sa dégradation par les protéases (Koppen and Langer 2007). Une autre suggestion serait que la phosphorylation de Cox12p pourrait modifier son efficacité d'insertion sur le complexe IV. Si celle-ci diminue, cela pourrait entraîner une augmentation de Cox12p non assemblée qui serait potentiellement dégradée.
- 3) D'autre part, nous regardons l'accumulation de Cox12p dans la mitochondrie. Une différence à ce niveau peut aussi provenir d'une variation d'efficacité lors de l'import de la protéine dans l'organelle. En effet, la phosphorylation du complexe TOM module son efficacité d'import (Schmidt et al. 2011). La phosphorylation des protéines pourrait aussi avoir un effet similaire. Elle pourrait par exemple moduler l'interaction avec les protéines chaperones qui prennent en charge les protéines au cours de leur import, ou moduler l'interaction avec le récepteur TOM.

Toutefois, cette hypothèse suppose que la phosphorylation se fait dans le cytosol. Si la phosphorylation est intra-mitochondrial, elle ne devrait pas modifier ce processus. Mais les modifications génétiques que nous avons apportées modifient la protéine en amont de son

import dans la mitochondrie: l'effet que nous observons pourrait être un effet dû au fait que nous modifions la protéine avant son import, mais il se pourrait qu'il ne se voit pas *in-vivo* dans le cas d'une phosphorylation intra-mitochondriale.

b) Conséquences de la phosphorylation de la Ser7 sur la chaîne respiratoire

<u>En YLAC</u>

En YLAC, nous n'avons pas observé de variation du ratio hèmes a+a3/b dans le mutant S7E par rapport au mutant S7A. Ceci suggère que la quantité de complexe IV par rapport à celle de complexe III n'est pas modifiée selon l'état de phosphorylation de la Ser7 en YLAC. De plus, l'analyse des deux mutants par BN-PAGE, suite à la solubilisation de leurs mitochondries en laurylmaltoside 2%, ne montre pas de modification dans l'assemblage du complexe IV.

La phosphorylation de la Ser7 en YLAC semble avoir peu d'influence sur le complexe IV lui-même, que ce soit au niveau de son accumulation ou de son assemblage.

Néanmoins, l'activité *in-vitro* du complexe IV, augmente de 20% dans le mutant S7A par rapport au mutant S7E. Ceci suggère une légère augmentation de l'activité « rapportée » lorsque la Ser7 est sous forme phosphorylée en YLAC.

En YPGalA

En YPGalA, une diminution de 30% complexe IV assemblé est suggérée dans le mutant S7E par rapport au mutant S7A, d'après la diminution du ratio hèmes a+a3/b. Nous avons vu précédemment que l'absence de Cox12p réduisait la quantité de complexe IV assemblé en YPGalA; sa phosphorylation au niveau de la Ser7 peut également entraîner cet effet. Or cette sérine serait localisée à l'interface avec Cox2p. Nous pourrions envisager que la phosphorylation de Cox12p au niveau de la Ser7 diminue l'interaction Cox12p-Cox2p. Cette perte d'interaction pourrait diminuer l'assemblage et/ou la stabilité du complexe IV, comme cela a été observé lors de l'absence de Cox12p dans le mutant $\Delta cox12$.

D'autre part, malgré cette diminution supposée de complexe IV assemblé, on n'observe pas de différence significative d'activité *in-vitro* du complexe IV entre les deux mutants. Ceci suggère que le complexe IV phosphorylé au niveau de la Ser7 de Cox12p aurait une activité "rapportée" plus grande, en YPGalA.

Cette augmentation de l'activité « rapportée » en présence de la Ser7 phosphorylée semble avoir lieu en YLAC et en YPGalA. Deux hypothèses majeures sont envisageables.

- la phosphorylation modifierait les formes actives du complexe IV (supercomplexes, dimère)

- la phosphorylation favoriserait l'interaction du cytochrome c avec le complexe IV
- 1) Pour tester la première hypothèse, nous avons analysé les mitochondries des deux mutants solubilisées en DG2% par BN-PAGE en YPGalA et en YLAC.

Il semble y avoir une augmentation des supercomplexes dans le mutant S7E par rapport au mutant S7A en YPGalA. Ceci est observé à la fois par une hausse de 30% du ratio supercomplexes/complexes, et par une hausse de 70% du ratio supercomplexes/monomères.

Or en YLAC, l'analyse des structures supramoléculaires présentes dans les mitochondries des deux mutants suggèrent que la phosphorylation de la Ser7 ne stabilise pas les supercomplexes. Le ratio supercomplexes/complexes, estimé à partir de la quantification de l'activité *in-gel* est similaire dans les deux mutants ; le ratio supercomplexes/monomères estimé à partir de la quantification de Cox6p semble réduit de 40% lorsque la Ser7 est dans un état phosphorylé permanent.

Ceci montre que la modification de l'activité n'est pas toujours associée à la même modification de la stabilité des supercomplexes: ces deux effets n'ont peut-être pas de lien causatif. Ceci suggère que ce ne serait pas la modification des formes actives du complexe IV qui serait à l'origine d'une variation d'activité « rapportée » lors de la phosphorylation de la Ser7.

Néanmoins des analyses supplémentaires seraient nécessaires avant de rejeter complètement cette hypothèse. Par exemple, il serait possible de purifier les différentes formes supramoléculaires (supercomplexes III+IV, dimère et monomère du complexe IV) par gradient de sucrose. D'une part, ceci permettrait de les quantifier plus précisément, par exemple par spectrométrie de masse, afin de vérifier la variation des ratios supercomplexes/complexes et supercomplexes/monomères. D'autre part, l'activité du complexe IV pourrait être mesurée dans chacune des formes afin de comparer l'activité spécifique de chaque forme.

2) La seconde hypothèse concerne l'augmentation de l'interaction entre le cytochrome c et le complexe IV. Une suggestion est que l'interaction entre les deux partenaires serait plus forte lorsque Cox12p serait phosphorylée au niveau de la Ser7. Ce paramètre n'a pas pu être testé et cette suggestion reste donc très hypothétique. Néanmoins, des données dans la littérature incitent à mesurer l'interaction cytochrome c-complexe IV. En effet, une étude a montré qu'au cours de l'activité de l'enzyme, Cox12p pouvait intervenir dans l'interaction avec le cytochrome c (Sampson and Alleyne 2001). L'état de phosphorylation de la Ser7 pourrait moduler cette interaction avec Cox2p qui porte le lieu de fixation du cytochrome c. L'état de phosphorylation de la Ser7 pourrait modifier la conformation du complexe IV: cette dernière pourrait être plus favorable à l'interaction avec le cytochrome c.

Cette deuxième hypothèse semble plus probable pour expliquer une éventuelle modification de l'activité « rapportée ». Des mesures d'oxydation du cytochrome c en temps réel sur cellules intactes pourrait permettre de comparer l'interaction entre le complexe IV et le cytochrome c dans les mutants S7A et S7E (Trouillard, Meunier, and Rappaport 2011).

Cependant, cette augmentation d'activité « rapportée » reste à confirmer par une multiplication des spectres de cytochromes : ils n'ont pu être obtenus qu'une fois en YPGalA et méritent d'être donc vérifiés avant de valider ces hypothèses.

<u>En YPGA</u>

En YPGA, on n'observe pas de variation significative de l'activité *in-vitro* du complexe IV entre les deux mutants. Néanmoins, les hèmes a+a3 ne sont pas présents en assez grande quantité pour être mesurables par spectrométrie d'absorption. Il n'a donc pas été possible d'estimer la quantité de complexe IV assemblé. De même, la trop faible quantité de complexe IV dans les deux mutants ne

nous a pas permis de comparer l'assemblage du complexe IV monomérique selon l'état de phosphorylation de la Ser7, ainsi que l'organisation supramoléculaire.

c) Conséquences de la phosphorylation de la Ser82 sur la chaîne respiratoire

<u>En YLAC</u>

En YLAC, l'analyse des mitochondries isolées des deux mutants préalablement solubilisées en laurylmaltoside 2% montre un même assemblage monomérique du complexe IV dans les deux mutants. Ces résultats suggèrent que la phosphorylation de la Ser82 n'a pas d'effet sur les formes du complexe IV assemblé en YLAC.

Toutefois, nous observons une légère hausse du ratio hèmes a+a3/b entre les deux mutants S82A et S82E: La quantité de complexe IV par rapport au complexe III semble légèrement stabilisée lorsque la Ser82 est sous forme phosphorylée.

Or, l'activité *in-vitro* du complexe IV est légèrement diminuée en YLAC dans le mutant S82E par rapport au mutant S82A. Dans cette condition de culture, l'activité « rapportée » semble diminuer lorsque la Ser82 est sous forme phosphorylée.

De même que dans le cas de la Ser7, nous pouvons envisager que la diminution de l'activité « rapportée » soit due à une modification des formes actives du complexe IV et /ou à une variation de l'interaction du cytochrome c avec le complexe IV.

Cependant, l'organisation supramoléculaire du complexe IV en YLAC est similaire dans les deux mutants et se caractérise par la présence de complexe IV sous forme dimérique et monomérique, à la fois seul et associé au complexe III en supercomplexes. Le ratio supercomplexes/complexes estimé d'après la quantification de l'activité *in-gel*, ainsi que le ratio supercomplexes/monomères estimé d'après la quantification du test immunologique Cox6p, ne semblent pas affectés selon l'état de la phosphorylation de la Ser82. Il semblerait que la variation d'activité « rapportée » ne soit pas corrélée à une modification des formes actives du complexe IV. Ce résultat irait en faveur de la seconde hypothèse.

Notamment, la Ser82 semble localisée à l'interface de dimérisation du complexe IV, qui est aussi l'interface complexe III/complexe IV dans les supercomplexes. Sa phosphorylation pourrait modifier la conformation des formes actives du complexe IV et donc son interaction avec le cytochrome c. Cependant, contrairement à la phosphorylation de la Ser7 en YLAC et en YPGaIA, celle de la Ser82 semble défavorable à l'activité du complexe IV en YLAC.

<u>En YPGalA</u>

En YPGalA, la mesure du ratio hèmes a+a3/b d'une part, et l'analyse du complexe IV monomérique d'autre part, ne montrent pas de différence significative de ces paramètres entre les deux mutants S82A et S82E. Ceci suggère que l'état de phosphorylation de la Ser82 a peu d'influence sur l'assemblage et la stabilité du complexe IV.

Cependant la mesure de l'activité *in-vitro* du complexe IV est augmentée dans le mutant S82E par rapport au mutant S82A. Les résultats obtenus ne suggéraient pas d'augmentation significative de la quantité de complexe IV, ni de son activité « rapportée ». L'augmentation de l'activité *in-vitro* pourrait être le résultat d'une faible variation de ces deux paramètres. Néanmoins, une seule mesure

du ratio des hèmes a+a3/b a pu être enregistrée: Il faudrait multiplier l'acquisition de spectres des cytochromes pour être sûr de la quantité de complexe IV dans les deux mutants, et ainsi voir si on observe une différence de l'activité "rapportée" entre les deux mutants.

Le complexe IV dimérique semble différent lorsque la Ser82 est sous forme phosphorylée en YPGalA : la distance de migration du IV_2 n'est pas la même dans les deux mutants S82A et S82E. Cependant ceci ne semble pas modifier significativement ni la quantité de complexe IV, ni son activité « rapportée ». La forme monomérique du complexe IV semble stabilisée dans le mutant S82E : le ratio supercomplexes/monomères est diminué de plus de 30% lorsque la Ser82 est dans un état phosphorylé permanent ; le ratio supercomplexes/complexes n'est pas changé selon l'état de phosphorylation de la Ser82.

<u>En YPGA</u>

En YPGA, on n'observe pas de différence entre les mutants S82A et S82E au niveau de l'assemblage du complexe IV. Cependant l'activité *in-vitro* du mutant S82E est 30% plus faible que celle du mutant S82A. Toutefois la quantité de complexe IV était trop faible pour mesurer les hèmes a+a3 et pour observer l'organisation supramoléculaire du complexe IV dans ces deux souches. Nous n'avons pas pu faire d'hypothèse pour expliquer la diminution d'activité *in-vitro* : est-elle due à une diminution de complexe IV assemblé ou à une diminution d'activité « rapportée » ?

5. **Bilan**

Nous avons essayé de comprendre le rôle de la phosphorylation de Cox12p à travers l'analyse des mutants phosphomimétiques de deux résidus: Ser7 et Ser82.

Tout d'abord, l'état de phosphorylation de ces deux résidus module l'accumulation de Cox12p. Des analyses supplémentaires sont nécessaires afin de comprendre si la phosphorylation influence plutôt l'import mitochondrial ou la stabilité intra-mitochondriale. Par exemple, l'accumulation de Cox12p pourrait être mesurée dans la cellule au lieu de la mitochondrie: nous pourrions ainsi estimer si une différence au niveau de Cox12p est déjà observable avant son import dans la mitochondrie.

D'autre part, quelques légères modifications de la chaîne respiratoire sont observables, qui sont sitedépendant et condition-dépendante:

- l'état phosphorylé de la Ser7 en YPGalA induirait une diminution des hèmes a+a3, et une augmentation de l'activité "rapportée" du complexe IV. Son état phosphorylé en YLAC ne modifierait la quantité de complexe IV mais entraînerait aussi une augmentation de l'activité « rapportée ». Une hypothèse est que cette augmentation observée à la fois en YPGalA et en YLAC pourrait être due à une variation de l'interaction cytochrome c-complexe IV. Cependant, plus d'expériences sont nécessaires pour comprendre ces effets, par exemple des mesures d'oxydation du cytochrome c en temps réel sur cellules intactes des mutants S7A et S7E. Une stabilisation des supercomplexes ne semble pas être la cause de l'augmentation d'activité « rapportée » observée dans les deux milieux de culture.
- L'état phosphorylé de la Ser82 en YLAC induirait au contraire une diminution de l'activité « rapportée ». Il est aussi envisageable que la phosphorylation modifie l'interaction cytochrome c-complexe IV mais, contrairement à celle de la Ser7, elle serait défavorable pour l'activité du complexe IV.

- l'état phosphorylé de la Ser82 en YPGalA induit une augmentation de l'activité *in-vitro* du complexe IV. Cependant, les données obtenues ne nous permettent pas de savoir si elle serait due à une augmentation de complexe IV et/ou à une augmentation de son activité « rapportée ».
- En YPGA, la quantité de complexe IV est trop faible dans chacun des mutants pour émettre des hypothèses sur la quantité de complexe IV, sur l'assemblage monomérique ainsi que sur l'organisation supramoléculaire du complexe IV. le seul paramètre que nous avons pu enregistrer est la mesure d'activité in-vitro du complexe IV: elle ne semble pas modifiée par l'état de phosphorylation de la Ser7 tandis qu'elle semble diminuée lorsque la Ser82 est sous forme phosphorylée permanente. Nous n'avons pas pu émettre d'hypothèses pour le moment sur ce paramètre.

Néanmoins, l'ensemble des effets observés sur la chaîne respiratoire restent légers. Ceci peut être dû au fait que nous avons analysé des mutants mimant la phosphorylation/déphosphorylation d'un seul résidu à la fois. Un site de phosphorylation seul n'est peut-être pas suffisant pour induire un effet largement visible sur la chaîne respiratoire.

Résultats et Discussion - Partie B

Conclusion Générale et perspectives

Conclusion Générale et perspectives

Conclusion Générale et perspectives

I. Conclusion

Notre étude phosphoprotéomique nous a permis d'identifier 299 sites de phosphorylation dans la mitochondrie. La phosphorylation semble donc être une modification post-traductionnelle très représentée dans la mitochondrie, ce qui suppose un rôle régulateur dans cette organelle. En particulier, la phosphorylation oxydative est une des fonctions primordiales de la mitochondrie: 49 sites de phosphorylation ont été quantifiés sur les protéines de la chaîne respiratoire.

Cette étude ne nous donne pas d'indication sur le mécanisme de ces phosphorylations ni sur les kinases à l'origine de ces sites de phosphorylation. Nous avons cependant essayé d'utiliser les outils disponibles pour prédire les kinases: cette étude suggère que des kinases de différentes familles pourraient être adressées aux mitochondries et phosphoryler des protéines-cibles. Des études supplémentaires sont nécessaires pour confirmer ces hypothèses, par exemple en générant des mutants de kinases et en comparant le phosphoprotéome mitochondrial entre la souche WT et la souche mutée. D'autre part, les prédictions sont limitées par les outils de prédiction disponibles: ceux-ci se basent seulement sur la séquence primaire de la protéine entourant le site de phosphorylation. Or d'autres facteurs semblent importants pour la spécificité kinases-substrats : structure 3D, séquence en dehors du site de phosphorylation. L'intégration de ces paramètres dans les sites de prédiction permettrait d'émettre des hypothèses plus fiables sur les kinases responsables des sites de phosphorylation mitochondriaux.

D'autre part, le rôle de ces sites de phosphorylations reste à élucider. La méthode la plus courante est de générer les mutants phosphomimétiques des résidus (le premier mimant l'état phosphorylé permanent, et le deuxième l'état déphosphorylé permanent), et d'observer des différences entre les deux mutants.

C'est la méthode que nous avons employé pour l'étude de deux sites de phosphorylation (Ser7 et Ser82) identifiés sur la sous-unité Cox12p du complexe IV. Nous avons regardé l'effet de ces phosphorylations sur l'accumulation de Cox12p, d'une part, et sur la chaîne respiratoire, d'autre part. Tout d'abord, l'état de phosphorylation de la Ser7 et de la Ser82 semble avoir une influence sur l'accumulation de Cox12p, qui n'est pas métabolisme-dépendant. D'autres analyses sont encore nécessaires pour comprendre ce mécanisme. Par exemple, nous pourrions quantifier l'accumulation de Cox12p au niveau cellulaire afin de voir si le niveau de Cox12p, à la fois importée et non importée dans la mitochondrie, est différent selon les mutants. Cela pourrait permettre de tester l'hypothèse selon laquelle la phosphorylation de la Ser7 et/ou de la Ser82 pourrait influencer l'import de Cox12p dans la mitochondrie. D'autre part, en milieu respiratoire (YLAC) et en milieu respiro-fermentaire (YPGalA) (conditions où la chaîne respiratoire est utilisée), la phosphorylation de la Ser7 semble induire une augmentation de l'activité « rapportée » du complexe IV. Celle de la Ser82 en YLAC semble au contraire diminuer ce paramètre. Une hypothèse est que l'état de phosphorylation de Cox12p, au niveau de la Ser7 ou de la ser82, modulerait l'interaction entre le cytochrome c et le complexe IV. Des expériences supplémentaires sont nécessaires pour comprendre ces effets, par exemple des mesures d'oxydation du cytochrome c en temps réel sur des cellules intactes. (Trouillard, Meunier, and Rappaport 2011).

Malgré tout, les effets observés avec les mutants phosphomimétiques restent faibles sur le complexe IV et ne traduisent pas un effet majeur de ces sites de phosphorylation. Cependant, ces mutants miment l'effet d'un site de phosphorylation seulement. Or, de nombreux exemples suggèrent que c'est le cumul de plusieurs sites de phosphorylation qui a généralement un effet biologique ; ces multi-phosphorylations peuvent être induites par des kinases différentes (Cohen 2000).

D'une part, ce processus de multi-phosphorylation permettrait à la cellule d'assurer un système de « contrôle-qualité » (Ubersax and Ferrell 2007): un site, phosphorylé par mégarde par une kinase, n'aurait pas un effet trop important sur la protéine tant qu'un second résidu n'est pas phosphorylé à son tour; une phosphatase aurait le temps de déphosphoryler ce premier site non voulu avant qu'une kinase phosphoryle le second résidu.

D'autre part, la multi-phosphorylation peut avoir un rôle régulateur sur la protéine (Cohen 2000). Les différents sites de phosphorylation d'une protéine peuvent avoir le même effet sur l'activité de la protéine. L'activité de la protéine dépendrait alors du nombre de résidus phosphorylés ainsi que de leur niveau de phosphorylation: dans ce cas, la multi-phosphorylation permettrait de réguler finement l'activité de la protéine. Des sites de phosphorylation d'une même protéine peuvent avoir une fonction moléculaire différente sur la protéine mais dans un même objectif final: par exemple, un site pourrait favoriser l'interaction de la protéine avec son substrat, un deuxième pourrait agir sur son activité catalytique. La multi-phosphorylation serait un moyen d'augmenter la régulation de la protéine en modulant divers paramètres. Au contraire, des sites de phosphorylation sur une même protéine sur une même protéine peuvent avoir des effets antagonistes.

Enfin, dans le cas d'une multi-phosphorylation, un seul site pourrait avoir un effet sur la protéine: le premier site de phosphorylation serait là pour recruter la kinase responsable du second site de phosphorylation qui lui, régule l'activité de la protéine (Ubersax and Ferrell 2007).

Dans notre étude, 40% des phosphoprotéines identifiées contiennent en fait plusieurs résidus phosphorylés. Ceci irait dans le sens de l'hypothèse selon laquelle plusieurs sites de phosphorylation sont souvent nécessaires pour induire un effet. Les prédictions de kinases dans notre étude suggèrent généralement des kinases différentes pour les sites d'une même protéine. Ceci est en accord avec l'hypothèse énoncée plus haut.

D'autre part, il est important de noter que dans notre étude, les différents sites de phosphorylation observés sur une même protéine n'ont généralement pas la même variation de leur niveau selon le substrat. Il est possible d'envisager qu'un site soit phosphorylé quelles que soient les conditions et que ce soit la phosphorylation supplémentaire du second site qui ait une conséquence pour la protéine. Le premier site pourrait permettre de recruter la kinase qui phosphoryle le second site. Ou bien les sites de phosphorylation auraient des effets antagonistes : l'augmentation du niveau de phosphorylation d'un résidu par rapport à l'autre permettrait à ce site de phosphorylation d'imposer son effet sur la protéine. Dans ce cas, la multi-phosphorylation permettrait de moduler finement l'activité de la protéine.

Pour la suite, il serait envisageable de générer des mutants phosphomimétiques qui miment l'action de deux sites de phosphorylation simultanément. Ces mutants seraient plus proches de la situation réellement observée *in-vivo* et les conséquences observées pourraient être plus importantes pour la protéine.

II. Perspectives

L'analyse phosphoprotéomique que nous avons menée nous a permis de mettre en évidence un certain nombre de sites de phosphorylation sur des protéines impliquées en particulier dans la chaîne respiratoire et sa régulation.

Parmi les 48 sites de phosphorylation localisés sur une protéine de la chaîne respiratoire ou une protéine associée, nous avons choisi dans un premier temps de nous intéresser aux résidus phosphorylés d'IF1 et de Rip1p.

Dans le cas d'IF1, deux sites de phosphorylation ont été quantifiés sur ce peptide de 84 acides aminés: un phosphorylé quelles que soient les conditions de culture (Ser38), et le deuxième dont le niveau de phosphorylation varie selon les conditions (Ser33). Ceci interpelle quant au rôle de la phosphorylation de ce peptide. De plus, c'est un peptide impliqué dans l'inhibition de l'hydrolyse d'ATP par l'ATP synthase, un thème très étudié dans l'équipe. En particulier il a été montré que la partie N-terminale du peptide, région dans laquelle sont localisées les deux résidus phosphorylés, est impliquée dans la stabilité de l'interaction entre IF1 et l'ATP synthase (Andrianaivomananjaona et al. 2011). La phosphorylation d'IF1 dans ce domaine pourrait aussi avoir un rôle dans la stabilité d'IF1 avec l'ATP synthase. Pour cela nous avons cherché à comprendre le rôle de la phosphorylation de ce peptide.

Dans le cas de Rip1p, un site de phosphorylation a été quantifié sur la protéine au niveau de la Ser24. La variation du niveau de phosphorylation de ce résidu est atypique par rapport aux autres résidus phosphorylés de la chaîne respiratoire. En effet, la majorité des sites de phosphorylation sur une protéine OXPHOS sont plus phosphorylés en condition respiratoire qu'en condition fermentaire, ce qui correspond à la variation d'abondance des protéines, qui sont aussi plus abondantes en condition respiratoire qu'en condition fermentaire. Au contraire, la Ser24 de Rip1p est plus phosphorylée en condition fermentaire alors que la protéine Rip1p est moins abondante dans ce milieu. De plus la Ser24 est située dans la préséquence de Rip1p et plus particulièrement dans la seconde région clivée au cours de l'import de Rip1p dans la mitochondrie. Suite à ce résultat atypique, nous nous sommes interrogé quant au rôle de la phosphorylation de Rip1p en condition fermentaire.

1. Rôle de la phosphorylation d'IF1

L'analyse phosphoprotéomique nous a permis de quantifier 2 sites de phosphorylation sur Inh1p (IF1), peptide inhibiteur de l'hydrolyse d'ATP, localisés sur les Ser33 et Ser38. Le niveau de phosphorylation de S33 varie selon les conditions: il est élevé en lactate, intermédiaire en galactose et faible en glucose (cf Figure 79). Au contraire celui de S38 est similaire selon les conditions de culture (cf Figure 80).

YDL181W INH1 Protein that inhibits ATP hydrolysis pvalue ratio = 0.00393684981815947

Figure 79: « Boxplot » représentant la variation du niveau de phosphorylation de la Ser33 d'IF1 selon les conditions de culture

Les valeurs représentées correspondent à la quantité du phosphopeptide contenant S33, rapportée à la quantité totale d'IF1. Le peptide phosphorylé et le site de phosphorylation sont indiqués en haut. Gal=galactose; Glu=glucose; Lac= lactate

pep1217-1; GSGSEDSFVKR; S7:+79.96633

Figure 80: « Boxplot » représentant la variation du niveau de phosphorylation de la Ser38 d'IF1 selon les conditions de culture.

Les valeurs représentées correspondent à la quantité du phosphopeptide contenant S38, rapportée à la quantité totale d'IF1. Le peptide phosphorylé et le site de phosphorylation sont indiqués en haut. Gal=galactose; Glu=glucose; Lac= lactate

Les deux sites de phosphorylation sont localisés sur la partie N-terminale du peptide. Des études précédentes menées au laboratoire ont montré que cette région de la séquence stabilisait l'interaction entre IF1 et l'ATP synthase mais n'était pas nécessaire pour la reconnaissance du peptide et de l'ATP synthase (Andrianaivomananjaona et al. 2011).

Nous avons voulu comprendre le rôle de ces deux sites de phosphorylation et notamment étudier s'ils modifient l'interaction entre l'IF1 et l'ATP synthase.

Pour cela nous avons généré, dans un premier temps, les mutants phosphomimétiques pour ces deux résidus, ce qui porte au nombre de 4 les mutants générés: S33A et S38A miment l'état déphosphorylé permanent de la Ser33 et de la Ser38 respectivement; S33E et S38E miment l'état phosphorylé permanent de la Ser33 et de la Ser38 (cf Figures 81 et 82). Ces mutants ont été construits à partir d'un plasmide exprimant l'IF1 auquel a été ajoutée une étiquette histidine afin de permettre sa purification.

Conclusion Générale et perspectives

Figure 81: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les mutants phosphomimétiques de la Ser33

Figure 82: Séquence primaire d'Inh1p dans la souche sauvage et changements de bases effectués dans les mutants phosphomimétiques de la Ser38

a) Expériences préliminaires

Production d'IF1 phosphomimétiques, pour les résidus Ser33 et Ser38

En collaboration avec Qian WU, en thèse dans le laboratoire (soutenance de thèse en décembre 2013), nous avons effectué la mutagenèse dirigée pour les quatre mutants phosphomimétiques. L'intégration des mutations dans le plasmide a été vérifiée par séquençage pour les quatre mutants phosphomimétiques.

Nous avons ensuite transformé des bactéries compétentes avec les plasmides mutés, puis surexprimé IF1 dans ces bactéries (résultats non présentés).

Nous avons effectué une première expérience de purification d'IF1 pour les 4 mutants: S33A, S33E, S38A et S38E.

Au cours de la purification, l'IF1 est retenu sur une colonne Ni-NTA par le biais de la protéine de fusion en amont du peptide. Un site de coupure à l'entérokinase est présent entre la protéine de fusion et le peptide IF1 (cf Figure 83). Nous incubons la résine Ni-NTA, sur laquelle est retenue IF1, avec l'enterokinase et éluons afin de récupérer l'IF1 coupé : nous mesurons la DO des fractions

récoltées à 280nm afin d'estimer la présence du peptide (un tryptophane a été introduit sur l'IF1 en position 50 ce qui permet de le détecter à 280nm). L'entérokinase a été éluée en même temps que l'IF1 coupé : une étape supplémentaire d'élimination de l'entérokinase par centrifugation est nécessaire avant la précipitation de l'IF1 par le TCA.

Figure 83: Etapes de la purification d'IF1 "EK" symbolise le site de coupure à l'entérokinase et "His" l'étiquette histidine.

Lors de la purification des 4 mutants de phosphorylation, les DO des fractions récoltées étaient peu élevées suggérant que peu de peptide avaient pu être purifiés. De plus, il a été difficile de resolubiliser le précipité d'IF1 après son traitement au TCA. Le dosage de protéines effectué sur IF1 précipité au TCA a de même révélé une très faible quantité de peptides purifiés.

Nous avons effectué une seconde expérience de purification d'IF1 mais en nous limitant pour la mise au point à un seul mutant : S33A. Le résultat ne nous a pas donné meilleure satisfaction: aucun précipité n'était visible après la précipitation au TCA, alors que la DO des fractions récoltées était cette fois-ci élevée. Nous avons émis l'hypothèse qu'IF1 se serait agrégé au cours de sa purification lorsqu'il est trop concentré. Ce phénomène pourrait entraîner la perte du peptide lors de certaines étapes du protocole, par exemple lors de la centrifugation de l'enterokinase.

Nous avons alors resolubilisé le culot d'enterokinase dans un volume assez grand de tampon Imidazole 10mM pour éviter l'agrégation d'IF1. Puis nous avons modifié le protocole et effectué deux étapes successives de centricon. Le centricon utilisé au cours de la première étape a un seuil de coupure de 10kDa et permettrait d'éliminer l'entérokinase; le second centricon a un seuil de coupure à 3kDa qui permettrait de concentrer l'IF1. Cette modification du protocole permettrait la séparation de l'entérokinase et de l'IF1 d'une part, et la concentration de l'IF1 d'autre part, sans avoir recours à la centrifugation. Cette seconde tentative ne nous a pas permis de récupérer l'IF1 perdu.

Premiers essais de cinétique d'inhibition

La cinétique d'inhibition de l'hydrolyse d'ATP a tout de même été testée avec chacun de ces IF1 mutés, obtenus lors du premier essai de purification.

Dans le système utilisé, l'ATP synthase hydrolyse l'ATP conduisant à la génération d'ADP. Un système régénérant a été mis en place, qui permet de re-transformer l'ADP en ATP. Le système régénérant conduit à l'oxydation de NADH : c'est la disparition de NADH au cours du temps qui est mesurée par mesure d'absorbance à 340nm, et qui informe sur l'hydrolyse d'ATP.

Pour mesurer l'inhibition de l'hydrolyse d'ATP par IF1, le peptide est ajouté en large excès par rapport à l'enzyme; ceci permet de considérer que la concentration libre d'IF1 est constante au cours du temps. De plus, le pH utilisé est de 6.5, pH auquel l'affinité d'IF1 sauvage pour l'ATP synthase est comprise entre 0.2 et 0.4 nM.

Figure 84: Cinétique d'inhibition de l'hydrolyse d'ATP par IF1-WT

Figure 85: Cinétique d'inhibition de l'hydrolyse d'ATP par 100nM d'IF1 théorique

En comparaison de la cinétique d'inhibition obtenue avec un IF1 sauvage (cf. Figure 84) l'inhibition de l'hydrolyse d'ATP est difficilement détectable en présence d'un des 4 IF1 mutés (cf. Figure 85). Ceci est probablement dû à la faible quantité de peptides.

Ces résultats préliminaires nous ont suggéré qu'une optimisation du protocole de purification d'IF1 était nécessaire.

Afin de continuer ce projet, il faut optimiser cette étape de purification d'IF1. Chaque étape doit être suivie par mesure d'absorbance à 280nm afin d'envisager l'étape au cours de laquelle nous perdons le peptide. De plus, une hypothèse pouvant expliquer cette perte est que l'IF1, lorsqu'il est trop concentré, s'agrège: son poids moléculaire augmente et il est alors probable qu'il soit éliminé avec l'enterokinase. Nous pourrions aussi envisager que les mutations introduites sur IF1 modifient les propriétés du peptide. Par exemple, la modification du peptide pourrait favoriser son aggrégation induisant sa perte lors de la purification. Pour éviter l'aggrégation d'IF1, il faudrait diluer l'échantillon directement après la sortie de colonne.

D'autre part, en fonction des cinétiques d'inhibition que nous aurons obtenues pour les mutants phosphomimétiques d'un résidu, nous pourrons envisager de générer les doubles mutants, mimant l'état phosphorylé permanent ou l'état déphosphorylé permanent des deux résidus simultanément.

2. Rôle de la phosphorylation de Rip1p

L'analyse phosphoprotéomique a aussi permis de mettre en évidence un site de phosphorylation sur Rip1p. Son niveau de phosphorylation varie selon les conditions de culture.

Conclusion Générale et perspectives

Cependant le sens de variation du niveau de phosphorylation est contraire à celui de l'accumulation de la protéine. En effet, la protéine est plus abondante en lactate qu'en conditions fermentaires; au contraire le niveau de phosphorylation est élevé en glucose, intermédiaire en galactose et faible en lactate. La phosphorylation pourrait réduire l'import de Rip1p dans la mitochondrie, réduire son insertion sur le complexe III par exemple.

pep2091-2; ISQSLLASK; S2:+79.96633

Figure 86: Variation de l'abondance de Rip1 et du niveau de phosphorylation de Rip1p-S24 selon le substrat

Les variations d'abondance et du niveau de phosphorylation ont été quantifiées par spectrométrie de masse lors de notre analyse protéomique et phosphoprotéomique.

Traitement

La variation d'abondance de Rip1p est représentée sur le panel en bas à droite (=total)

La variation du niveau de phosphorylation de la Ser24 de Rip1p est représentée sur le panel en bas à gauche (avant normalisation par la quantité de Rip1p=Phosphosite) et sur le panel du haut (après normalisation par la quantité de Rip1p).

Gal=galactose ; Glu=glucose ; Lac=lactate

Traitement

De plus, ce site de phosphorylation se situe sur la Ser24, qui est localisé sur la préséquence de la protéine. Chez la levure, l'import de Rip1p dans la mitochondrie s'effectue en plusieurs étapes: dans une première étape la préprotéine est importée dans la matrice où la protéase MPP clive la préséquence pour former une forme intermédiaire. Une seconde protéase, MIP, mature cet intermédiaire en coupant les 8 résidus N-terminaux (Nett and Trumpower 1996). Cependant, une étude a montré que Rip1p non maturée (par aucune des deux étapes) pouvait malgré tout être insérée dans le complexe III et que celui-ci était actif (Nett, Denke, and Trumpower 1997). Ce résultat interpelle quant à la fonction de la maturation. De plus, le mécanisme de la maturation en deux étapes n'est pas encore bien compris, d'autant que ce processus n'est pas identique dans tous les organismes. Chez le bovin, une seule étape est nécessaire pour maturer la protéine. Chez la levure, la mutation de la région N-terminale de Rip1p permet de maturer la protéine en une seule étape sans modifier l'assemblage ni l'activité du complexe III (Nett, Denke, and Trumpower 1997). Le site de phosphorylation que nous avons quantifié sur Rip1p se situe sur la région clivée lors de la seconde

étape. Il serait intéressant d'étudier si l'état de phosphorylation de ce résidu influence la maturation de Rip1p.

La nature des acides aminés de la préséquence et de la région N-terminale peut modifier l'import de la protéine et sa maturation par les protéases (Vögtle et al. 2009; Vögtle et al. 2011). La phosphorylation de la Ser24 pourrait modifier un de ces paramètres, et avoir un impact sur l'accumulation de la protéine.

Afin de comprendre le rôle de cette modification post-traductionnelle, les mutants phosphomimétiques de ce résidu ont été générés dans le laboratoire (en collaboration avec Gwenaëlle Le Roux et Christophe Carles, SBIGEM, CEA Saclay): les mutants S24D et S24E miment tous deux la forme phosphorylée permanente de la Ser24 tandis que le mutant S24A mime son état déphosphorylé permanent.

Figure 87: Séquence primaire de la partie N-terminale de Rip1p dans la souche sauvage et changements de bases effectués dans les mutants phosphomimétiques de la Ser24

Ces mutants sont en cours d'analyse.

Références

Acin-Perez,Rebeca,andJoseAEnriquez2014The Function of the RespiratorySupercomplexes: The PlasticityModel.Biochimica etBiophysica Acta 1837(4): 444–450.

Acin-Perez, Rebeca, Domenico L Gatti, Yidong Bai, and Giovanni Manfredi 2011 Protein Phosphorylation and Prevention of Cytochrome Oxidase Inhibition by ATP: Coupled Mechanisms of Energy Metabolism Regulation. Cell Metabolism 13(6): 712–719.

Althoff, Thorsten, Deryck J Mills, Jean-Luc Popot, and Werner Kühlbrandt 2011 Arrangement of Electron Transport Chain Components in Bovine Mitochondrial Supercomplex I1III2IV1. The EMBO Journal 30(22): 4652–4664.

Amoutzias, Grigoris D, Ying He, Kathryn S Lilley, Yves Van de Peer, and Stephen G Oliver 2012 Evaluation and Properties of the Budding Yeast Phosphoproteome. Molecular & Cellular Proteomics: MCP 11(6): M111.009555.

Andrianaivomananjaona, Tiona, Martin Moune-Dimala, Sameh Herga, Violaine David, and Francis Haraux

2011 How the N-Terminal Extremity of Saccharomyces Cerevisiae IF1 Interacts with ATP Synthase: A Kinetic Approach. Biochimica Et Biophysica Acta 1807(2): 197–204.

Aoki,Yoshimasa,TomotakeKanki,YukoHirota,etal.2011Phosphorylation of Serine 114 on Atg32Mediates Mitophagy.Molecular Biology of the Cell22(17): 3206–3217.

Aon,M.A.,andS.Cortassa1998CataboliteRepressionMutants ofSaccharomycesCerevisiaeShowAlteredFermentativeMetabolism as Well as Cell CycleBehavior in Glucose-LimitedChemostatCultures.Biotechnology andBioengineering59(2):203–213.CortassaCortassa

Arnold, I., K. Pfeiffer, W. Neupert, R. A. Stuart, and H. Schägger 1998 Yeast Mitochondrial F1F0-ATP Synthase Exists as a Dimer: Identification of Three Dimer-Specific Subunits. The EMBO Journal 17(24): 7170–7178.

Arselin,Geneviève,JacquesVaillier,BénédicteSalin,etal.2004The Modulation in Subunits E and G Amounts of Yeast ATP Synthase Modifies MitochondrialCristae Morphology. The Journal of Biological Chemistry 279(39): 40392–40399.

Ayala-Peña, 2013 Role of Oxidative DNA Damage in Mitochondrial Dysfunction and Huntington's Disease Pathogenesis. Free Radical Biology & Medicine 62: 102–110.

Ball,A.J.,andE.R.Tustanoff1970Control of Respiratory and Fermentative Balance in Yeast. The Biochemical Journal 116(4):23P–24P.

Barford, D., A. K. Das, and M. P. Egloff

1998 The Structure and Mechanism of Protein Phosphatases: Insights into Catalysis and Regulation. Annual Review of Biophysics and Biomolecular Structure 27: 133–164.

Beauvoit, B., O. Bunoust, B. Guérin, and M. Rigoulet 1999 ATP-Regulation of Cytochrome Oxidase in Yeast Mitochondria: Role of Subunit VIa. European Journal of Biochemistry / FEBS 263(1): 118–127.

Bender,E,andBKadenbach2000The Allosteric ATP-Inhibition of Cytochrome c Oxidase Activity Is Reversibly Switched on by
cAMP-Dependent Phosphorylation. FEBS Letters 466(1): 130–134.

Boersema, Paul J, Reinout Raijmakers, Simone Lemeer, Shabaz Mohammed, and Albert J R Heck 2009 Multiplex Peptide Stable Isotope Dimethyl Labeling for Quantitative Proteomics. Nature Protocols 4(4): 484–494.

Bojunga,N,andKDEntian1999Cat8p, the Activator of Gluconeogenic Genes in Saccharomyces Cerevisiae, Regulates CarbonSource-Dependent Expression of NADP-Dependent Cytosolic Isocitrate Dehydrogenase (Idp2p) andLactate Permease (Jen1p). Molecular & General Genetics: MGG 262(4-5): 869–875.

Boland,MichelleL,AparajitaHChourasia,andKayFMacleod2013Mitochondrial Dysfunction in Cancer. Frontiers in Oncology 3: 292.

Borgne,Annie,andLaurentMeijer1999Inhibiteurs Chimiques Des Kinases Dépendantes Des Cyclines : Recherche et ApplicationsThérapeutiques Potentielles. Médecine/sciences 15: 496–503.

Böttinger,Lena,SusanneEHorvath,ThomasKleinschroth,etal.2012Phosphatidylethanolamine and Cardiolipin Differentially Affect the Stability of MitochondrialRespiratory Chain Supercomplexes. Journal of Molecular Biology 423(5): 677–686.

H. 1985 Protein Synthesis during Transition and Stationary Phases under Glucose Limitation in Saccharomyces Cerevisiae. Journal of Bacteriology 161(1): 385–392.

Van den Brink, J., M. Akeroyd, R. van der Hoeven, et al. 2009 Energetic Limits to Metabolic Flexibility: Responses of Saccharomyces Cerevisiae to Glucose-Galactose Transitions. Microbiology (Reading, England) 155(Pt 4): 1340–1350.

Brinkworth,RossI.,AlanL.Munn,andBostjanKobe2006Protein Kinases Associated with the Yeast Phosphoproteome.BMC Bioinformatics 7: 47.

Carroll, Joe, Ian M. Fearnley, J. Mark Skehel, et al. 2006 Bovine Complex I Is a Complex of 45 Different Subunits. The Journal of Biological Chemistry 281(43): 32724–32727.

Casado, Pedro, Maria P. Alcolea, Francesco Iorio, et al.

2013 Phosphoproteomics Data Classify Hematological Cancer Cell Lines according to Tumor Type and Sensitivity to Kinase Inhibitors. Genome Biology 14(4): R37.

Casal, M, S Paiva, R P Andrade, C Gancedo, and C Leão 1999 The Lactate-Proton Symport of Saccharomyces Cerevisiae Is Encoded by JEN1. Journal of Bacteriology 181(8): 2620–2623.

Cheetham,GrahamM.T.2004Novel Protein Kinases and Molecular Mechanisms of Autoinhibition. Current Opinion in
Structural Biology 14(6): 700–705.

Chen,Chen,YoungKo,MichaelDelannoy,etal.2004Mitochondrial ATP Synthasome: Three-Dimensional Structure by Electron Microscopy of theATP Synthase in Complex Formation with Carriers for Pi and ADP/ATP. The Journal of BiologicalChemistry 279(30): 31761–31768.

Chen, Ruming, Ian M Fearnley, Sew Y Peak-Chew, and John E Walker 2004 The Phosphorylation of Subunits of Complex I from Bovine Heart Mitochondria. The Journal of Biological Chemistry 279(25): 26036–26045.

Chen, Yu-Chan, Eric B Taylor, Noah Dephoure, et al. 2012 Identification of a Protein Mediating Respiratory Supercomplex Stability. Cell Metabolism 15(3): 348–360.

Johnson, С Dollard, R Shuster, Cherry, R, Т R J and С L Denis J 1989 Cyclic AMP-Dependent Protein Kinase Phosphorylates and Inactivates the Yeast Transcriptional Activator ADR1. Cell 56(3): 409–419.

Chevtzoff, Cyrille, Julie Vallortigara, Nicole Avéret, Michel Rigoulet, and Anne Devin 2005 The Yeast cAMP Protein Kinase Tpk3p Is Involved in the Regulation of Mitochondrial Enzymatic Content during Growth. Biochimica et Biophysica Acta 1706(1-2): 117–125.

Chevtzoff, Cyrille, Edgar D Yoboue, Anne Galinier, et al. 2010 Reactive Oxygen Species-Mediated Regulation of Mitochondrial Biogenesis in the Yeast Saccharomyces Cerevisiae. The Journal of Biological Chemistry 285(3): 1733–1742.

Chou,MichaelF.,andDanielSchwartz2011Using the Scan-X Web Site to Predict Protein Post-Translational Modifications. CurrentProtocols in Bioinformatics / Editoral Board, Andreas D. Baxevanis ... [et Al.] Chapter 13: Unit 13.16.

Claros,M.G.,J.Perea,Y.Shu,etal.1995Limitations to in Vivo Import of Hydrophobic Proteins into Yeast Mitochondria. The Case of a
Cytoplasmically Synthesized Apocytochrome B. European Journal of Biochemistry / FEBS 228(3): 762–
771.

Cohen,

2000 The Regulation of Protein Function by Multisite Phosphorylation--a 25 Year Update. Trends in Biochemical Sciences 25(12): 596–601.

Cui, Tie-Zhong, Annalea Conte, Jennifer L Fox, Vincenzo Zara, and Dennis R Winge 2014 Modulation of the Respiratory Supercomplexes in Yeast: Enhanced Formation of Cytochrome

Ρ

Oxidase Increases the Stability and Abundance of Respiratory Supercomplexes. The Journal of Biological Chemistry 289(9): 6133–6141.

D'Aurelio, Marilena, Carl D Gajewski, Giorgio Lenaz, and Giovanni Manfredi 2006 Respiratory Chain Supercomplexes Set the Threshold for Respiration Defects in Human mtDNA Mutant Cybrids. Human Molecular Genetics 15(13): 2157–2169.

Datta,SR,AKatsov,LHu,etal.200014-3-3ProteinsandSurvivalKinasesCooperatetoInactivateBADbyBH3DomainPhosphorylation.Molecular Cell 6(1): 41–51.41–51.AAAAAAA

DeDeken,R.H.1966The Crabtree Effect: A Regulatory System in Yeast. Journal of General Microbiology 44(2):149–156.

Deng,Xianming,NicolasDzamko,AlanPrescott,etal.2011Characterization of a Selective Inhibitor of the Parkinson's Disease Kinase LRRK2. NatureChemical Biology 7(4): 203–205.

Diaz, 2010 Cytochrome c Oxidase Deficiency: Patients and Animal Models. Biochimica et Biophysica Acta 1802(1): 100–110.

Diaz-Ruiz,Rodrigo,MichelRigoulet,andAnneDevin2011The Warburg and CrabtreeEffects: On the Origin of Cancer Cell Energy Metabolism and ofYeast Glucose Repression. Biochimica et Biophysica Acta 1807(6): 568–576.

Dienhart,MaryK,andRosemaryAStuart2008The YeastAac2ProteinExists in Physical Association with the Cytochromebc1-COXSupercomplex and the TIM23 Machinery.Molecular Biology of the Cell 19(9): 3934–3943.3944-3943.

DiMauro, 2004 Mitochondrial Diseases. Biochimica Et Biophysica Acta 1658(1-2): 80–88. Salvatore

Dong, Wei-Hua, Tian-Yun Wang, Fang Wang, and Jun-He Zhang 2011 Simple, Time-Saving Dye Staining of Proteins for Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis Using Coomassie Blue. PloS One 6(8): e22394.

Dynesen, J., H. P. Smits, L. Olsson, and J. Nielsen 1998 Carbon Catabolite Repression of Invertase during Batch Cultivations of Saccharomyces Cerevisiae: The Role of Glucose, Fructose, and Mannose. Applied Microbiology and Biotechnology 50(5): 579–582.

Eubel,Holger,LotharJänsch,andHans-PeterBraun2003New Insights into the Respiratory Chain of Plant Mitochondria. Supercomplexes and a UniqueComposition of Complex II. Plant Physiology 133(1): 274–286.

Fang,Ji-Kang,SubbuswamyKPrabu,NareshBSepuri,etal.2007Site Specific Phosphorylation of Cytochrome cOxidase Subunits I, IVi1 and Vb in RabbitHearts Subjected to Ischemia/reperfusion.FEBS Letters 581(7): 1302–1310.

Fendt, Sarah-Maria, and Uwe Sauer

2010 Transcriptional Regulation of Respiration in Yeast Metabolizing Differently Repressive Carbon Substrates. BMC Systems Biology 4: 12.

Feng,Jianhua,ElianaLucchinetti,GirayEnkavi,etal.2010Tyrosine Phosphorylation by Src within the Cavity of the Adenine Nucleotide Translocase 1RegulatesADP/ATPExchange in Mitochondria. American Journal of Physiology. Cell Physiology298(3):C740–748.

Ferguson-Miller, S, D L Brautigan, and E Margoliash 1976 Correlation of the Kinetics of Electron Transfer Activity of Various Eukaryotic Cytochromes c with Binding to Mitochondrial Cytochrome c Oxidase. The Journal of Biological Chemistry 251(4): 1104–1115.

Fontanesi,Flavia,IleanaCSoto,andAntoniBarrientos2008Cytochrome c Oxidase Biogenesis: New Levels of Regulation. IUBMB Life 60(9): 557–568.

Fox,Thomas2012Mitochondrial Protein Synthesis, Import, and Assembly. Genetics 192(4): 1203–1234.

Frenzel, Monika, Hans Rommelspacher, Michiru D Sugawa, and Norbert A Dencher 2010 Ageing Alters the Supramolecular Architecture of OxPhos Complexes in Rat Brain Cortex. Experimental Gerontology 45(7-8): 563–572.

Funayama,S,JMGancedo,andCGancedo1980Turnover of YeastFructose-Bisphosphatase in DifferentMetabolicConditions.EuropeanJournal of Biochemistry / FEBS109(1):61–66.EuropeanEuropean

Gancedo, J M 1998 Yeast Carbon Catabolite Repression. Microbiology and Molecular Biology Reviews: MMBR 62(2): 334–361.

Gao, Ji, Gregory J Opiteck, Mark S Friedrichs, Ashok R Dongre, and Stanley A Hefta 2003 Changes in the Protein Expression of Yeast as a Function of Carbon Source. Journal of Proteome Research 2(6): 643–649.

Genova,ML,ABaracca,ABiondi,etal.2008Is SupercomplexOrganization of the RespiratoryChain Required for Optimal ElectronTransfer Activity?Biochimica et BiophysicaActa 1777(7-8): 740–746.

Genova,MariaLuisa,andGiorgioLenaz2014Functional Role of Mitochondrial Respiratory Supercomplexes. Biochimica et Biophysica Acta1837(4): 427–443.

Ghelli, Anna, Concetta V Tropeano, Maria Antonietta Calvaruso, et al. 2013 The Cytochrome B p.278Y>C Mutation Causative of a Multisystem Disorder Enhances Superoxide Production and Alters Supramolecular Interactions of Respiratory Chain Complexes. Human Molecular Genetics 22(11): 2141–2151.

Giraud, Marie-France, Patrick Paumard, Vincent Soubannier, et al. 2002 Is There a Relationship between the Supramolecular Organization of the Mitochondrial ATP Synthase and the Formation of Cristae? Biochimica Et Biophysica Acta 1555(1-3): 174–180.

209

D

Gonçalves, P M, G Griffioen, J P Bebelman, and R J Planta 1997 Signalling Pathways Leading to Transcriptional Regulation of Genes Involved in the Activation of Glycolysis in Yeast. Molecular Microbiology 25(3): 483–493.

Grandier-Vazeille, X., K. Bathany, S. Chaignepain, et al. 2001 Yeast Mitochondrial Dehydrogenases Are Associated in a Supramolecular Complex. Biochemistry 40(33): 9758–9769.

Griffin, Timothy J, Steven P Gygi, Trey Ideker, et al. 2002 Complementary Profiling of Gene Expression at the Transcriptome and Proteome Levels in Saccharomyces Cerevisiae. Molecular & Cellular Proteomics: MCP 1(4): 323–333.

Grosstessner-Hain, Karin, Björn Hegemann, Maria Novatchkova, et al. 2011 Quantitative Phospho-Proteomics to Investigate the Polo-like Kinase 1-Dependent Phospho-Proteome. Molecular & Cellular Proteomics: MCP 10(11): M111.008540.

Guiard, 1985 Structure, Expression and Regulation of a Nuclear Gene Encoding a Mitochondrial Protein: The Yeast L(+)-Lactate Cytochrome c Oxidoreductase (cytochrome b2). The EMBO Journal 4(12): 3265–3272.

Gygi, S P, Y Rochon, B R Franza, and R Aebersold 1999 Correlation between Protein and mRNA Abundance in Yeast. Molecular and Cellular Biology 19(3): 1720–1730.

Habersetzer,Johan,WidadeZiani,IsabelleLarrieu,etal.2013ATP Synthase Oligomerization: From the Enzyme Models to the Mitochondrial Morphology.The International Journal of Biochemistry & Cell Biology 45(1): 99–105.

Hackenbrock,CR,BChazotte,andSSGupte1986The Random Collision Model and a Critical Assessment of Diffusion and Collision inMitochondrial Electron Transport. Journal of Bioenergetics and Biomembranes 18(5): 331–368.

Hanks,S.K.,andT.Hunter1995Protein Kinases 6. The Eukaryotic Protein Kinase Superfamily: Kinase (catalytic) DomainStructure and Classification.FASEB Journal: Official Publication of the Federation of AmericanSocieties for Experimental Biology 9(8): 576–596.

Hao, Huai-Xiang, Oleh Khalimonchuk, Margit Schraders, et al. 2009 SDH5, a Gene Required for Flavination of Succinate Dehydrogenase, Is Mutated in Paraganglioma. Science (New York, N.Y.) 325(5944): 1139–1142.

Harada, Η, J S Andersen, Μ Mann, Ν Terada, and S J Korsmeyer 2001 p70S6 Kinase Signals Cell Survival as Well as Growth, Inactivating the pro-Apoptotic Molecule BAD. Proceedings of the National Academy of Sciences of the United States of America 98(17): 9666-9670.

Harada,H,BBecknell,MWilm,etal.1999Phosphorylation and Inactivation of BAD by Mitochondria-Anchored Protein Kinase A.Molecular Cell 3(4): 413–422.

210

Harsha,H.C.,andAkhileshPandey2010Phosphoproteomics in Cancer. Molecular Oncology 4(6): 482–495.

Hashimoto,T.,Y.Yoshida,andK.Tagawa1984Purification and Properties of Factors in Yeast Mitochondria Stabilizing the F1F0-ATPase-Inhibitor Complex. Journal of Biochemistry 95(1): 131–136.

1990 Simultaneous Bindings of ATPase Inhibitor and 9K Protein to F1F0-ATPase in the Presence of 15K Protein in Yeast Mitochondria. Journal of Biochemistry 108(1): 17–20.

Hebert-Chatelain, 2013 Src Kinases Are Important Regulators of Mitochondrial Functions. The International Journal of Biochemistry & Cell Biology 45(1): 90–98.

Hebert-Chatelain, Etienne, Caroline Jose, Nicolas Gutierrez Cortes, et al. 2012 Preservation of NADH Ubiquinone-Oxidoreductase Activity by Src Kinase-Mediated Phosphorylation of NDUFB10. Biochimica et Biophysica Acta 1817(5): 718–725.

Helling,Stefan,SebastianVogt,AnnikaRhiel,etal.2008Phosphorylation and Kinetics of Mammalian Cytochrome c Oxidase.Molecular & CellularProteomics:MCP 7(9): 1714–1724.

Herrero,P,RFernández,andFMoreno1985DifferentialSensitivitiestoGlucoseandGalactoseRepressionofGluconeogenicandRespiratoryEnzymesfromSaccharomycesCerevisiae.Archives ofMicrobiology143(3):216–219.

Herrmann,JohannesM,andSoledadFunes2005Biogenesis of Cytochrome Oxidase-Sophisticated Assembly Lines in the Mitochondrial InnerMembrane. Gene 354: 43–52.

Hofer,Annette,andTinaWenz2014Post-TranslationalModification ofMitochondria as a NovelMode ofRegulation.Experimental Gerontology.

Hofmann, Andreas D, Mandy Beyer, Udo Krause-Buchholz, et al. 2012 OXPHOS Supercomplexes as a Hallmark of the Mitochondrial Phenotype of Adipogenic Differentiated Human MSCs. PloS One 7(4): e35160.

Højlund, Kurt, Krzysztof Wrzesinski, Peter Mose Larsen, et al. 2003 Proteome Analysis Reveals Phosphorylation of ATP Synthase Beta -Subunit in Human Skeletal Muscle and Proteins with Potential Roles in Type 2 Diabetes. The Journal of Biological Chemistry 278(12): 10436–10442.

Holness,MJ,andMCSugden2003Regulation of PyruvateDehydrogenaseComplexActivitybyReversiblePhosphorylation.Biochemical Society Transactions31(Pt 6): 1143–1151.

Holzer, 1989 Proteolytic Catabolite Inactivation in Saccharomyces Cerevisiae. Revisiones Sobre Biología Celular: RBC 21: 305–319.

Horan, Susannah, Ingrid Bourges, Jan-Willem Taanman, and Brigitte Meunier

211

Références

2005 Analysis of COX2 Mutants Reveals Cytochrome Oxidase Subassemblies in Yeast. The Biochemical Journal 390(Pt 3): 703–708.

Horbinski,Craig,andCharleenTChu2005Kinase Signaling Cascades in the Mitochondrion: A Matter of Life or Death. Free RadicalBiology & Medicine 38(1): 2–11.

Horvath,SusanneE.,andGüntherDaum2013Lipids of Mitochondria. Progress in Lipid Research 52(4): 590–614.

Hubbard,M.J.,andP.Cohen1993On Target with a New Mechanism for the Regulation of Protein Phosphorylation. Trends in
Biochemical Sciences 18(5): 172–177.

Hunte, C., J. Koepke, C. Lange, T. Rossmanith, and H. Michel 2000 Structure at 2.3 A Resolution of the Cytochrome bc(1) Complex from the Yeast Saccharomyces Cerevisiae Co-Crystallized with an Antibody Fv Fragment. Structure (London, England: 1993) 8(6): 669–684.

Hunter,

1995 Protein Kinases and Phosphatases: The Yin and Yang of Protein Phosphorylation and Signaling. Cell 80(2): 225–236.

Hunter,T,andGDPlowman1997The Protein Kinases of Budding Yeast: Six Score and More. Trends in Biochemical Sciences22(1): 18–22.

Hüttemann, Maik, Icksoo Lee, Lawrence I Grossman, Jeffrey W Doan, and Thomas H Sanderson 2012 Phosphorylation of Mammalian Cytochrome c and Cytochrome c Oxidase in the Regulation of Cell Destiny: Respiration, Apoptosis, and Human Disease. Advances in Experimental Medicine and Biology 748: 237–264.

Ikeda, Kazuhiro, Sachiko Shiba, Kuniko Horie-Inoue, Kunitoshi Shimokata, and Satoshi Inoue 2013 A Stabilizing Factor for Mitochondrial Respiratory Supercomplex Assembly Regulates Energy Metabolism in Muscle. Nature Communications 4: 2147.

Johnson, Cole, Hye Kyong Kweon, Daniel Sheidy, et al. 2014 The Yeast Sks1p Kinase Signaling Network Regulates Pseudohyphal Growth and Glucose Response. PLoS Genetics 10(3): e1004183.

Kanamaru, Yusuke, Shiori Sekine, Hidenori Ichijo, and Kohsuke Takeda 2012 The Phosphorylation-Dependent Regulation of Mitochondrial Proteins in Stress Responses. Journal of Signal Transduction 2012: 931215.

Kane, Lesley A, Matthew J Youngman, Robert E Jensen, and Jennifer E Van Eyk 2010 Phosphorylation of the F(1)F(o) ATP Synthase Beta Subunit: Functional and Structural Consequences Assessed in a Model System. Circulation Research 106(3): 504–513.

Kasperski, 2008 M

Modelling of Cells Bioenergetics. Acta Biotheoretica 56(3): 233–247.

Kim, Hyung J., Oleh Khalimonchuk, Pamela M. Smith, and Dennis R. Winge

Andrzej

Т

2012 Structure, Function, and Assembly of Heme Centers in Mitochondrial Respiratory Complexes. Biochimica Et Biophysica Acta 1823(9): 1604–1616.

Kirkinezos,IG,andCTMoraes2001Reactive Oxygen Species and Mitochondrial Diseases. Seminars in Cell & DevelopmentalBiology 12(6): 449–457.

Knighton, D. R., J. H. Zheng, L. F. Ten Eyck, et al. 1991 Crystal Structure of the Catalytic Subunit of Cyclic Adenosine Monophosphate-Dependent Protein Kinase. Science (New York, N.Y.) 253(5018): 407–414.

Ko, Young H., Michael Delannoy, Joanne Hullihen, Wah Chiu, and Peter L. Pedersen 2003 Mitochondrial ATP Synthasome. Cristae-Enriched Membranes and a Multiwell Detergent Screening Assay Yield Dispersed Single Complexes Containing the ATP Synthase and Carriers for Pi and ADP/ATP. The Journal of Biological Chemistry 278(14): 12305–12309.

Koppen,Mirko,andThomasLanger2007Protein Degradation within Mitochondria: Versatile Activities of AAA Proteases and OtherPeptidases. Critical Reviews in Biochemistry and Molecular Biology 42(3): 221–242.

Kovářová, Nikola, Alena Cížková Vrbacká, Petr Pecina, et al. 2012 Adaptation of Respiratory Chain Biogenesis to Cytochrome c Oxidase Deficiency Caused by SURF1 Gene Mutations. Biochimica et Biophysica Acta 1822(7): 1114–1124.

S. LaMarche, A. Ε., M. ١. Abate, Η. Chan, and Β. L. Trumpower 1992 Isolation and Characterization of COX12, the Nuclear Gene for a Previously Unrecognized Subunit of Saccharomyces Cerevisiae Cytochrome c Oxidase. The Journal of Biological Chemistry 267(31): 22473-22480.

Langer, Sara, David A Okar, Julia Schultz, Sigurd Lenzen, and Simone Baltrusch 2012 Dimer Interface Rearrangement of the 6-Phosphofructo-2-Kinase/fructose 2,6-Bisphosphatase Rat Liver Isoenzyme by cAMP-Dependent Ser-32 Phosphorylation. FEBS Letters 586(10): 1419–1425.

Lapuente-Brun, Esther, Raquel Moreno-Loshuertos, Rebeca Acín-Pérez, et al. 2013 Supercomplex Assembly Determines Electron Flux in the Mitochondrial Electron Transport Chain. Science (New York, N.Y.) 340(6140): 1567–1570.

Laz,TM,DFPietras,andFSherman1984Differential Regulation of the Duplicated Isocytochrome c Genes in Yeast.Proceedings of theNational Academy of Sciences of the United States of America 81(14): 4475–4479.

Lazarou, Michael, Stacey M Smith, David R Thorburn, Michael T Ryan, and Matthew McKenzie 2009 Assembly of Nuclear DNA-Encoded Subunits into Mitochondrial Complex IV, and Their Preferential Integration into Supercomplex Forms in Patient Mitochondria. The FEBS Journal 276(22): 6701–6713.

Leadsham,JaneE,andCampbellWGourlay2010cAMP/PKA Signaling Balances Respiratory Activity with Mitochondria Dependent Apoptosisvia Transcriptional Regulation. BMC Cell Biology 11: 92.

Lee, Icksoo, Arthur R Salomon, Scott Ficarro, et al.

213

2005 cAMP-Dependent Tyrosine Phosphorylation of Subunit I Inhibits Cytochrome c Oxidase Activity. The Journal of Biological Chemistry 280(7): 6094–6100.

Lee, Icksoo, Arthur R Salomon, Kebing Yu, et al. 2006 New Prospects for an Old Enzyme: Mammalian Cytochrome c Is Tyrosine-Phosphorylated in Vivo. Biochemistry 45(30): 9121–9128.

Lenaz,Giorgio,andMariaLuisaGenova2007Kinetics of Integrated Electron Transfer in the Mitochondrial Respiratory Chain: RandomCollisions vs. Solid State Electron Channeling. American Journal of Physiology. Cell Physiology 292(4):C1221–1239.

2009 Mobility and Function of Coenzyme Q (ubiquinone) in the Mitochondrial Respiratory Chain. Biochimica et Biophysica Acta 1787(6): 563–573.

Leonard, J V, and A H Schapira 2000a Mitochondrial Respiratory Chain Disorders I: Mitochondrial DNA Defects. Lancet 355(9200): 299–304.

2000b Mitochondrial Respiratory Chain Disorders II: Neurodegenerative Disorders and Nuclear Gene Defects. Lancet 355(9201): 389–394.

Lind, Sara Bergström, Konstantin A Artemenko, and Ulf Pettersson 2012 A Strategy for Identification of Protein Tyrosine Phosphorylation. Methods (San Diego, Calif.) 56(2): 275–283.

F Linn, Т С, Н Pettit, and L J Reed 1969 Alpha-Keto Acid Dehydrogenase Complexes. X. Regulation of the Activity of the Pyruvate Dehydrogenase Complex from Beef Kidney Mitochondria by Phosphorylation and Dephosphorylation. Proceedings of the National Academy of Sciences of the United States of America 62(1): 234-241.

Livas, Daniela, Marinka Jh Almering, Jean-Marc Daran, Jack T Pronk, and Juana M Gancedo 2011 Transcriptional Responses to Glucose in Saccharomyces Cerevisiae Strains Lacking a Functional Protein Kinase A. BMC Genomics 12: 405.

Lodi,T,AAlberti,BGuiard,andIFerrero1999Regulation of the Saccharomyces CerevisiaeDLD1 Gene Encoding the Mitochondrial ProteinD-LactateFerricytochromecOxidoreductasebyHAP1andHAP2/3/4/5.Molecular& GeneralGenetics:MGG 262(4-5):623–632.GeneralGeneralGeneralGeneral

Lodi,T,andIFerrero1993Isolation of the DLD Gene of Saccharomyces Cerevisiae Encoding the Mitochondrial EnzymeD-Lactate Ferricytochrome c Oxidoreductase. Molecular & General Genetics: MGG 238(3): 315–324.

Lodi,T,FFontanesi,andBGuiard2002Co-Ordinate Regulation of Lactate Metabolism Genes in Yeast: The Role of the LactatePermease Gene JEN1. Molecular Genetics and Genomics: MGG 266(5): 838–847.

Lodi,T,andBGuiard1991Complex Transcriptional Regulation of the Saccharomyces Cerevisiae CYB2 Gene EncodingCytochrome b2:CYP1(HAP1)Activator Binds to the CYB2 Upstream Activation Site UAS1-B2.Molecular and Cellular Biology 11(7):3762–3772.
Lodi,T.,C.Donnini,andI.Ferrero1991Catabolite Repression by Galactose in Overexpressed GAL4 Strains of SaccharomycesCerevisiae. Journal of General Microbiology 137(5): 1039–1044.Image: Constraint of Saccharomyces

LOWRY, O H, N J ROSEBROUGH, A L FARR, and R J RANDALL 1951 Protein Measurement with the Folin Phenol Reagent. The Journal of Biological Chemistry 193(1): 265–275.

Luttik, M A, K M Overkamp, P Kötter, et al. 1998 The Saccharomyces Cerevisiae NDE1 and NDE2 Genes Encode Separate Mitochondrial NADH Dehydrogenases Catalyzing the Oxidation of Cytosolic NADH. The Journal of Biological Chemistry 273(38): 24529–24534.

Luzikov, V N 2009 Principles of Control over Formation of Structures Responsible for Respiratory Functions of Mitochondria. Biochemistry. Biokhimiia 74(13): 1443–1456.

Madan,Esha,RajanGogna,PeriannanKuppusamy,etal.2013SCO2 Induces p53-Mediated Apoptosis by Thr845 Phosphorylation of ASK-1 and Dissociationof the ASK-1-Trx Complex. Molecular and Cellular Biology 33(7): 1285–1302.

Marres,CA,SdeVries,andLAGrivell1991Isolation and Inactivation of the Nuclear Gene Encoding the Rotenone-Insensitive InternalNADH:UbiquinoneOxidoreductase ofMitochondria fromSaccharomycesCerevisiae.EuropeanJournal of Biochemistry / FEBS195(3):857–862.

Martín-Montalvo, Alejandro, Isabel González-Mariscal, Sergio Padilla, et al. 2011 Respiratory-Induced Coenzyme Q Biosynthesis Is Regulated by a Phosphorylation Cycle of Cat5p/Coq7p. The Biochemical Journal 440(1): 107–114.

McCubrey, James A., Linda S. Steelman, William H. Chappell, et al. 2007 Roles of the Raf/MEK/ERK Pathway in Cell Growth, Malignant Transformation and Drug Resistance. Biochimica Et Biophysica Acta 1773(8): 1263–1284.

Meisinger,C.,T.Sommer,andN.Pfanner2000Purification of Saccharom cyesCerevisiae MitochondriaDevoid of Microsomal and CytosolicContaminations.Analytical Biochemistry 287(2): 339–342.

Mencalha, Andre, Vanessa Jacob Victorino, Rubens Cecchini, and Carolina Panis 2014 Mapping Oxidative Changes in Breast Cancer: Understanding the Basic to Reach the Clinics. Anticancer Research 34(3): 1127–1140.

Merlin,

J.L

2008 Les Inhibiteurs de Tyrosine Kinase En Oncologie. La Lettre Du Cancérologue 17(2): 51–62.

Mileykovskaya,Eugenia,andWilliamDowhan2014Cardiolipin-Dependent Formation of Mitochondrial Respiratory Supercomplexes. Chemistryand Physics of Lipids 179: 42–48.

Mileykovskaya,Eugenia,PawelAPenczek,JiaFang,etal.2012Arrangement of the Respiratory Chain Complexes in Saccharomyces Cerevisiae Supercomplex

215

III2IV2 Revealed by Single Particle Cryo-Electron Microscopy. The Journal of Biological Chemistry 287(27): 23095–23103.

Moller, Jesper, Marc Le Maire, and Jens Peter Andersen 1986 Uses of Non-Ionic and Bile Salt Detergents in the Study of Membrane Proteins. *In* Progress in Protein-Lipid Interactions 2.

Mondragón-Rodríguez, Siddhartha, George Perry, Xiongwei Zhu, et al. 2013 Phosphorylation of Tau Protein as the Link between Oxidative Stress, Mitochondrial Dysfunction, and Connectivity Failure: Implications for Alzheimer's Disease. Oxidative Medicine and Cellular Longevity 2013: 940603.

Montagut,Clara,andJeffSettleman2009Targeting the RAF-MEK-ERK Pathway in Cancer Therapy. Cancer Letters 283(2): 125–134.

Müller,D,andHHolzer1981Regulation of Fructose-1,6-Bisphosphatase in Yeast by Phosphorylation/dephosphorylation.Biochemical and Biophysical Research Communications 103(3): 926–933.

Müller,G,andWBandlow1987ProteinPhosphorylation in YeastMitochondria:cAMP-Dependence,SubmitochondrialLocalization and Substrates of MitochondrialProtein Kinases.Yeast(Chichester, England)3(3):161–174.

Müller,S,EBoles,MMay,andFKZimmermann1995Different Internal MetabolitesTrigger the Induction of Glycolytic Gene Expression inSaccharomyces Cerevisiae. Journal of Bacteriology 177(15): 4517–4519.

Nett, J. H., E. Denke, and B. L. Trumpower 1997 Two-Step Processing Is Not Essential for the Import and Assembly of Functionally Active Iron-Sulfur Protein into the Cytochrome bc1 Complex in Saccharomyces Cerevisiae. The Journal of Biological Chemistry 272(4): 2212–2217.

Nett,J.H.,andB.L.Trumpower1996Dissociation of Import of the Rieske Iron-Sulfur Protein into Saccharomyces CerevisiaeMitochondria from Proteolytic Processing of the Presequence. The Journal of Biological Chemistry271(43): 26713–26716.

Nicholls,DavidG,andStuartJFerguson2013Bioenergetics.http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=485983,

accessed August 21, 2014.

Nijtmans, L. G., J. W. Taanman, A. O. Muijsers, D. Speijer, and C. Van den Bogert 1998 Assembly of Cytochrome-c Oxidase in Cultured Human Cells. European Journal of Biochemistry / FEBS 254(2): 389–394.

O'Rourke, Brian, Jennifer E Van Eyk, and D Brian Foster 2011 Mitochondrial Protein Phosphorylation as a Regulatory Modality: Implications for Mitochondrial Dysfunction in Heart Failure. Congestive Heart Failure (Greenwich, Conn.) 17(6): 269– 282. Ogbi, Mourad, Catherine S Chew, Jan Pohl, et al. 2004 Cytochrome c Oxidase Subunit IV as a Marker of Protein Kinase Cepsilon Function in Neonatal Cardiac Myocytes: Implications for Cytochrome c Oxidase Activity. The Biochemical Journal 382(Pt 3): 923–932.

Ogbi,Mourad,andJohnAJohnson2006Protein Kinase Cepsilon Interacts with Cytochrome c Oxidase Subunit IV and EnhancesCytochrome c Oxidase Activity in Neonatal Cardiac Myocyte Preconditioning. The Biochemical Journal393(Pt 1): 191–199.

Ogura, Masato, Junko Yamaki, Miwako K Homma, and Yoshimi Homma 2012 Mitochondrial c-Src Regulates Cell Survival through Phosphorylation of Respiratory Chain Components. The Biochemical Journal 447(2): 281–289.

Ohlmeier, Steffen, J Kalervo Hiltunen, and Ulrich Bergmann 2010 Protein Phosphorylation in Mitochondria --a Study on Fermentative and Respiratory Growth of Saccharomyces Cerevisiae. Electrophoresis 31(17): 2869–2881.

Okatsu,Kei,ToshihikoOka,MasahiroIguchi,etal.2012PINK1AutophosphorylationuponMembranePotentialDissipationIsEssentialforParkinRecruitment to Damaged Mitochondria.Nature Communications 3: 1016.1016.1016.1016.1016.

Oliveira, Ana Paula, Christina Ludwig, Paola Picotti, et al. 2012 Regulation of Yeast Central Metabolism by Enzyme Phosphorylation. Molecular Systems Biology 8: 623.

Ong,Shao-En,BlagoyBlagoev,IrinaKratchmarova,etal.2002Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and AccurateApproach to Expression Proteomics. Molecular & Cellular Proteomics: MCP 1(5): 376–386.

Ostergaard, S., C. Roca, B. Rønnow, J. Nielsen, and L. Olsson 2000 Physiological Studies in Aerobic Batch Cultivations of Saccharomyces Cerevisiae Strains Harboring the MEL1 Gene. Biotechnology and Bioengineering 68(3): 252–259.

Oswald, C, U Krause-Buchholz, and G Rödel 2009 Knockdown of Human COX17 Affects Assembly and Supramolecular Organization of Cytochrome c Oxidase. Journal of Molecular Biology 389(3): 470–479.

Ozcan, S, and M Johnston 1999 Function and Regulation of Yeast Hexose Transporters. Microbiology and Molecular Biology Reviews: MMBR 63(3): 554–569.

Pagliarini,DavidJ,andJackEDixon2006MitochondrialModulation:ReversiblePhosphorylationTakesCenterStage?Trends inBiochemical Sciences31(1): 26–34.

Patel, Mulchand S, Natalia S Nemeria, William Furey, and Frank Jordan 2014 The Pyruvate Dehydrogenase Complexes, Structure-Based Function and Regulation. The Journal of Biological Chemistry.

Paumard, Patrick, Jacques Vaillier, Bénédicte Coulary, et al.

2002 The ATP Synthase Is Involved in Generating Mitochondrial Cristae Morphology. The EMBO Journal 21(3): 221–230.

Pflieger, Delphine, Jean-Pierre Le Caer, Claire Lemaire, et al. 2002 Systematic Identification of Mitochondrial Proteins by LC-MS/MS. Analytical Chemistry 74(10): 2400–2406.

Phillips, Darci, Angel M Aponte, Raul Covian, and Robert S Balaban 2011 Intrinsic Protein Kinase Activity in Mitochondrial Oxidative Phosphorylation Complexes. Biochemistry 50(13): 2515–2529.

Pinna,L.A.,andM.Ruzzene1996How Do Protein Kinases Recognize Their Substrates? Biochimica Et Biophysica Acta 1314(3):191–225.

Plisson,Fabien,MelissaConte,ZeinabKhalil,etal.2012KinaseInhibitorScaffolds againstNeurodegenerativeDiseasesfrom a Southern AustralianAscidian, Didemnum Sp. ChemMedChem 7(6): 983–990.

Polakis,E.S.,andW.Bartley1965Changes in the Enzyme Activities of Saccharomyces Cerevisiae during Aerobic Growth onDifferent Carbon Sources. The Biochemical Journal 97(1): 284–297.

Polakis,E.S.,W.Bartley,andG.A.Meek1964Changes in the Structure and Enzyme Activity of Saccharomyces Cerevisiae in Response toChanges in the Environment. The Biochemical Journal 90(2): 369–374.

Rahman,MU,andAPHudson1995a Nature and Transcriptional Role of Catalytic Subunits of Yeast Mitochondrial cAMP-
Dependent Protein Kinase. Biochemical and Biophysical Research Communications 206(2): 756–763.Hudson1995b Substrates for Yeast Mitochondrial cAMP-Dependent Protein Kinase Research Communications 214(1): 188–194.PHudson

Rak,Malgorzata,SamantaGokova,andAlexanderTzagoloff2011Modular Assembly of Yeast Mitochondrial ATP Synthase. The EMBO Journal 30(5): 920–930.

Ramil, E, C Agrimonti, E Shechter, M Gervais, and B Guiard 2000 Regulation of the CYB2 Gene Expression: Transcriptional Co-Ordination by the Hap1p, Hap2/3/4/5p and Adr1p Transcription Factors. Molecular Microbiology 37(5): 1116–1132.

De Rasmo, Domenico, Giuseppe Palmisano, Salvatore Scacco, et al. 2010 Phosphorylation Pattern of the NDUFS4 Subunit of Complex I of the Mammalian Respiratory Chain. Mitochondrion 10(5): 464–471.

De Rasmo, Domenico, Damiano Panelli, Anna Maria Sardanelli, and Sergio Papa 2008 cAMP-Dependent Protein Kinase Regulates the Mitochondrial Import of the Nuclear Encoded NDUFS4 Subunit of Complex I. Cellular Signalling 20(5): 989–997.

Ratledge,

1991 Yeast Physiology ? A Micro-Synopsis. Bioprocess Engineering 6(5): 195–203.

Redeker, Virginie, Samantha Pemberton, Willy Bienvenut, Luc Bousset, and Ronald Melki

C.

2012 Identification of Protein Interfaces between A-Synuclein, the Principal Component of Lewy Bodies in Parkinson Disease, and the Molecular Chaperones Human Hsc70 and the Yeast Ssa1p. The Journal of Biological Chemistry 287(39): 32630–32639.

Reinders, Joerg, René P Zahedi, Nikolaus Pfanner, Chris Meisinger, and Albert Sickmann 2006 Toward the Complete Yeast Mitochondrial Proteome: Multidimensional Separation Techniques for Mitochondrial Proteomics. Journal of Proteome Research 5(7): 1543–1554.

Reinders,Jörg,KarinaWagner,RenePZahedi,etal.2007ProfilingPhosphoproteins of YeastMitochondriaReveals a Role of Phosphorylation inAssembly of the ATP Synthase.Molecular & Cellular Proteomics:MCP 6(11): 1896–1906.

Ricchetti,M.,C.Fairhead,andB.Dujon1999Mitochondrial DNA Repairs Double-Strand Breaks in Yeast Chromosomes. Nature 402(6757):96–100.

Rieder,R,andHRBosshard1978The Cytochrome c Oxidase Binding Site on Cytochrome C. Differential Chemical Modificationof LysineResidues in Free and Oxidase-Bound Cytochrome c. The Journal of Biological Chemistry253(17): 6045–6053.

Rodríguez,andFlores2000Mutations in GAL2 or GAL4 Alleviate Catabolite Repression Produced by Galactose in
Saccharomyces Cerevisiae. Enzyme and Microbial Technology 26(9-10): 748–755.

Rosca,Mariana,PaulMinkler,andCharlesLHoppel2011Cardiac Mitochondria in Heart Failure: Normal CardiolipinProfile and Increased ThreoninePhosphorylation of Complex IV. Biochimica et Biophysica Acta 1807(11): 1373–1382.

Saddar, Sonika, Mary K Dienhart, and Rosemary A Stuart 2008 The F1F0-ATP Synthase Complex Influences the Assembly State of the Cytochrome bc1-Cytochrome Oxidase Supercomplex and Its Association with the TIM23 Machinery. The Journal of Biological Chemistry 283(11): 6677–6686.

Sampson,V,andTAlleyne2001CytochromeC/cytochromecOxidaseInteraction.DirectStructuralEvidenceforConformational Changes during EnzymeTurnover.European Journal of Biochemistry / FEBS 268(24):6534–6544.

Schägger,H,andGvonJagow1991Blue Native Electrophoresis for Isolation of Membrane Protein Complexes in EnzymaticallyActive Form. Analytical Biochemistry 199(2): 223–231.

Schägger,H,andKPfeiffer2000Supercomplexes in the Respiratory Chains of Yeast and Mammalian Mitochondria. The EMBOJournal 19(8): 1777–1783.

Schapira,AnthonyHV2006Mitochondrial Disease. Lancet 368(9529): 70–82.V

Schleiff, Enrico, and Thomas Becker

219

2011 Common Ground for Protein Translocation: Access Control for Mitochondria and Chloroplasts. Nature Reviews. Molecular Cell Biology 12(1): 48–59.

Schmidt,Oliver,AngelikaBHarbauer,SanjanaRao,etal.2011Regulation of Mitochondrial Protein Import by Cytosolic Kinases. Cell 144(2): 227–239.

Schreiber, Thiemo B, Nina Mäusbacher, Joanna Soroka, et al. 2012 Global Analysis of Phosphoproteome Regulation by the Ser/Thr Phosphatase Ppt1 in Saccharomyces Cerevisiae. Journal of Proteome Research 11(4): 2397–2408.

Schulze, Waltraud X, Thomas Schneider, Sabrina Starck, Enrico Martinoia, and Oliver Trentmann 2012 Cold Acclimation Induces Changes in Arabidopsis Tonoplast Protein Abundance and Activity and Alters Phosphorylation of Tonoplast Monosaccharide Transporters. The Plant Journal: For Cell and Molecular Biology 69(3): 529–541.

Schwartz,MonicaA.,andHitenD.Madhani2004Principles of MAP Kinase Signaling Specificity in Saccharomyces Cerevisiae. Annual Review ofGenetics 38: 725–748.

Sharma, Lokendra Kumar, Hezhi Fang, Jiangtao Liu, et al. 2011 Mitochondrial Respiratory Complex I Dysfunction Promotes Tumorigenesis through ROS Alteration and AKT Activation. Human Molecular Genetics 20(23): 4605–4616.

Shchemelinin,I.,L.Sefc,andE.Necas2006Protein Kinases, Their Function and Implication in Cancer and Other Diseases. Folia Biologica52(3): 81–100.

Sheffner,A.L.,andC.C.Lindegren1952Adaptation to the Prefermentative Oxidation of Galactose. Journal of Bacteriology 64(3):423–430.

Shi, 2009 Serine/threonine Phosphatases: Mechanism through Structure. Cell 139(3): 468–484.

Söhngen,N.L.,andC.Coolhaas1924THEFERMENTATIONOFGALACTOSEBYSACCHAROMYCESCEREVISIAE.JournalofBacteriology 9(2): 131–141.

Steenaart,NA,andGCShore1997Mitochondrial Cytochrome c Oxidase Subunit IV Is Phosphorylated by an Endogenous Kinase.FEBS Letters 415(3): 294–298.

Strittmatter, C. F. 1957 Adaptive Variation in the Level of Oxidative Activity in Saccharomyces Cerevisiae. Journal of General Microbiology 16(1): 169–183.

Struglics, A, K M Fredlund, I M Møller, and J F Allen 1998 Two Subunits of the FOF1-ATPase Are Phosphorylated in the Inner Mitochondrial Membrane. Biochemical and Biophysical Research Communications 243(3): 664–668.

Stuart,

Rosemary

А

2008 Supercomplex Organization of the Oxidative Phosphorylation Enzymes in Yeast Mitochondria. Journal of Bioenergetics and Biomembranes 40(5): 411–417.

Su, Chen-Hsien, Gavin P McStay, and Alexander Tzagoloff 2014 The Cox3p Assembly Module of Yeast Cytochrome Oxidase. Molecular Biology of the Cell 25(7): 965–976.

Suthammarak, Wichit, Benjamin H Somerlot, Elyce Opheim, Margaret Sedensky, and Philip G Morgan 2013 Novel Interactions between Mitochondrial Superoxide Dismutases and the Electron Transport Chain. Aging Cell 12(6): 1132–1140.

Taanman,J.W.,andR.A.Capaldi1993Subunit VIa of Yeast Cytochrome c Oxidase Is Not Necessary for Assembly of the EnzymeComplex but Nodulates the Enzyme Activity. Isolation and Characterization of the Nuclear-CodedGene. The Journal of Biological Chemistry 268(25): 18754–18761.

Takahashi, Hiroko, Masakazu Iwai, Yuichiro Takahashi, and Jun Minagawa 2006 Identification of the Mobile Light-Harvesting Complex II Polypeptides for State Transitions in Chlamydomonas Reinhardtii. Proceedings of the National Academy of Sciences of the United States of America 103(2): 477–482.

Taylor,WE,andETYoung1990cAMP-Dependent Phosphorylation and Inactivation of Yeast Transcription Factor ADR1 DoesNot Affect DNA Binding. Proceedings of the National Academy of Sciences of the United States ofAmerica 87(11): 4098–4102.

Terasawa,H.,D.Kohda,H.Hatanaka,etal.1994Structure of the N-Terminal SH3 Domain of GRB2 Complexed with a Peptide from the
Guanine Nucleotide Releasing Factor Sos. Nature Structural Biology 1(12): 891–897.

Thomas,Daniel,PatrickBron,ThéodoreWeimann,etal.2008Supramolecular Organization of the Yeast F1Fo-ATP Synthase.Biology of the Cell / Under theAuspices of the European Cell Biology Organization 100(10): 591–601.

Thomas, Ruth E., Laurie A. Andrews, Jonathon L. Burman, Wen-Yang Lin, and Leo J. Pallanck 2014 PINK1-Parkin Pathway Activity Is Regulated by Degradation of PINK1 in the Mitochondrial Matrix. PLoS Genetics 10(5): e1004279.

Timson,DavidJ2007GalactoseMetabolism in SaccharomycesCerevisiae.InBiotechnology and Molecular Biology.Global Science Books.

Toda,T,SCameron,PSass,MZoller,andMWigler1987Three Different Genes in S. Cerevisiae Encode the Catalytic Subunits of the cAMP-DependentProtein Kinase. Cell 50(2): 277–287.

Tomaska,

2000 Mitochondrial Protein Phosphorylation: Lessons from Yeasts. Gene 255(1): 59–64.

Tomitsuka,Eriko,KiyoshiKita,andHiroyasuEsumi2009Regulation of Succinate-Ubiquinone Reductase and Fumarate Reductase Activities in Human

L

Complex II by Phosphorylation of Its Flavoprotein Subunit. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences 85(7): 258–265.

Tosato, Valentina, Nana-Maria Grüning, Michael Breitenbach, et al. 2012 Warburg Effect and Translocation-Induced Genomic Instability: Two Yeast Models for Cancer Cells. Frontiers in Oncology 2: 212.

Trouillard, Martin, Brigitte Meunier, and Fabrice Rappaport 2011 Questioning the Functional Relevance of Mitochondrial Supercomplexes by Time-Resolved Analysis of the Respiratory Chain. Proceedings of the National Academy of Sciences of the United States of America 108(45): E1027–1034.

Tsai,Chung-Jung,andRuthNussinov2013The Molecular Basis of Targeting Protein Kinases in Cancer Therapeutics. Seminars in CancerBiology 23(4): 235–242.

Tsatsanis,C.,andD.A.Spandidos2000The Role of Oncogenic Kinases in Human Cancer (Review). International Journal of MolecularMedicine 5(6): 583–590.

Tudisca,V,VRecouvreux,SMoreno,etal.2010Differential Localization to Cytoplasm, Nucleus or P-Bodies of Yeast PKA Subunits underDifferent Growth Conditions. European Journal of Cell Biology 89(4): 339–348.

Tyanova, Stefka, Jürgen Cox, Jesper Olsen, Matthias Mann, and Dmitrij Frishman 2013 Phosphorylation Variation during the Cell Cycle Scales with Structural Propensities of Proteins. PLoS Computational Biology 9(1): e1002842.

Ubersax,JeffreyA.,andJamesE.Ferrell2007Mechanisms of Specificity in Protein Phosphorylation. Nature Reviews. Molecular Cell Biology8(7): 530–541.

Vallari, R C, W J Cook, D C Audino, et al. 1992 Glucose Repression of the Yeast ADH2 Gene Occurs through Multiple Mechanisms, Including Control of the Protein Synthesis of Its Transcriptional Activator, ADR1. Molecular and Cellular Biology 12(4): 1663–1673.

Venard,Renée,DanielBrèthes,Marie-FranceGiraud,etal.2003Investigation of the Role and Mechanism of IF1 and STF1 Proteins, Twin Inhibitory PeptidesWhich Interact with the Yeast Mitochondrial ATP Synthase. Biochemistry 42(24): 7626–7636.

Vögtle,F.-Nora,ClaudiaPrinz,JosefKellermann,etal.2011MitochondrialProteinTurnover:Role of thePrecursorIntermediatePeptidaseOct1inProteinStabilization.MolecularBiology of theCell 22(13):2135–2143.

Vögtle, F.-Nora, Stefanie Wortelkamp, René P. Zahedi, et al. 2009 Global Analysis of the Mitochondrial N-Proteome Identifies a Processing Peptidase Critical for Protein Stability. Cell 139(2): 428–439.

Vukotic,Milena,SilkeOeljeklaus,SebastianWiese,etal.2012Rcf1MediatesCytochromeOxidaseAssemblyandRespirasomeFormation,RevealingHeterogeneity of the EnzymeComplex.Cell Metabolism15(3): 336–347.

222

Wang, Yudong, Al-Walid Mohsen, Stephanie J Mihalik, Eric S Goetzman, and Jerry Vockley 2010 Evidence for Physical Association of Mitochondrial Fatty Acid Oxidation and Oxidative Phosphorylation Complexes. The Journal of Biological Chemistry 285(39): 29834–29841.

Wiedemann, Nils, Kaye N. Truscott, Sylvia Pfannschmidt, et al. 2004 Biogenesis of the Protein Import Channel Tom40 of the Mitochondrial Outer Membrane: Intermembrane Space Components Are Involved in an Early Stage of the Assembly Pathway. The Journal of Biological Chemistry 279(18): 18188–18194.

Wong,Wei,andJohnD.Scott2004AKAP Signalling Complexes: Focal Points in Space and Time. Nature Reviews. Molecular CellBiology 5(12): 959–970.

Yadav,ShaliniS,andWToddMiller2008The Evolutionarily Conserved Arrangement of Domains in SRC Family Kinases Is Important for
Substrate Recognition. Biochemistry 47(41): 10871–10880.

Yin,Zhikang,SéanWilson,NicoleC.Hauser,etal.2003Glucose TriggersDifferent Global Responses in Yeast,Depending on the Strength of theSignal, and Transiently Stabilizes Ribosomal Protein mRNAs.Molecular Microbiology 48(3): 713–724.

Zara,Vincenzo,LauraConte,andBernardLTrumpower2009Evidence That the Assembly of the Yeast Cytochrome bc1Complex Involves the Formation ofa Large Core Structure in the Inner Mitochondrial Membrane. The FEBS Journal 276(7): 1900–1914.

Zarei, Mostafa, Adrian Sprenger, Fabian Metzger, Christine Gretzmeier, and Joern Dengjel 2011 Comparison of ERLIC-TiO2, HILIC-TiO2, and SCX-TiO2 for Global Phosphoproteomics Approaches. Journal of Proteome Research 10(8): 3474–3483.

Zinser,E.C.D.Sperka-Gottlieb,E.V.Fasch,etal.1991Phospholipid Synthesis and Lipid Composition of Subcellular Membranes in the UnicellularEukaryote Saccharomyces Cerevisiae. Journal of Bacteriology 173(6): 2026–2034.

Références

I. Kinases de Saccharomyces cerevisiae, répertoriées par familles et groupes de kinases

Ce tableau est extrait de l'étude d'Hunter et Plowman 1997 (Hunter and Plowman 1997).

REVIEWS

Table I. Classification of Saccharomyces cerevisiae protein kinases (contd)
NIMA/NEK family (Similar to NIMA_en, NIMA1_h, NEK1_h) KIN3/NPK1/FUN52/YAR019C Ser/Thr protein kinase; null mutation has no phenotype. TTY in kinase subdomain VIII (activation loop) NEK-like family (Similar to F35G12.3_ce, weakly to NEK1_h) YNL020C/N2823 Ser/Thr protein kinase of unknown function YIL095W/(PAK1) Ser/Thr protein kinase of unknown function YBR059C/YBR0419 Ser/Thr protein kinase of unknown function
Other group (24 members)
Casein kinase I family (Similar to CKI_h) YCK1/CKI2/YHR135C Casein kinase I (CKI) isoform YCK2/(CKI1)/(CKI)/N1755/YNL154C CKI isoform YCK3/CKI3/YER123W CKI isoform HRR25/P1850/YPL204W CKI, Ser/Thr/Tyr protein kinase; associated with DNA repair and meiosis
Casein kinase II family (Similar to CKA2_h) CKA1/YILD35C CKII, catalytic (α) subunit CKA2/O2510/YOR061W CKII, catalytic (α) subunit *C0C7/SA51/OAF2/D2855/VDL017W Protein kinase required for initiation of DNA synthesis, for commitment to sporulation, for DNA repair and for meiotic recombination. (Similar to HSK1_sp)
NPR/HAL5 family (Unique to S. cerevisiae) HAL5/J0531/YJL165C Ser/Thr protein kinase involved in salt and pH tolerance YKL169C/YKL632 Ser/Thr protein kinase of unknown function SAT4/YCR101/YCR046/YCR008W Protein with similarity to Npr1p protein kinase YIR059W/11725 Putative Ser/Thr protein kinase of unknown function PTK1/YKL198C Ser/Thr protein kinase that enhances spermine uptake. (Frame shift corrected) NPR3/N1531/YHL183C Ser/Thr protein kinase involved in regulating transport systems for nitrogen nutrients under conditions of nitrogen catabolite derepression YDL214C/D1014 Ser/Thr protein kinase "vith similarity to Npr1 YDL025C/D2810 Protein with similarity to protein kinase Npr1p YOR257C/03420 Ser/Thr kinase protein kinase with similarity to Npr1p
ELM family (Unique to yeast, similar to D45882_sp) PAK1/SYGP-ORF45/YER129W Protein kinase capable of suppressing DNA polymerase α mutations YGL179C/BIE560/G1618 Ser/Thr protein kinase with similarity to Elm1p and Kin82p ELM1/YKL261/YKL048C Ser/Thr protein kinase regulating pseudohyphal development
RAN family (Similar to RAN_sp, p78_h) SHA3/SKS1/LP85/YPL028C Ser/Thr protein kinase; suppressor of hta1 mutations that cause aberrant transcription YDR247W/YD6419.14 Ser/Thr protein kinase with similarity to <i>S. pombe</i> RAM ⁺ _ negative regulator of sexual conjugation and meiosis *KSP1/YNR082C Ser/Thr kinase with similarity to CKII PIM-like familty (Similar to PIM2_m, KIAA0135_h) *YAL017W/VAL002/FUN31 Ser/Thr protein kinase of unknown function
*YOL045W/02034/YOL044W Ser/Thr protein kinase of unknown function
Unique kinases (17 members) (No similar S. cerevisiae kinases)
KINDASE WITH possible homologues in other species *CDC5/PKX2/MSD2/YM8270.03/YMR001C Ser/Thr protein kinase required for exit from mitosis; ts mutants block after nuclear division. (Similar to PLK1_h, POL0_dm) *IP11/P1820/YP1296C Ser/Thr protein kinase involved in chromosome segregation. (Similar to AUR_dm) *IRE1/ENX1/YHN07SC Protein kinase and type I membrane protein involved in signal transduction from ER lumen to nucleus; part of the unfolded protein response. (Similar to 2410:4.4_ce) *VPS15/VPT15/(VPL19)/YBR0825/YBR097W Ser/Thr protein kinase involved in vacuolar protein sorting. (Similar to ZK930.1_ce) *VPL386/P1057 Protein of unknown function. No Gx3 (Similar to C3H1.13_sp) (Not in YPD) *YGL180W/G1615 Ser/Thr protein kinase of unknown function. (Similar to UNC:51_ce, PL01_sp) *SWEL/J0406/YHL187C Ser/Tyr dual-specificity protein kinase able to phosphorylate Cdc28p on tyrosine and inhibit its activity. (Similar to Wee1_sp and MLK_h) *SYK1/RAD63/MEC2/SAD1/P2586/YPL153C Ser/Thr/Tyr protein kinase with a checkpoint function in S and G2. Contains FHA domain. (Similar to CD51_sp) *MPS1/RPK1/D2785/YDL028C Ser/Thr/Tyr protein kinase involved in spindle pole body duplication (Similar to ESK_m, TTK_h) *YKL186C/YKL516 Ser/Thr protein kinase with similarity to S. pombe NIM1 protein kinase. (33% identity to p78_h)

TIBS 22 - JANUARY 1997

Table I. Classification of Saccharomyces cerevisiae protein kinases (contd)
Kinases with possible homologues in other species contd *GCN2/AAS1/D9954.16/YDR283C Ser/Thr protein kinase that regulates initiation of translation by phosphorylation of e!F2α (Sui2p) (Similar to EIF2aK_r, HRL_r) *YBR274W/YBR1742 Protein kinase with similarity to members of the growth factor and cytokine receptor family. (Similar to CHK1-sp, CHK1_ce, SNF1_r) *YGR262c/G9334 Protein with similarity to apple tree CaM-binding protein kinase PIR:JQ2251. Lacks GxG – not in alignment. (Similar to <i>O</i> -sialoglycoprotein endopeptidase from <i>Methanococcus jannaschii</i>)
Kinases without known homologue *BUB1/G7542/YGR189C Ser/Thr protein kinase and checkpoint protein required for cell-cycle arrest in response to loss of microtubule function. (Amino terminus similar to MAD3_sc) *YKL171W/YKL635 Ser/Thr protein kinase of unknown function *YGR052W/04329 Protein of unknown function *YGR052W/04329 Protein with similarity to protein kinases Gcn2p; galactosyltransferase-associated protein kinase P58/Gtap, and the Raf proto-oncoprotein
Atypical protein kinases (1 member)
*YGR080W/G4583 Protein with similarity to human tyrosine kinase A6 PIR:A55922.
Miscellaneous kinases
 Phosphatidylinositol-kinases TOR1/DRR1/11803/YIR066W Phosphatidylinositol kinase (PI kinase) homologue involved in cell growth and sensitivity to the immunosuppressant rapamycin TOR2/ORR2/YIL203C PI kinase homologue involved in cell growth and sensitivity to the immunosuppressant rapam,in, similar to Tor1p YPS34/VPT29/(VPL7)/END12/19672.10/YKR240W PI 3-kinase required for vacuolar protein sorting; activated by protein kinase Vps15p PIK1/PIK42/PIK120/N0795/YHL267W PI 4-kinase; generates PtdIns(4)P STT4/L2142.4/YLR305C PI 4-kinase; mutants are staurosportine-sensitive and suppressible by overproduction of Pkc1p MEC1/ESR1/SAD3/YBR1012/YBR136W Checkpoint protein required for mitotic growth; DNA repair and mitotic recombination (PI kinase homologue) TEL1/YBL0706/YBL088C Protein involved in controlling telomere length; might have PI 3-kinase or protein kinase activity YHR099W Protein with weak similarity to Tor1p and T072P; possible PI kinase homologue FAB1/YFR1019W Probable PtdIns(4)P 5-kinase involved in orientation or separation of mitotic chromosomes MSS4/YD8142.05 YD8142.05 Potential PtdIns(4)P 5-kinase; multicopy suppressor of stt4 mutation
Guanylate kinases GUK1/D9461.39/YDR454C Guanylate kinase
Histidine protein kinases SLN1/YPD2/YIL147C Two-component signal transducer with both a His kinase domain and a receiver domain that functions in the high osmolarity signal transduction pathway YIL042C Related to the mitochondrial branched-chain α-ketoacid (BKCD) and pyruvate dehydrogenase (PDH) kinases, which are protein-serine kinases
Misclassified kinases MSS2/D2340/YDL107W/ORF2340 Involved in the expression of mitochondrial cytochrome C oxidase subunit 2 (COX2). (Ser/Thr protein kinase that suppresses the growth defect of <i>snR</i> mutants on low glucose.) YDR109C/YD9727.05 Protein with similarity to FGGY protein kinase family YJR063W Putative Ser/Thr protein kinase of unknown function. (Similar to YKL200c_sc, YKL201c_sc) YLR063W/L2174 Ser/Thr protein kinase of unknown function (Unique) YML055C/YM9958.03 Protein kinase of unknown function. (Leucine repeat and possible coiled coil. Similar to YPL249C_sc, U49940_ce) YML055W/G3441 Protein kinimilarity to rat branched-chain a-ketoacid dehydrogenase kinase U321.74. 37% identity over 64 residues in amino-terminal non-catalytic domain YOR287C/05492 Protein with esimilarity to PITSLRE protein kinase isoforms
⁶ The budding yeast protein kinases are subdivided into distinct families based on structural similarity in their catalytic domains. The overall classification is based on that devised by Hanks and Hunter ³⁸ . Individual kinases are listed by their preferred gene name as established by the Saccharomyces Genome Datahase at Stanford, followed by their synonyms and a brief description as maintained in the Yeast Protein Database (YPD) available on the Internet at http://www.proteome.com. Additional notes, sequence corrections or close homologues are in parentheses following each entry. Protein kinases preceded by an asterisk share only weak similarity to other members. Entries listed as misclassified kinases are flagged as protein kinases in YPD, but have no struc- tural similarity to the protein kinase family and were excluded from this analysis (some of these represent non-catalytic regulatory domains). Three additional open reading frames were identified that encode protein kinases that were not present in the YPD listing: YPL150W (Group IIB), YMR216C (Group IIID) YPL236C (Group VII). These new protein kinases were recognized following a comprehensive analysis of the complete yeast DNA sequence using the MPSRCH software (Oxford Molecular) implementation of the Smith Waterman algorithm on a Maspar parallel computer.

REVIEWS

REVIEWS

TIBS 22 - JANUARY 1997

Table I. Classification of Saccharomyces cerevisiae protein kinases ^a
AGC group (17 members)
PKA family: cAMP-dependent (Similar to PKA_h) TPK1/PKA1/SRA3/PK25/J0541/YJL164C PKA 1, catalytic subunit TPK2/PKA2/YKP1/P1855/YPL203W PKA 2, catalytic subunit TPK3/PKA3/YKL630/YKL166C PKA 3, catalytic subunit
PKC family: DAB-activated, PL-dependent (Similar to PKC_h) PKC1/STT1/HP02/CLY15/YBL0607/YBL105C PKC; regulates MAP kinase cascade involved in regulating cell wall metabolism
AQC family (Similar to SCK1_sp, RACa_h, AKT_h – no diacy/glycerol-binding domain) SCH9/KOM1/YIR205W Ser/Thr protein kinase activated by cAMP; overproduction can suppress <i>cdc25</i> mutant YPK1/YKL126W Ser/Thr protein kinase with similarity to PKC YPK2/YKR2/YM9718.03/YMR104C Ser/Thr protein kinase with similarity to Ypk1p
SEX (70 kDe) family (Similar to KAD5_sp, SGK_r) KIN82/YCR1153/YCR091W Ser/Thr protein kinase of unknown function YNR047W/N3449 Ser/Thr protein kinase of unknown function
DBF2 family (Similar to KAIB_sp, NDR_h) DBF2/64643/YGR092W Ser/Thr protein kinase similar to Dbf20p; required for anaphase/telophase DBF20/P8283.6/YPR111W Cell-cycle protein kinase similar to Dbf2p; involved in M-phase termination
PKA-related family (Unique to S. cerevisiae) YOL100W/HRC1081/00784 Ser/Thr protein kinase of unknown function YDR490C/D6035.33 Ser/Thr protein kinase of unknown function YDR466W/D8035.10 Ser/Thr protein kinase of unknown function
Other AGC family (Similar to CEK1_sp, COT1_nc, NDR_h, LATS_dm, MAST205_m) YFL033C Ser/Thr protein kinase with similarity to Schizosaccharomyces pombe CEK1 protein kinase YNL191W/N1727 Putative Ser/Thr protein kinase of unknown function *YBR028C/YBR0312 Ser/Thr protein kinase with similarity to Ypk2p/Ykr2p and Ypk1p
CaMK group (16 members)
CaMK family: Ca ²⁺ -calmodulin regulated (Similar to CaMKL_h) CMK1/VFR014C Ca ²⁺ -calmodulin-dependent Scr/Thr protein kinase (CaM kinase), type I CMK1/02325/V0L016C CaM kinase type II RCK1/01884/V0L158W Scr/Thr protein kinase with similarity to Cmk1p, Cmk2p and Cmk3p. (Sequence updated) RCK2/CMK3/CLK1/L9672.6/VLR248W CaM kinase
SNF1/AMPK family (Similar to AMPK_h, NPK5_nt, PAR1_ce) SNF1/CAT1/CCR1/FAS14/NAF3/DB035.20/YDR477W Ser/Thr protein kinase essential for derepression of glucose-repressed genes; acts with Snf4 KIN1/YD9727.17/YDR122W Ser/Thr protein kinase; similar to Kin2p and <i>S. pombe</i> KIN1 KIN2/LB004.3/L2545/YLR096W Ser/Thr protein kinase; similar to Kin1p and <i>S. pombe</i> KIN1 KIN4/KIN31/(KIN3)/05220/YOR233W Ser/Thr protein kinase; similar to Kin1p and Kin2p; catalytic domain is most similar to Snf1p YPL141C/LPMS Ser/Thr protein kinase with similarity to Kin4p YPL150W/P2597 Ser/Thr protein kinase of unknown function. (Not in YPD listing)
GIN4 family (Similar to SNF1_sc) GIN4/D9719.13/YDR807C Ser/Thr protein kinase with similarity to Yc1024p; growth inhibitory protein YCL024W Protein with similarity to Snf1p HSL1/YKL453/YKL101W Ser/Thr protein kinase that interacts genetically with histone mutations
Other CaMK family (Similar to Z71478_sp, MLCK_dd, CaMKI_h) MEK1/MRE4/06357/V0R351C Ser/Thr protein kinase required for meiotic recombination; contains forkhead-associated (FHA) nuclear signalling
DUAL/ORF2370/YDL101C Protein kinase necessary for induction of Rnr3p and DNA repair genes after DNA damage; contains FHA domain *YMR231W/ORF530348 Ser/Thr protein kinase of unknown function
CMGC group (21 members)
CDX family (Similar to CDK2_h) CDC28/CDX1/SRM5/HSL5/YBR1211/YBR160W Cyclin-dependent protein kinase (CDK) essential for completion of START and for mitosis; associates with Cks1p and cyclins, PSTAIRE in kinase subdomain III PW065/P7102_18A/YPL031C CDK that interacts with cyclin Pho80p to regulate phosphate pathway. PSTAIRE in kinase subdomain III

TIBS 22 - JANUARY 1997

REVIEWS

Table I. Classification of Saccharomyces cerevisiae protein kinases (contd)
CDI (amily contri
CARL/CIV1/VFL029C CDK-activating kinase (Ser/Thr protein kinase) responsible for in vivo activation of Cdc28p. PHNAKFE in kinase subdomain III
SSN3/UME5/SRB10/(ARE1)/P7102_09/YPL042C Ser/Thr CDK of the RNA polymerase II holoenzyme complex and mediator (SRB) subcomplex. SSSACRE in kinase subdomain III. TLY in kinase subcomain VIII
KIN28/ORF2330/YDL108W Ser/Thr CDK component of transcription initiation factor TFIIH; phosphorylates carboxy-terminal domain (CTD) of RNA polymerase large subunit. DMSAIRE in kinase subdomain III
MAPK family (Similar to SPK1_sp, ERK_h) KS51/64349/YGR040W Ser/Thr protein kinase; redundant with Fus3p for induction of mating specific genes by mating pheromone. TEY in kinase
FUS3/DAC2/YBL0303/YBL03.21/YBL016W Ser/Thr protein kinase required for cell-cycle arrest and for cell fusion during mating. TEY in
activation toop HOG1,SSK3/L9354.2/L2931/VLR113W Ser/Thr protein kinase; involved in high-osmolarity signal transduction pathway. TGY in activation loop SLT2/MPK1/SLK2/BYC2/VHR030C Ser/Thr protein kinase involved in the cell wall integrity pathway. TEY in activation loop
YRLEGC/YRLEGS Ser/Thr protein kinase of unknown function. KGY in activation loop SMR1/YP9499.10/YPR049W Sporulation-specific MAP kinase required for completion of sporulation. TWY in activation loop
GSK3 family (Similar to SHAGGY_dm, GSK3_h) MCK1/(YPK1)/N0392/YNL307C Ser/Thr/Tyr protein kinase (meiosis and centromere regulatory kinase); positive regulator of meiosis and spore formation.
VOL128C/00530/ORF1209713 Ser/Thr protein kinase of unknown function MDS1/RIM11/GSK3/YM9375.08/YMR139W Ser/Thr protein kinase; homologue of mammalian GSK3 MRK1/D2459/D2461/YDL079C Ser/Thr protein kinase with similarity to Mds1p
 CLK family KNS1/L1224/YLL019C Ser/Thr protein kinase of unknown function. (Similar to CLK_h) YAK1/YLL124C Ser/Thr protein kinase that suppresses loss of Tpk1p + Tpk2p. (Similar to KA23_sp, MNB_dm, MNB_h) YMR216C/YM8261.10 Putative Ser/Thr protein kinase; has similarity to Cdc31p. (Similar to DSK1_sp, SRPK1_ce, U52111_h). (Not in YPD listing) IMR25/SME1/J0827/YIL106W Ser/Thr protein kinase and positive regulator of sporulation genes essential for initiation of meiosis. TAY in activation loop. (Similar to MAK_r, p34_h, CDK2_h)
Other CMGC family (Similar to PITSLRE_h, CHED_h) SGV1/BUR1/P9584.8/YPR161C Ser/Thr protein kinase involved in pheromone adaptation pathway and in cell cycle. PITAQRE in kinase
CTK1/YKL139W CTD kinase a subunit; CDK that phosphorylates CTD of RNA polymerase II large subunit. PITSIRE in kinase subdomain III
STE11/STE20 group (10 members)
STE11/MEKK family (Similar to BYR2_sp, NPK1_nt, MEKK_h) STE11/LB039.10/YLR362W Ser/Thr protein kinase; component of the pheromone pathway and a pathway regulating pseudohyphal development BCK1/(SLK1)/SSP31/LAS3/SAP3/J0906/YJL095W Ser/Thr protein kinase; involved in the cell wall integrity pathway SSK2/VSR0731C MAP kinase kinase kinase wiktky of the high osmolarity signal transduction pathway SSK22/VCR073C MEKK with strong similarity to Ssk2p; participates in the high osmolarity signal transduction pathway
STE20/PAK family (Similar to PAK_dm, PAK1_h, PAK65_h, RAC_h) STE20/YHL007C Ser/Thr protein kinase in the pheromone pathway: also participates in pathway regulating pseudohyphal development CLA4/ERC10/N0450/YNL0450/YNL298W Ser/Thr protein kinase required for cytokinesis; has similarity to Ste20p YOL113W/HRA655/00722 Ser/Thr protein kinase with similarity to Ste20p
NRK/MESS family (Similar to MESS1_m, ZC504.4_ce) NRK1/KIC1/H8263.14/YHR102W Ser/Thr protein kinase that interacts with Cdc31p SP51/D9719.27/YDR523C Ser/Thr protein kinase involved in middle/late stage of meiosis *CDC15/YAR019C Protein kinase of the MAP kinase kinase kinase family essential for late nuclear division. (Similar to MESS1_m, CDC7_sp, MST1_h)
STE7/MEX group (8 members)
STE7 family (Similar to HST7_ce, MEK1_h) STE7/D1525/YDL159W Ser/Thr/Tyr protein kinase of MAP kinase kinase (MEK) family; component of the pheromone pathway and a pathway regulating pseudohyphal development PBS2/H0G4/SF54/SSK4/OSR1/J0699/YJL128C Ser/Thr/Tyr protein kinase of the MEK kinase family; essential component of the high-osmolarity signal transduction pathway
MKK1/SSP32/05095/Y0R231W Ser/Thr/Tyr protein kinase of the MEK family involved in cell wall integrity pathway MKK2/SSP33/LPI6/YPL140C Ser/Thr/Tyr protein kinase of the MEK family involved in cell wall integrity pathway. (Sequence updated)

II. Liste des 724 protéines quantifies dans notre analyse protéomique

Correspond au Supplemental data S1 de l'article :

"Supplemental data S1: Cellular localization and significant variation of the 724 proteins quantified in the 3 growth conditions

For proteins displaying several cellular localizations, the different possibilities are given.

- s = significative variation of the protein abundance according to the substrate
- n.s = the protein abundance is not affected by the substrate"

ORF	gene	cellular localization	metabolic pathways	change of abundance
YKL106W	AAT1	mitochondria	amino acid metabolism	s
YLR304C	ACO1	mitochondria	amino acid metabolism	S
YFL030W	AGX1	mitochondria	amino acid metabolism	S
YER069W	ARG5,6	mitochondria	amino acid metabolism	s
	ARG7	mitochondria	amino acid metabolism	S
YHR208W	BAT1	mitochondria	amino acid metabolism	s
YJL060W	BNA3	mitochondria	amino acid metabolism	s
YGR155W	CYS4	mitochondria	amino acid metabolism	s
YMR189W	GCV2	mitochondria	amino acid metabolism	S
YER086W	ILV1	mitochondria	amino acid metabolism	s
YMR108W	ILV2	mitochondria	amino acid metabolism	S
YCL009C		mitochondria	amino acid metabolism	s
YOR108W	LEU4	mitochondria	amino acid metabolism	5
YFL018C	LPD1	mitochondria	amino acid metabolism	s
YIL094C	LYS12	mitochondria	amino acid metabolism	S
YDR234W	LYS4	mitochondria	amino acid metabolism	S
YKL029C	MAE1	mitochondria	amino acid metabolism	s
YBR263W	SHM1	mitochondria	amino acid metabolism	S
YHR174W	ENO2	mitochondria	C-compound and carbonydrate metabolism	S
	CL O4	mitochondria	C-compound and carbohydrate metabolism	S
YHR183W	GLO4 GND1	mitochondria	C-compound and carbohydrate metabolism	5
YKL152C	GPM1	mitochondria	C-compound and carbohydrate metabolism	s
YPR002W	PDH1	mitochondria	C-compound and carbohydrate metabolism	S
YBR196C	PGI1	mitochondria	C-compound and carbohydrate metabolism	S
YCR012W	PGK1	mitochondria	C-compound and carbohydrate metabolism	S
YDR050C	TPI1	mitochondria	C-compound and carbohydrate metabolism	S
YPR006C	ICL2	mitochondria	C-compound and carbonydrate metabolism	S
YEL 036W/	RPO/1	mitochondria	cell cycle and DNA processing	5
YMR038C	CCS1	mitochondria	cell rescue, defense and virulence	s
YFR044C	DUG1	mitochondria	cell rescue, defense and virulence	s
YKR049C	FMP46	mitochondria	cell rescue, defense and virulence	s
YPL091W	GLR1	mitochondria	cell rescue, defense and virulence	S
YDL022W	GPD1	mitochondria	cell rescue, defense and virulence	S
YIR038C	GTT1	mitochondria	cell rescue, defense and virulence	S
YIRU37W	HYR1	mitochondria	cell rescue, defense and virulence	S
	PKA 1 SOD1	mitochondria	cell rescue, defense and virulence	S
YHR008C	SOD1	mitochondria	cell rescue, defense and virulence	5
YDR353W	TRR1	mitochondria	cell rescue, defense and virulence	s
YMR056C	AAC1	mitochondria	Energy / Respiration	S
YJL200C	ACO2	mitochondria	Energy / TCA pathway	S
YMR083W	ADH3	mitochondria	Energy / Fermentation	S
YGL256W	ADH4	mitochondria	Energy / Fermentation	S
YPR004C	AIM45	mitochondria	Energy / Respiration	s
YER073W	ALD4 ALD5	mitochondria	Energy / Fermentation	5
YPL061W	ALD5	mitochondria	Energy / Fermentation	s
YBL099W	ATP1	mitochondria	Energy / Respiration	S
YLR295C	ATP14	mitochondria	Energy / Respiration	S
YDL004W	ATP16	mitochondria	Energy / Respiration	s
YDR377W	ATP17	mitochondria	Energy / Respiration	S
YML081C A	ATP18	mitochondria	Energy / Respiration	s
	ΔTP20	mitochondria	Energy / Respiration	5
YBR039W	ATP3	mitochondria	Energy / Respiration	s
YDR298C	ATP5	mitochondria	Energy / Respiration	s
YNR001C	CIT1	mitochondria	Energy / TCA pathway	S
YPR001W	CIT3	mitochondria	Energy / TCA pathway	s
YBL045C	COR1	mitochondria	Energy / Respiration	S
YLR038C	COX12	mitochondria	Energy / Respiration	S
1GL191W	COX13	mitochondria	Energy / Respiration	s
YGI 187C	COX4	mitochondria	Energy / Respiration	5
YNL052W	COX5A	mitochondria	Energy / Respiration	s
YLR395C COX8	COX8	mitochondria	Energy / Respiration	S
YML054C	CYB2	mitochondria	Energy / Respiration	S
YOR065W	CYT1	mitochondria	Energy / Respiration	S
YDL174C	DLD1	mitochondria	Energy / Respiration	S
	EIR1	mitochondria	Energy / Respiration	s
	GUT2	mitochondria	Energy / TCA pathway Energy / Respiration	5
YNL037C	IDH1	mitochondria	Energy / TCA pathway	s
YOR136W	IDH2	mitochondria	Energy / TCA pathway	s
YDL181W	INH1	mitochondria	Energy / Energy conversion and regeneration	S
YIL125W	KGD1	mitochondria	Energy / TCA pathway	S
YDR148C	KGD2	mitochondria	Energy / TCA pathway	S
YOR142W	LSC1	mitochondria	Energy / I CA pathway	S
TGR2440 VKI 150M	LOUZ MCP1	mitochondria	Energy / TCA pathway Energy / Respiration	5
YKI 0851/1/		mitochondria	Energy / ICespiration	5
YJR077C	MIR1	mitochondria	Energy / Respiration	s
YMR145C	NDE1	mitochondria	Energy / Respiration	S

YDL085W	NDE2	mitochondria	Energy / Respiration
YML120C	NDI1	mitochondria	Energy / Respiration
YJR051W	OSM1	mitochondria	Energy / Respiration
YHR001W A	QCR10	mitochondria	Energy / Respiration
YPR191W	QCR2	mitochondria	Energy / Respiration
YDR529C	QCR7	mitochondria	Energy / Respiration
YJL166W	QCR8	mitochondria	Energy / Respiration
YELU24W	SDH1	mitochondria	Energy / Respiration
YLL041C	SDH2	mitochondria	Energy / Respiration
YKL141W	SDH3	mitochondria	Energy / Respiration
YDR178W	SDH4	mitochondria	Energy / Respiration
YDL130W A	STF1	mitochondria	Energy / Respiration
YDR322C A	LIM11	mitochondria	Energy / Respiration
YOR356W	CIR2	mitochondria	Energy / Respiration
YBL015W	ACH1	mitochondria	Lipid metabolism
YIL124W	AYR1	mitochondria	Lipid metabolism
YML042W	CAT2	mitochondria	Lipid metabolism
YMR110C YNI 009W	IDP3	mitochondria	Lipid metabolism
YJR019C	TES1	mitochondria	Lipid metabolism
YAL039C	CYC3	mitochondria	metabolism of vitamins, cofactors, and prosthetic groups
YBR176W	ECM31	mitochondria	metabolism of vitamins, cofactors, and prosthetic groups
YDR232W	HEM1	mitochondria	metabolism of vitamins, cofactors, and prosthetic groups
YER048W A	ISD11	mitochondria	metabolism of vitamins, cofactors, and prosthetic groups
YKL040C	NFU1	mitochondria	metabolism of vitamins, cofactors, and prosthetic groups
YBR262C	AIM5	mitochondria	mitochondria biogenesis
YGR174C	CBP4	mitochondria	mitochondria biogenesis
YDL126C YBL059C A	CDC48 CMC2	mitochondria	mitochondria biogenesis
YMR244C A	COA6	mitochondria	mitochondria biogenesis
YDR231C	COX20	mitochondria	mitochondria biogenesis
YDR119W A	COX26	mitochondria	mitochondria biogenesis
YKR016W	FCJ1	mitochondria	mitochondria biogenesis
YBR185C	MBA1	mitochondria	mitochondria biogenesis
YCL057C A	MOS1	mitochondria	mitochondria biogenesis
YBR084W	MIS1	mitochondria	nucleotide metabolism
YDR155C	CPR1	mitochondria	protein fate
YER078C	ICP55	mitochondria	protein fate
YHR024C	MAS2	mitochondria	protein fate
YOR232W	MGE1	mitochondria	protein fate
YCL057W	PRD1	mitochondria	protein fate
YOR285W	RDL1	mitochondria	protein fate
YJR045C	SSC1	mitochondria	protein fate
YBR091C	TIM12	mitochondria	protein fate
YDL217C	TIM22	mitochondria	protein fate
YEL020W A	TIM9	mitochondria	protein fate
YHR117W YNI 310C	7 OM71 7 M17	mitochondria	protein fate
YBR227C	MCX1	mitochondria	protein fate
YBL022C	PIM1	mitochondria	, protein fate
YHR011W	DIA4	mitochondria	protein synthesis
YNL135C	FPR1	mitochondria	protein synthesis
YEL034W	HYP2	mitochondria	protein synthesis
YLR069C	MEF1	mitochondria	protein synthesis
YKL138C	MRPL31	mitochondria	protein synthesis
YPL013C	MRPS16	mitochondria	protein synthesis
YOR271C	FSF1	mitochondria	transport
YDL198C	GGC1	mitochondria	transport
YKL120W	OAC1	mitochondria	transport
YPL134C	ODC1	mitochondria	transport
YOR222W	ODC2	mitochondria	transport
YBR106W	PHO88	mitochondria	transport
YJR095W	SFC1	mitochondria	transport
YIL006W	YIA6	mitochondria	transport
YBR104W	YMC2	mitochondria	transport
	AIIVI18 AIM19	mitochondria	unknown
YMR157C	AIM36	mitochondria	unknown
YMR031C	EIS1	mitochondria	unknown
YDR070C	FMP16	mitochondria	unknown
YPL222W	FMP40	mitochondria	
YBL107C	MIC23	mitochondria	unknown
YJL066C	MPM1	mitochondria	unknown
YIL136W	OM45	mitochondria	unknown
YGR049W	SCM4	mitochondria	unknown
Y.II 133C A	Y.II 1330 A	mitochondria	unknown
INE IOOO A	1021000 A	moononana	

YJL171C	YJL171C	mitochondria	unknown	s
YI R290C	YI R290C	mitochondria	unknown	s
VI ROMOC	AL T1	mitochondria	amino opid motoboliom	
TLRU89C	ALTI	milochondria	amino acid metabolism	n.s
YBL098W	BNA4	mitochondria	amino acid metabolism	n.s
YJR060W	CBF1	mitochondria	amino acid metabolism	n.s
YDR019C	GCV1	mitochondria	amino acid metabolism	n.s
YAL044C	GCV3	mitochondria	amino acid metabolism	n.s
YJR016C	ILV3	mitochondria	amino acid metabolism	n.s
YI R355C	II V5	mitochondria	amino acid metabolism	ns
VII 051C		mitochondria	amino acid motabolism	n.c
VUD007W	DUTO			11.5
YHRU37W	PUIZ	mitochondria	amino acid metabolism	n.s
YGR012W	YGR012W	mitochondria	amino acid metabolism	n.s
YIL105C	SLM1	mitochondria	biogenesis of cellular components	n.s
YDR511W	ACN9	mitochondria	C-compound and carbohydrate metabolism	n.s
YGR254W	ENO1	mitochondria	C-compound and carbohydrate metabolism	n.s
YDI 066W	IDP1	mitochondria	C-compound and carbohydrate metabolism	ns
VGP102C		mitochondria	C-compound and carbohydrate metabolism	n.0
VEDOSOO				11.5
YFR053C	HXK1	mitochondria	C-compound and carbonydrate metabolism	n.s
YGL253W	HXK2	mitochondria	C-compound and carbonydrate metabolism	n.s
YMR072W	ABF2	mitochondria	cell cycle and DNA processing	n.s
YDL164C	CDC9	mitochondria	cell cycle and DNA processing	n.s
YJR144W	MGM101	mitochondria	cell cycle and DNA processing	n.s
YDR296W	MHR1	mitochondria	cell cycle and DNA processing	n.s
YIR021W	MRS1	mitochondria	cell cycle and DNA processing	ns
VMI 129C	MSC1	mitochondria	cell cycle and DNA processing	n.0
VODO540	MOOD			11.5
YUR354C	MSC6	mitochondria	cell cycle and DNA processing	n.s
YHR120W	MSH1	mitochondria	cell cycle and DNA processing	n.s
YOL042W	NGL1	mitochondria	cell cycle and DNA processing	n.s
YCR028C A	RIM1	mitochondria	cell cycle and DNA processing	n.s
YDR061W	YDR061W	mitochondria	cell cycle and DNA processing	n.s
YMI 086C	AL O1	mitochondria	cell rescue defense and virulence	ns
VKROGGC	CCB1	mitochondria	cell rescue, defense and virulence	n.3
	CCPT	milochondria	cell rescue, defense and virulence	n.s
YEL030W	ECM10	mitochondria	cell rescue, defense and virulence	n.s
YDR513W	GRX2	mitochondria	cell rescue, defense and virulence	n.s
YPL059W	GRX5	mitochondria	cell rescue, defense and virulence	n.s
YLR259C	HSP60	mitochondria	cell rescue, defense and virulence	n.s
YDR258C	HSP78	mitochondria	cell rescue, defense and virulence	n.s
YNI 239W	LAP3	mitochondria	cell rescue, defense and virulence	ns
VPL 004C		mitochondria	cell rescue, defense and virulence	n.c
VEL04CC	LOF I	mitechondria		11.5
TFLUIGU	NDJ I	milochondria	cell rescue, delense and virulence	n.s
YDR033W	MRH1	mitochondria	cell rescue, defense and virulence	n.s
YGR086C	PIL1	mitochondria	cell rescue, defense and virulence	n.s
YPL188W	POS5	mitochondria	cell rescue, defense and virulence	n.s
YDR032C	PST2	mitochondria	cell rescue, defense and virulence	n.s
YHR106W	TRR2	mitochondria	cell rescue, defense and virulence	n.s
VCR083W/	TRX3	mitochondria	cell rescue, defense and virulence	ne
VCB224W		mitochondria	cell rescue, defense and virulence	n.3
IGR234W		milochondria		n.s
YOL109W	ZEO1	mitochondria	cell rescue, defense and virulence	n.s
YLR043C	TRX1	mitochondria	cell rescue, defense and virulence	n.s
YNL098C	RAS2	mitochondria	cell rescue, defense and virulence	n.s
YOR251C	TUM1	mitochondria	cell rescue, defense and virulence	n.s
YPR165W	RHO1	mitochondria	cellular communication / signal transduction	n.s
YEI 005W/	SEC4	mitochondria	cellular communication / signal transduction	ns
VDL 271W/		mitochondria	Energy (Deepiration	n.3
	ATFIS		Energy / Respiration	11.5
YOLUTTW A	ATP19	mitochondria	Energy / Respiration	n.s
YKL016C	ATP7	mitochondria	Energy / Respiration	n.s
YIL043C	CBR1	mitochondria	Energy / Respiration	n.s
YIL111W	COX5B	mitochondria	Energy / Respiration	n.s
YHR051W	COX6	mitochondria	Energy / Respiration	ns
	COX0	mitochondria	Energy / Respiration	n.0
VDLATON	COX9		Energy / Nespiration	11.5
		milliocrionaria	Energy / Respiration	n.s
YOLU/1W	EMI5	mitochondria	Energy / Kespiration	n.s
YNL071W	LAT1	mitochondria	Energy / Glycolysis and gluconeogenesis	n.s
YIL070C	MAM33	mitochondria	Energy / Respiration	n.s
YER178W	PDA1	mitochondria	Energy / Pyruvate dehydrogenase complex	n.s
YBR221C	PDB1	mitochondria	Energy / Pyruvate dehydrogenase complex	n.s
YGR193C	PDX1	mitochondria	Energy / Pyruvate dehydrogenase complex	ns
VCL008C	PMA1	mitochondria	Energy / Electron transport and membrane associated energy conversion	n.0
VMD267W	P MA I	mitechondria	Energy / Election transport and memorale-associated energy conversion	11.5
TIVIR 207 VV	PPA2	milochondria	Energy / Energy conversion and regeneration	n.s
TERU33C	QCR6	mitochondria	Energy / Respiration	n.s
YLR139C	SLS1	mitochondria	Energy / Respiration	n.s
YJL052W	TDH1	mitochondria	Energy / Glycolysis and gluconeogenesis	n.s
YGR207C	YGR207C	mitochondria	Energy / Respiration	n.s
YPL078C	ATP4	mitochondria	Energy / Respiration	n.s
YKL192C	ACP1	mitochondria	Lipid metabolism	ns
YER061C	CEM1	mitochondria	Lipid metabolism	n.0
		mitochondria	linid motobolism	n.5
ILK30UW	COKI	milochondria	iipiu metabolism Linist na stala aliana	n.s
YBR177C	EHT1	mitochondria	Lipid metabolism	n.s
YML008C	ERG6	mitochondria	Lipid metabolism	n.s
YHR190W	ERG9	mitochondria	Lipid metabolism	n.s
YOR317W	FAA1	mitochondria	Lipid metabolism	n.s
YMR307W	GAS1	mitochondria	Lipid metabolism	n.s
YOI 05914/	CPD2	mitochondria	Lipid metabolism	n.c
VOP224C	GFDZ MOT4	mitochondria	Lipid metabolism	11.5
	IVIC 11	milochondria	Lipid metabolism Lipid as tabalism	n.s
YHR042W	NCP1	mitochondria	Lipid metabolism	n.s
YKL055C	OAR1	mitochondria	Lipid metabolism	n.s
YNL169C	PSD1	mitochondria	Lipid metabolism	n.s
YEL050C	RML2	mitochondria	Lipid metabolism	n.s
			• • • • • • • • • • • • • • • • • • • •	

YPR140W	TA71	mitochondria	Lipid metabolism	ns
	VIII3	mitochondria	Lipid metabolism	n.e
TKL094W	1303	milochonuma		11.5
YOR022C	YOR022C	mitochondria	lipid metabolism	n.s
YHR003C	TCD1	mitochondria	metabolism of vitamins, cofactors and prosthetic groups	n.s
YKL027W	TCD2	mitochondria	metabolism of vitamins, cofactors and prosthetic groups	n.s
VGL 110W	ABC1	mitochondria	metabolism of vitamine, cofactore and prosthetic groups	n.e
VERAGENT	ABCT	milochonuma	metabolism of vitamins, colactors, and prostitetic groups	11.5
YBR003W	COQ1	mitochondria	metabolism of vitamins, cofactors, and prostnetic groups	n.s
YOL096C	COQ3	mitochondria	metabolism of vitamins, cofactors, and prosthetic groups	n.s
YDR204W	COQ4	mitochondria	metabolism of vitamins, cofactors, and prosthetic groups	n.s
VMI 110C	C005	mitochondria	metabolism of vitamins, cofactors, and prosthetic groups	ns
VODOFFO	0000			11.3
YGR255C	COQ6	mitochondria	metabolism of vitamins, cofactors, and prostnetic groups	n.s
YLR201C	COO9	mitochondria	metabolism of vitamins, cofactors, and prosthetic groups	n.s
VEDOA		an it a share share		
YER014W	HEIM14	mitochondria	metabolism of vitamins, coractors, and prostnetic groups	n.s
YOR176W	HEM15	mitochondria	metabolism of vitamins, cofactors, and prosthetic groups	n.s
YPL135W	ISU1	mitochondria	metabolism of vitamins, cofactors, and prosthetic groups	n.s
VGI 018C		mitochondria	metabolism of vitaming cofactors and prosthetic groups	ns
VOD4000	5761		metabolism of vitamins, collectors, and prosthetic groups	1.3
TUR 1960	LIPS	milochondria	metabolism of vitamins, colactors, and prostnetic groups	n.s
YCL017C	NFS1	mitochondria	metabolism of vitamins, cofactors, and prosthetic groups	n.s
YDL120W	YFH1	mitochondria	metabolism of vitamins, cofactors, and prosthetic groups	n.s
VDR376W		mitochondria	metabolism of vitaming cofactors and prosthetic groups	ne
VOD0000	PIOO		metabolism of vitamins, collectors, and prosthetic groups	1.3
1GR286C	BIO2	mitochondria	metabolism of vitamins, coractors, and prostnetic groups	n.s
YOR125C	CAT5	mitochondria	metabolism of vitamins, cofactors, and prosthetic groups	n.s
YMR282C	AEP2	mitochondria	mitochondria biogenesis	n.s
YEI 052W	AFG1	mitochondria	mitochondria biogenesis	ns
VED017C	AEC2	mitochondria	mitochondria biogenesis	n.o
TERUITO	AFG5	millochonuna		11.5
YML030W	AIM31	mitochondria	mitochondria biogenesis	n.s
YNL100W	AIM37	mitochondria	mitochondria biogenesis	ns
	11100			11.5
YNR018W	AIM38	mitochondria	mitochondria biogenesis	n.s
YDR493W	AIM8	mitochondria	mitochondria biogenesis	n.s
YI R 393W	ATP10	mitochondria	mitochondria biogenesis	ns
VNI 215C	ATD11	mitochondria	mitochondria biogonosia	
TINLSISC	AIPII	milochondria	milochondha biogenesis	n.s
YJL180C	ATP12	mitochondria	mitochondria biogenesis	n.s
YMR098C	ATP25	mitochondria	mitochondria biogenesis	n.s
YDR375C	BCS1	mitochondria	mitochondria biogenesis	ns
VDI 215W	CPD2	mitochondria	mitochondria biogenesis	n.o
TPLZISW	CBP3	milochondria	milochondha biogenesis	n.s
YBR120C	CBP6	mitochondria	mitochondria biogenesis	n.s
YKL137W	CMC1	mitochondria	mitochondria biogenesis	n.s
YII 157C	COA1	mitochondria	mitochondria biogenesis	ns
VDI 132\//	COX11	mitochondria	mitochondria biogonosis	n.e
	COXII	milliochondria		11.5
YER141W	COX15	mitochondria	mitochondria biogenesis	n.s
YLL009C	COX17	mitochondria	mitochondria biogenesis	n.s
YKI 087C	CYT2	mitochondria	mitochondria biogenesis	ns
VILOOPC	EMC1	mitochondria	mitochendria biogenesia	
TILU90C	FINCT	milochonuma	milocionaria biogenesis	11.5
YLR077W	FMP25	mitochondria	mitochondria biogenesis	n.s
YBR179C	FZO1	mitochondria	mitochondria biogenesis	n.s
VKI 053C A	MDM35	mitochondria	mitochondria biogenesis	ne
VOL007C	MDM39	mitochondria	mitochondria biogenesis	11.3
TOL027C	IVIDIVI36	milochondria	milochondha biogenesis	n.s
YJL112W	MDV1	mitochondria	mitochondria biogenesis	n.s
YOR211C	MGM1	mitochondria	mitochondria biogenesis	n.s
YCI 044C	MGR1	mitochondria	mitochondria biogenesis	ns
VMD115\M	MODA	mitechandria		1.0
TIVIR I ISVV	MGR3	milochondria	milochondha biogenesis	n.s
YLR203C	MSS51	mitochondria	mitochondria biogenesis	n.s
YPR155C	NCA2	mitochondria	mitochondria biogenesis	n.s
YKR087C	OMA1	mitochondria	mitochondria biogenesis	ns
VED154W	0141	mitochondria	mitochondria biogonosis	n.e
TER 134W	OXAT	millochonuna		11.5
YJR034W	PE1191	mitochondria	mitochondria biogenesis	n.s
YOR266W	PNT1	mitochondria	mitochondria biogenesis	n.s
YBR037C	SCO1	mitochondria	mitochondria biogenesis	n٩
VBD024M	8002	mitochondria	mitochondria biogenesis	
IDI(024W	3002	milliochondria		11.5
YDR393W	SHE9	mitochondria	mitochondria biogenesis	n.s
YGR112W	SHY1	mitochondria	mitochondria biogenesis	n.s
YBR044C	TCM62	mitochondria	mitochondria biogenesis	n.s
YDR470C	UGO1	mitochondria	mitochondria biogenesis	ns
VDD004M		mitochondria	mitochondria biogonosia	
		mitocritituria	mitochulla blugellesis	11.5
TIVIKU89C	Y1A12	mitochondria	miliochonaria biogenesis	n.s
YDR379C A	SDH6	mitochondria	mitochondria biogenesis	n.s
YGR235C	MOS2	mitochondria	mitochondria biogenesis	n.s
YPI MARC	MGR2	mitochondria	mitochondria hiogenesis	
VI DOGOC	NITO	mitochunund	nitrogen and auffur metaboli-	11.5
TLR3510	INIT 3	milochondria		n.s
YDR226W	ADK1	mitochondria	nucleotide metabolism	n.s
YJL208C	NUC1	mitochondria	nucleotide metabolism	n.s
YLR059C	RFX2	mitochondria	nucleotide metabolism	ns
YMR302C	YME2	mitochondria	nucleotide metabolism	
		mitocrioriuria		11.5
TKL15/W	APE2	mitochondria	protein rate	n.s
YML078W	CPR3	mitochondria	protein fate	n.s
YPR183W	DPM1	mitochondria	protein fate	n.s
YGR0201A/	FR\/1	mitochondria	, protein fate	ne
VID4000		mitocrioriuria	protoin fato	11.5
YLR163C	MAS1	mitochondria	protein fate	n.s
YKL195W	MIA40	mitochondria	protein fate	n.s
YGR028W	MSP1	mitochondria	protein fate	n.s
YGR147C	NAT2	mitochondria	protein fate	ne
VDD440M		mitashan data	protoin fato	11.5
TPK149W	NGE102	mitochondria	protein rate	n.s
YDR316W	OMS1	mitochondria	protein fate	n.s
YJL104W	PAM16	mitochondria	protein fate	n.s
YKR065C	PAM17	mitochondria	protein fate	ne
VIDADO	DAM40	mitochandria	protoin foto	11.5
YLR008C	PAM18	mitochondria	protein tate	n.s
	PEP4	mitochondria	nrotein fate	ns

YGR132C	PHB1	mitochondria	protein fate	n.s
YGR231C	PHB2	mitochondria	protein fate	n.s
YOR090C	PTC5	mitochondria	protein fate	n.s
YCR079W	PIC6	mitochondria	protein fate	n.s
YER125W	RSP5	mitochondria	protein fate	11.5
YHR083W	SAM35	mitochondria	protein fate	n.s
YMR060C	SAM37	mitochondria	protein fate	n.s
YNL026W	SAM50	mitochondria	protein fate	n.s
YLR369W	SSQ1	mitochondria	protein fate	n.s
YHR005C A	TIM10	mitochondria	protein fate	n.s
YGR181W	TIM13	mitochondria	protein fate	n.s
YNR017W	TIM21	mitochondria	protein fate	n.s
YIL022W	TIM44	mitochondria	protein fate	n.s
YPL063W	TIM50	mitochondria	protein fate	n.s
YJL054W	TIM54	mitochondria	protein fate	n.s
YJR135W A	TIM8	mitochondria	protein fate	n.s
YGR082W VNI 131W	TOM20	mitochondria	protein fate	n.s
YMR203W	TOM40	mitochondria	protein fate	11.5 n s
YOR045W	TOM6	mitochondria	protein fate	n.s
YNL070W	TOM7	mitochondria	protein fate	n.s
YNL121C	TOM70	mitochondria	protein fate	n.s
YPL072W	UBP16	mitochondria	protein fate	n.s
YLR090W	XDJ1	mitochondria	protein fate	n.s
YMR152W	YIM1	mitochondria	protein fate	11.5
YBR072W	HSP26	mitochondria	protein fate	n.s
YKL134C	OCT1	mitochondria	protein fate	n.s
YPR133W A	TOM5	mitochondria	protein fate	n.s
YOR020C	HSP10	mitochondria	protein fate	n.s
YIL042C	PKP1	mitochondria	protein fate	n.s
YER08/W	AIM10	mitochondria	protein synthesis	n.s
YOR335C	AllVI23	mitochondria	protein synthesis	n.s
YLR289W	GUF1	mitochondria	protein synthesis	n.s
YOL023W	IFM1	mitochondria	protein synthesis	n.s
YCR046C	IMG1	mitochondria	protein synthesis	n.s
YCR071C	IMG2	mitochondria	protein synthesis	n.s
YPL040C	ISM1	mitochondria	protein synthesis	n.s
YGL068W	MNP1	mitochondria	protein synthesis	11.5
YDR347W	MRP1	mitochondria	protein synthesis	n.s
YGR084C	MRP13	mitochondria	protein synthesis	n.s
YKL003C	MRP17	mitochondria	protein synthesis	n.s
YPR166C	MRP2	mitochondria	protein synthesis	n.s
YDR405W	MRP20	mitochondria	protein synthesis	n.s
YBL090W	MRP21	mitochondria	protein synthesis	n.s
	MRP4	mitochondria	protein synthesis	11.5
YNL005C	MRP7	mitochondria	protein synthesis	n.s
YNL284C	MRPL10	mitochondria	protein synthesis	n.s
YDL202W	MRPL11	mitochondria	protein synthesis	n.s
YKR006C	MRPL13	mitochondria	protein synthesis	n.s
YLR312W A	MRPL15	mitochondria	protein synthesis	n.s
VNI 252C	MRPL10	mitochondria	protein synthesis	11.5
YNL185C	MRPL19	mitochondria	protein synthesis	n.s
YKR085C	MRPL20	mitochondria	protein synthesis	n.s
YNL177C	MRPL22	mitochondria	protein synthesis	n.s
YOR150W	MRPL23	mitochondria	protein synthesis	n.s
YMR193W	MRPL24	mitochondria	protein synthesis	n.s
YBR282W/	MRPI 27	mitochondria	protein synthesis	n.s
YDR462W	MRPL28	mitochondria	protein synthesis	n.s
YMR024W	MRPL3	mitochondria	protein synthesis	n.s
YCR003W	MRPL32	mitochondria	protein synthesis	n.s
YMR286W	MRPL33	mitochondria	protein synthesis	n.s
YDR322W	MRPL35	mitochondria	protein synthesis	n.s
YBR122C	MRPL36	mitochondria	protein synthesis	n.s
YML009C	MRPL39	mitochondria	protein synthesis	n.s
YLR439W	MRPL4	mitochondria	protein synthesis	n.s
YPL173W	MRPL40	mitochondria	protein synthesis	n.s
YMR225C	MRPL44	mitochondria	protein synthesis	n.s
YJL096W	MRPL49	mitochondria	protein synthesis	n.s
YPR100W	MRPLOU	mitochondria	protein synthesis	n.s
YHR147C	MRPL6	mitochondria	protein synthesis	n.s
YDR237W	MRPL7	mitochondria	protein synthesis	n.s
YJL063C	MRPL8	mitochondria	protein synthesis	n.s
YGR220C	MRPL9	mitochondria	protein synthesis	n.s
YNR036C	MRPS12	mitochondria	protein synthesis	n.s
YNIK 188C	MEPS1/	mitochondria	protein synthesis	n.s
YDR337W	MRPS28	mitochondria	protein synthesis	n.s
YGR165W	MRPS35	mitochondria	protein synthesis	n.s
			-	

VDDOEWN	MDDOG			
YBR251W	MRPS5	mitochondria	protein synthesis	n.s
YMR158W	MRPS8	mitochondria	protein synthesis	n.s
YBR146W	MRPS9	mitochondria	protein synthesis	n.s
YPL104W	MSD1	mitochondria	protein synthesis	n.s
YOI 033W	MSF1	mitochondria	protein synthesis	n s
VDD047W/	MSE1	mitochondria	protoin synthesis	n.0
111104700	NOK4	mitochondria		11.5
YINLU73VV	MSK1	mitochondria	protein synthesis	n.s
YGR171C	MSM1	mitochondria	protein synthesis	n.s
YHR091C	MSR1	mitochondria	protein synthesis	n.s
YKL194C	MST1	mitochondria	protein synthesis	n.s
YDR268W	MSW1	mitochondria	protein synthesis	n.s
VPI 007\//	MSV1	mitochondria	protoin synthesis	n.c
1F L097 W	MTO1	mitochondria		11.5
YGL236C	MIOI	mitochondria	protein synthesis	n.s
YLR382C	NAM2	mitochondria	protein synthesis	n.s
YNL137C	NAM9	mitochondria	protein synthesis	n.s
YBL080C	PET112	mitochondria	protein synthesis	n.s
YOR158W	PET123	mitochondria	protein synthesis	n.s
YBI 057C	PTH2	mitochondria	protein synthesis	n s
VHR038W/	RRF1	mitochondria	protein synthesis	ne
	DOM10	mitechendria	protein synthesis	
IDR041W	RSIVITU	milochondria	protein synthesis	n.s
YER050C	RSM18	mitochondria	protein synthesis	n.s
YNR037C	RSM19	mitochondria	protein synthesis	n.s
YKL155C	RSM22	mitochondria	protein synthesis	n.s
YGL129C	RSM23	mitochondria	protein synthesis	n.s
YDR175C	RSM24	mitochondria	protein synthesis	n s
VII 093C	RSM25	mitochondria	protein synthesis	ne
V IR 101\//	RSM26	mitochondria	protein synthesis	n.5
		mitochUnuna		11.5
YGR215W	KSM2/	mitochondria	protein synthesis	n.s
YDR494W	RSM28	mitochondria	protein synthesis	n.s
YJR113C	RSM7	mitochondria	protein synthesis	n.s
YCR024C	SLM5	mitochondria	protein synthesis	n.s
YKL081W	TEF4	mitochondria	protein synthesis	n.s
YOR187W	TUE1	mitochondria	protein synthesis	ns
00140		mitochondria	protein synthesis	n.3
Q0140	VART	milochondina	protein synthesis	11.5
YGR094W	VAS1	mitochondria	protein synthesis	n.s
YML025C	YML6	mitochondria	protein synthesis	n.s
YDR115W	YDR115W	mitochondria	protein synthesis	n.s
YDR116C	MRPL1	mitochondria	protein synthesis	n.s
YHI 038C	CBP2	mitochondria	transcription	ns
VGR150C	CCM1	mitochondria	transcription	ne
VDD404C	CDS1	mitechendria	transcription	
TERIZIC	GRST	milochondria	transcription	n.s
YOR298C A	MBF1	mitochondria	transcription	n.s
YGL064C	MRH4	mitochondria	transcription	n.s
YDR194C	MSS116	mitochondria	transcription	n.s
YMR228W	MTF1	mitochondria	transcription	n.s
YDI 044C	MTE2	mitochondria	transcription	ns
VGL 221C	NIE3	mitochondria	transcription	ne
VKD0Z0C	TD 74	mitechendria	transcription	
TKR079C	IRZI	milochondria	transcription	n.s
YPR021C	AGC1	mitochondria	transport	n.s
YMR301C	ATM1	mitochondria	transport	n.s
YLR348C	DIC1	mitochondria	transport	n.s
YDR036C	EHD3	mitochondria	transport	n.s
VI R 188\//	MDL 1	mitochondria	transport	ne
	MDL2	mitechendria	transport	
TPL2/UVV	MDL2	milochondria	transport	n.s
YMR177W	MM I 1	mitochondria	transport	n.s
YPL224C	MMT2	mitochondria	transport	n.s
YKR052C	MRS4	mitochondria	transport	n.s
YOR153W	PDR5	mitochondria	transport	n.s
YNI 003C	PET8	mitochondria	transport	n s
YER053C	PIC?	mitochondria	transport	ne
VNLOSEC	0001	mitechendria	transport	
VPP400M		mitochondria	tranaport	11.S
IDR 192W		milochondria	uansport	n.s
YKR001C	VPS1	mitochondria	transport	n.s
YMR241W	YHM2	mitochondria	transport	n.s
YKL196C	YKT6	mitochondria	transport	n.s
YPR058W	YMC1	mitochondria	transport	n.s
YFL038C	YPT1	mitochondria	transport	n.s
YER031C	YPT31	mitochondria	transport	ne
VML004W	VDT7	mitechendria	transport	
		mitochondria	tranaport	11.S
IDL119C	IDL119C	milochondria	transport	n.s
YPR011C	YPR011C	mitochondria	transport	n.s
YFR011C	AIM13	mitochondria	unknown	n.s
YHL021C	AIM17	mitochondria	unknown	n.s
YJR080C	AIM24	mitochondria	unknown	n.s
YJR100C	AIM25	mitochondria	unknown	n.s
VOP2150	A IN # 4 1	mitochondria	unknown	
VDL0000	AIIVI41	mitochondria		11.S
TPL099C	AIIVI43	milochondria	unknown	n.s
YHR199C	AIM46	mitochondria	unknown	n.s
YER080W	AIM9	mitochondria	unknown	n.s
YBR078W	ECM33	mitochondria	unknown	n.s
YER182W	FMP10	mitochondria	unknown	ns
YBR260C	FMP21	mitochondria	unknown	n e
VELOACIA	EMD22	mitochondria	unknown	11.5
	FIVIP32	milochondria	unknown	n.s
YNL168C	FMP41	mitochondria	unknown	n.s
YAL008W	FUN14	mitochondria	unknown	n.s
YDR031W	MIC14	mitochondria	unknown	n.s
YMR002W	MIC17	mitochondria	unknown	n.s
	MTC3	mitochondria	unknown	n.e

10EIGIG	I CIVID 5	mitochondria	unknown
YDR233C	RTN1	mitochondria	unknown
YCR004C	YCP4	mitochondria	unknown
YHL014C	YLF2	mitochondria	unknown
YPR125W	YI H47	mitochondria	unknown
VDL 005W/	VDL OOFM	mitochondria	
TBL095W	TBL095VV	milochondria	unknown
YDL027C	YDL027C	mitochondria	unknown
YDR381C A	YDR381C A	mitochondria	unknown
YER077C	YER077C	mitochondria	unknown
YGR021W	YGR021W	mitochondria	unknown
VGR031W	YGR031W	mitochondria	unknown
VCD400C	VCD402C	mitochondria	
YGR102C	YGR 102C	mitochondria	unknown
YJR003C	YJR003C	mitochondria	unknown
YKR070W	YKR070W	mitochondria	unknown
YLR253W	YLR253W	mitochondria	unknown
YNR040W	YNR040W	mitochondria	unknown
VOI 053W/	AIM30	mitochondria	unknown
VODOONA	Alwije	mitechondria	
YURUZUW A	YORUZUW A	milochondria	unknown
YEL040W	CRH2	cell wall	
YKL002W	DID4	cytoplasme	
YKR076W	YKR076W	cvtoplasme	
YII 041W	GVP36	cytoplasme	
	CTP1	outoplasmo	
1FR 124VV	GIRI	cytopiasme	
YAL005C	SSA1	cytoplasme	
YBR025C	OLA1	cytoplasme	
YPL199C	YPL199C	cytoplasme	
YGL148W	ARO2	cvtoplasme	
VPR074C	TKI 1	cytoplasme	
VI D202W/		cytoplasme	
	MEI1/	cytopiasme	
YFL039C	ACT1	cytoplasme	
YLR167W	RPS31	cytoplasme	
YBR118W	TEF2	cytoplasme	
YNI 079C	TPM1	cytoplasme	
VCL 040W/	GLK1	ovtoplasmo	
YOL440W	GLKT	cytoplasme	
YPL145C	KES1	cytopiasme	
YKL204W	EAP1	cytoplasme	
YKL151C	YKL151C	cytoplasme	
YKL103C	LAP4	cvtoplasme	
YNI 231C	PDR16	cytoplasme	
VMP246W/	EAA4	cytoplasmo	
	FAA4	cytopiasme	
YBR109C	CMD1	cytoplasme	
YHR021C	RPS27B	cytoplasme	
YJL020C	BBC1	cytoplasme	
YOR204W	DED1	cytoplasme	
VII 053W/	RHR2	cytoplasme	
VDD4070	101102	cytoplasme	
IBR127C	VMAZ	cytopiasme	
YIR034C	LYS1	cytoplasme	
	PBI2	cytoplasme	
YNL015W			
YNL015W YAL038W	CDC19	cvtoplasme	
YNL015W YAL038W YDL082W	CDC19 RPI 13A	cytoplasme	
YNL015W YAL038W YDL082W	CDC19 RPL13A	cytoplasme cytoplasme	
YNL015W YAL038W YDL082W YOL126C	CDC19 RPL13A MDH2	cytoplasme cytoplasme cytoplasme	
YNL015W YAL038W YDL082W YOL126C YHR063C	CDC19 RPL13A MDH2 PAN5	cytoplasme cytoplasme cytoplasme cytoplasme	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C	CDC19 RPL13A MDH2 PAN5 SHM2	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 VNIR034W A	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A YOL086C	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A YOL086C	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique	
YNL015W YAL038W YDL082W YOL126C YHR058C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YLR09W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 VIR095W	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique	
YNL015W YAL038W YDL082W YOL126C YHR058C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique	
YNL015W YAL038W YDL082W YOL126C YHR063C YMR016C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique	
YNL015W YAL038W YDL082W YOL126C YHR063C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau cytoplasme/noyau	
YNL015W YAL038W YDL082W YOL126C YHR058C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR293C	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR293C YFL014W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau	
YNL015W YAL038W YDL082W YOL126C YHR058C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR293C YFL014W YOP0131C	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau	
YNL015W YAL038W YDL082W YOL126C YHR058C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR293C YFL014W YOR131C	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C CDU	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau	
YNL015W YAL038W YDL082W YOL126C YHR063C YMR016C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YDR099W YLR293C YFL014W YOR131C YOR375C	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau	
YNL015W YAL038W YDL082W YOL126C YHR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YDR099W YLR293C YFL014W YOR131C YOR375C YDR174W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HMO1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR293C YFL014W YOR375C YDR174W YLL026W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HMO1 HSP104	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau	
YNL015W YAL038W YDL082W YOL126C YHR063C YMR016C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YDR099W YDR099W YDR099W YDR099W YLR293C YFL014W YOR131C YOR375C YDR174W YLL026W YNL007C	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HM01 HSP104 SIS1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau	
YNL015W YAL038W YDL082W YOL126C YHR058C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR293C YFL014W YOR131C YOR131C YOR375C YDR174W YLL026W YNL007C XJR008W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HMO1 HSP104 SIS1 MHO1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR293C YFL014W YOR375C YDR174W YNL007C YJR08W YIL007C YJR08W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HMO1 HSP104 SIS1 MHO1 PDC1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau	
YNL015W YAL038W YDL082W YOL126C YHR058C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR293C YFL014W YOR131C YOR375C YDR174W YLL026W YNL007C YJR008W YLR044C	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HMO1 HSP104 SIS1 MHO1 PDC1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/moyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR293C YFL014W YOR375C YDR174W YLL026W YLR06W YLR044C YDR365W B	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HM01 HSP104 SIS1 MH01 PDC1 YDR365W B	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau	
YNL015W YAL038W YDL082W YOL126C YHR063C YMR0116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR293C YFL014W YOR375C YDR174W YOR375C YDR174W YUL026W YNL007C YJR088W YL007C YJR088W YLR044C YDR365W B YER042W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HMO1 HSP104 SIS1 MHO1 PDC1 YDR365W B MXR1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau cytoplasme/noyau	
YNL015W YAL038W YDL082W YOL126C YHR058C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YDR099W YLR293C YFL014W YOR375C YDR174W YLL026W YNL007C YJR008W YLR044C YDR365W B YER042W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HMO1 HSP104 SIS1 MHO1 PDC1 YDR365W B MXR1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR293C YFL014W YOR131C YOR131C YOR131C YOR174W YLL026W YNL007C YJR008W YLR044C YDR365W B YER042W YER165W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HM01 HSP104 SIS1 MH01 PDC1 YDR365W B MXR1 PAB1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau	
YNL015W YAL038W YDL082W YOL126C YHR063C YMR016C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR096W YPR035W YDR099W YLR293C YFL014W YOR375C YDR174W YLL026W YNL007C YJR008W YLR044C YDR365W B YER042W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HMO1 HSP104 SIS1 MHO1 PDC1 YDR365W B MXR1 PAB1 SSB1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau	
YNL015W YAL038W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR293C YFL014W YOR099W YLR293C YFL014W YOR035W YDR035W YER041C YOR375C YDR174W YLL026W YNL007C YJR008W YLR044C YDR365W B YER042W YER165W YDR1229W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HMO1 HSP104 SIS1 MHO1 PDC1 YDR365W B MXR1 PAB1 SSB1 SSB1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau	
YNL015W YAL038W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YMR116C YDL055C YMR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR293C YFL014W YOR375C YDR174W YL026W YNL007C YJR008W YLR044C YDR365W B YER042W YER165W YDL229W YMR296C	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HM01 HSP104 SIS1 MH01 PDC1 YDR365W B MXR1 PAB1 SSB1 LCB1 CIS1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/moyau cytoplasme/noyau	
YNL015W YAL038W YDL082W YOL126C YHR063C YMR0116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YJR096W YPR035W YDR099W YLR046W YPR035W YDR099W YLR045W YNL007C YJR008W YNL007C YJR008W YLR044C YDR365W B YER042W YER165W YDL229W YMR296C YPL218W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HMO1 HSP104 SIS1 MHO1 PDC1 YDR365W B MXR1 PAB1 SSB1 LCB1 SAR1	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR293C YFL014W YOR375C YDR174W YLL026W YDR365W YDR0365W YLR044C YDR365W B YER042W YER165W YDR296C YPL218W YLL138C	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HM01 HSP104 SIS1 MH01 PDC1 YDR365W B MXR1 PAB1 SSB1 LCB1 SAR1 TIF2	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau cytoplasme/robysome cytoplasme/ret end cytoplasme/ret end cytoplasme/ret end	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR293C YFL014W YOR375C YDR174W YNL007C YJR08W YL044C YDR365W B YER042W YER165W YDL229W YMR296C YPL218W YJL138C	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HMO1 HSP104 SIS1 MHO1 HSP104 SIS1 MHO1 PDC1 YDR365W B MXR1 PAB1 SSB1 LCB1 SAR1 TIF2 YNL247W	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau cytoplasme/ribosome cytoplasme/ribosome cytoplasme/ribosome	
YNL015W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR293C YFL014W YOR131C YOR375C YDR174W YLL026W YNL007C YJR008W YLR044C YDR365W B YER042W YER165W YMR296C YPL218W YJL138C YNL247W YDL247W YDL247W YDL247W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HM01 HSP104 SIS1 MH01 PDC1 YDR365W B MXR1 PAB1 SSB1 LCB1 SAR1 TIF2 YNL247W RD11	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau cytoplasme/robysome cytoplasme/ribosome cytoplasme/ribosome	
YNL015W YAL038W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR293C YFL014W YOR131C YOR131C YOR375C YDR174W YLL026W YLR044C YDR365W B YER042W YER044C YDR365W B YER042W YER165W YDR296W YL218W YDL229W YMR296C YPL218W YL138C YNL247W YDL135C YNL137C	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HM01 HSP104 SIS1 MH01 PDC1 YDR365W B MXR1 PAB1 SSB1 LCB1 SAR1 TIF2 YNL247W RDI1 BH02 SH02	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau cytoplasme/ribosome cytoplasme/ribosome cytoplasme/ribosome cytoplasme/ribosome	
YNL015W YAL038W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YDR096W YPR035W YDR099W YLR040 YOR375C YDR174W YOL14W YOR375C YDR174W YNL007C YJR08W YL007C YJR08W YL007C YJR08W YL007C YJR08W YL007C YJR08W YL007C YJR08W YL007C YJR08W YL007C YJR08W YL007C YJR08W YL007C YJR085W B YER042W YER165W YDL365W B YER042W YDL35C YNL247W YDL135C YLL118W	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HMO1 HSP104 SIS1 MHO1 PDC1 YDR365W B MXR1 PAB1 SSB1 LCB1 SAR1 TIF2 YNL247W RD11 RH03 AAT2	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau cytoplasme/ribosome cytoplasme/ribosome cytoplasme/ribosome	
YNL015W YAL038W YAL038W YDL082W YOL126C YHR063C YLR058C YMR116C YDL055C YNR034W A YOL086C YER091C YLR109W YJR096W YPR035W YDR099W YLR293C YFL014W YOR099W YLR293C YFL014W YOR375C YDR174W YLL026W YNL007C YJR008W YLR044C YDR365W B YER042W YER042W YER165W YDR296C YPL218W YMR296C YPL218W YJL138C YNL247W YDL135C YLL18W YLR027C	CDC19 RPL13A MDH2 PAN5 SHM2 ASC1 PSA1 YNR034W A ADH1 MET6 AHP1 YJR096W GLN1 BMH2 GSP1 HSP12 YOR131C GDH1 HM01 HSP104 SIS1 MH01 PDC1 YDR365W B MXR1 PAB1 SSB1 LCB1 SAR1 TIF2 YNL247W RD11 RH03 AAT2	cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/mb plasmique cytoplasme/noyau cytoplasme/ret end cytoplasme/ribosome cytoplasme/ribosome cytoplasme/ribosome cytoplasme/ribosome	

n.s
n.s

n.s

YOR286W

RDL2

mitochondria

unknown

YBR011C	IPP1	cytosol
YFL045C	SEC53	cytosol
YGL009C	LEU1	cytosol
YBL047C	EDE1	endocytose/ret end
YKR046C	PET10	lipid particles
YMR215W	GAS3	mb plasmique
YBL029C A	YBL029C A	mb plasmique
YOR189W	IES4	noyau
YMR047C	NUP116	noyau
YDL088C	ASM4	noyau
YKL112W	ABF1	noyau
YJL081C	ARP4	noyau
YPR052C	NHP6A	noyau
YDR190C	RVB1	noyau
YPL129W VBL003C	IAF14 HTA2	noyau
YBR010W	HHT1	novau
YJL041W	NSP1	noyau
YGR119C	NUP57	noyau
YHR146W	CRP1	noyau
YER177W	BMH1	noyau/cytoplasme/ret end
YKL068W	NUP100	nuclear pore
YBR009C	HHF1	nucleosome
YBL002W	HTB2	nucleosome
YDL078C	MDH3	peroxisome
YGL205W	POX1	peroxisome
YBR222C	PCS60	peroxisome/cytoplasme
YI R292C	SEC72	ret end
YDL204W	RTN2	ret end
YDR304C	CPR5	ret end
YKL073W	LHS1	ret end
YDR518W	EUG1	ret end
YELUU2C	WBP1 EPC2	ret end
YMR183C	SSO2	ret end
YMR015C	ERG5	ret end
YAL023C	PMT2	ret end
YML075C	HMG1	ret end
YKL065C	YET1	ret end
YER120W	SCS2	ret end
YJL145W	SFH5	ret end
YGL200C	EMP24	ret end
YML130C	ERO1	ret end
YPR088C	SRP54	ret end
YCL043C X II 034W	PDI1	ret end
YGR175C	FRG1	ret end
YDL083C	RPS16B	ribosome
YBR031W	RPL4A	ribosome
YDR064W	RPS13	ribosome
YDR447C	RPS17B	ribosome
YER181C	RPS6B	ribosomo
YLR344W	RPL26A	ribosome
YOR096W	RPS7A	ribosome
YPL131W	RPL5	ribosome
YMR242C	RPL20A	ribosome
YER074W	RPS24A STM1	ribosome
YNL178W	RPS3	ribosome
YGR027C	RPS25A	ribosome
YBL087C	RPL23A	ribosome
YDR450W	RPS18A	ribosome
YOL111C	MDY2	ribosome
YOR362W	RPP2B RPS12	ribosome
YML073C	RPL6A	ribosome
YGL103W	RPL28	ribosome
YGL076C	RPL7A	ribosome
YOL127W	RPL25	ribosome
YERU31C A	RPL2A	ribosome
YGR214W	RPS0A	ribosome
YHL033C	RPL8A	ribosome
YLR075W	RPL10	ribosome
YNL301C	RPL18B	ribosome
YPL249C A	RPL36B	ribosome
1 DLU2 / W YDR 471W	RPL 19B	ribosome
YHL001W	RPL14B	ribosome
YGL147C	RPL9A	ribosome
YLR029C	RPL15A	ribosome
YBR048W	RPS11B	ribosome

YDR418W	RPL12B	ribosome
YBL092W	RPL32	ribosome
YGR085C	RPL11B	ribosome
YOR063W	RPL3	ribosome
YGL031C	RPL24A	ribosome
YDR385W	EFT2	ribosome
YHR020W	YHR020W	ribosome
YLR249W	YEF3	ribosome
YHR203C	RPS4B	ribosome
YHL015W	RPS20	ribosome
YBL072C	RPS8A	ribosome
YLR340W	RPP0	ribosome
YDL075W	RPL31A	ribosome
YOL139C	CDC33	ribosome/cytoplasme
YML050W	AIM32	unknown
YLR361C A	YLR361C A	unknown
YDR512C	EMI1	unknown
YAL044W A	YAL044W A	unknown
YAL046C	AIM1	unknown
YKL065W A	YKL065W A	unknown
YPR010C A	YPR010C A	unknown
YLR389C	STE23	unknown
YEL060C	PRB1	vacuole
YBR286W	APE3	vacuole
YDL185W	YDL185W	vacuole
YIL108W	YIL108W	vacuole
YKL077W	YKL077W	vacuole

III. Heat map des 168 protéines quantifiés dans les trois conditions et dont l'abondance varie significativement selon le substrat dans notre analyse protéomique

Correspond au supplemental data S2 de l'article :

« Supplemental data S2: Significant changes of expression for proteins quantified in the three growth conditions

Heatmap of the 176 quantified proteins displaying different abundances in the three growth conditions. For every protein, blocks on the heatmap range from green (lowest abundance) to red (highest abundance). Proteins are associated to a metabolic pathway.

They are classified in four clusters depending on the way their expression varies in the three growth conditions. " $\,$

IV. Liste des phosphopeptides quantifiés dans notre analyse phosphoprotéomique

Correspond au Supplemental data S6 de l'article.

« Supplemental data S6: List of the 289 mitochondrial phosphorylation sites reproducibly quantified in 1, 2 or 3 conditions and comparison with literature

Position of the phosphorylated amino acids was determined from precursor proteins.

Phosphorylation sites displaying a significant quantitative variation were noted with 1 asterisk and those displaying a consistent qualitative variation were noted with 2. The others were

reproducibly quantified in the 3 growth conditions and their level of phosphorylation didn't vary according to the substrate. Reproducibility specifies in how many biological samples the

phosphopeptide has been quantified."

Gene	Metabolic pathway	Peptide accession	Reproducibility	Phosphorylation site	Bibliographic references
11	cell cycle and DNA processing	pep2072	6	S132*	
	Lipid metabolism	pep557	12	T241 ou S247	
	Lipid metabolism	pep558	9	S397**	
-01	amino acid metabolism	pep223	9	S298**	
-U1	amino acid metabolism	pep222	6	S391	29
LU1	amino acid metabolism	pep221	12	T18	
LU1	amino acid metabolism	pep225	12	S556	
LU1	amino acid metabolism	pep226	11	S37	
LU1	amino acid metabolism	pep227	12	S549	
ILU1	amino acid metabolism	pep229	12	S83	
SLU1	amino acid metabolism	pep230	12	S20	
7	Lipid metabolism	pep660	12	S41	
13	Energy	pep1740	12	T27 ou S26	
13	unknown	pep2047	8	S138	
-MP12	unknown	pep1786	12	S129 ou S132	
-MP12	unknown	pep1787	8	S431	
15	Energy	pep1276	11	S40	
45	Energy	pep1275	12	S76*	
7, ALDH2	Energy	pep138	10	S96 ou S99*	29
7, ALDH2	Energy	pep140	12	S500*	21; 29
7, ALDH2	Energy	pep135	12	S269 ou T272	
7, ALDH2	Energy	pep136	6	T220 ou S219	
7, ALDH2	Energy	pep142	11	T172	
7, ALDH2	Energy	pep146	10	S175	
7, ALDH2	Energy	pep145	8	S155*	
3, ALDH5	Energy	pep2213	6	T270 ou S267	
LDH1	Energy	pep1747	8	S262	29
55,6	amino acid metabolism	pep1069	6	S359*	29
33	cell cycle and DNA processing	pep1087	7	S127 ou S129 ou T143	

	21; 29	21				29		21											21					29				29			29
S112 ou S113*	S178	S57	T43	S47	T38 ou S37	S107 ou S109	T92	T52	S34*	S29 ou S30	S23	S39	S299	T40*	T43*	S35*	S226	S217*	S48	S109	S112	S31	S25	T315*	S26**	S25**	S514**	T138 ou S156	S44**	S768	S75
12	12	12	12	12	12	12	12	ø	12	11	10	12	8	12	10	12	11	10	12	12	12	6	11	8	4	3	4	11	e	11	ø
pep1086	pep127	pep131	pep125-1	pep125-2	pep129	pep1304	pep2189	pep1378	pep1377	pep2289	pep2166	pep132-2	pep134-1	pep132-1	pep132-3	pep132-4	pep1877	pep2293	pep1733	pep400-1	pep400-2	pep401-1	pep401-2	pep1994	pep1993	pep2564	pep2565	pep649	pep2728	pep2429	pep1539
cell cycle and DNA processing	Energy	Energy	Energy	Energy	Energy	mitochondria biogenesis	Energy	Energy	Energy	Energy	Energy	Energy	Energy	Energy	Energy	Energy	Energy	Energy	Energy	Energy	Energy	Energy	Energy	amino acid metabolism	amino acid metabolism	Lipid metabolism	Lipid metabolism	amino acid metabolism	Mitochondria biogenesis	mitochondria biogenesis	cell cycle and DNA processing
ATG33	ATP1	ATP1	ATP1	ATP1	ATP1	ATP11	ATP14	ATP15	ATP15	ATP16	ATP17	ATP2	ATP2	ATP2	ATP2	ATP2	ATP3	ATP4	ATP5	ATP7	ATP7	ATP7	ATP7	BAT1, ECA39, TWT1	BAT1, ECA39, TWT1	CAT2	CAT2	CBF1, CEP1, CP1, CPF1	CBP3	CDC48	CDC9
YLR356W	YBL099W	YBL099W	YBL099W	YBL099W	YBL099W	YNL315C	YLR295C	YPL271W	YPL271W	YDL004W	YDR377W	YJR121W	YJR121W	YJR121W	YJR121W	YJR121W	YBR039W	YPL078C	YDR298C	YKL016C	YKL016C	YKL016C	YKL016C	YHR208W	YHR208W	YML042W	YML042W	YJR060W	YPL215W	YDL126C	YDL164C

YDL164C	CDC9	cell cycle and DNA processing	pep1540	8	S58	29
YGR207C	CIR1	energy	pep1977	6	T34 ou S35	
YNR001C	CIT1, GLU3, LYS6	Energy	pep1209	5	T239**	
YNR001C	CIT1, GLU3, LYS6	Energy	pep1208	11	S38 ou S39	
YNR001C	CIT1, GLU3, LYS6	Energy	pep1210	10	S41	
YCR005C	CIT2	Energy	pep2367	e	S8**	
YCR005C	CIT2	Energy	pep2366	4	S14 ou Y15**	
YBL045C	COR1, QCR1	Energy	pep490	11	S94 ou S95 ou S98	
YBL045C	COR1, QCR1	Energy	pep492-2	11	S135	
YBL045C	COR1, QCR1	Energy	pep495	12	T24	
YBL045C	COR1, QCR1	Energy	pep491	2	S247*	
YBL045C	COR1, QCR1	Energy	pep498-1	9	T172**	
YLR038C	COX12	Energy	pep1513	12	S7	
YDR231C	COX20	mitochondria biogenesis	pep2119	12	S142	29
YGL187C	COX4	Energy	pep1729	4	T58**	
YNL052W	COX5A	Energy	pep1442-1	6	S92	
YNL052W	COX5A	Energy	pep1442-2	10	S93	
YHR051W	COX6	Energy	pep1515	8	S147	
YDR155C	CPR1, CPH1, CYP1, SCC1	protein fate	pep1931	12	S145	29
YML078W	CPR3, CYP3	protein fate	pep 1066	1	S167 ou S162	
YML078W	CPR3, CYP3	protein fate	pep1067	10	S99	
YML054C	CYB2	Energy	pep1823	5	T390**	
YEL039C	CYC7	Energy	pep1344	9	S57**	
YDR430C	CYM1, MOP112	protein fate	pep1402	12	S920	29
YJL005W	CYR1	cellular communication / signal transduction	pep2224	5	T389**	29
YGR155W	CYS4	amino acid metabolism	pep2345	9	S350**	29
YDL174C	DLD1, DLD	Energy	pep1714	11	S36 ou T34 ou T32	
YDL178W	DLD2, AIP2	Energy	pep2598	6	S74	
YMR031C	EIS1	Unknown	pep53	8	S775	11
YMR031C	EIS1	Unknown	pep41	80	T720	
YMR031C	EIS1	Unknown	pep43	11	S19 + S27	

													29	11; 29	11; 29				29			29	29			29		29	11; 29
S19	S179 or T181 or S182	S763*	S130 ou T132*	S375 + T377 ou S375 + S378 ou S375 + T382	ou S375 + T373	S29	T373 ou S375 ou T377 ou T382	S12 ou S10	S135 ou S136 ou S137*	S113**	S19	S75 ou S78	S24**	S72 ou S75	S116**	S304	T438**	S102	S1013**	S1192 **	S157**	S111	S31 ou T29	Y495**	T377 ou T379**	S485	S185	S406	S15
11	10	11	12		10	10	12	11	11	5	10	11	5	10	10	10	2	12	5	e	7	12	11	5	8	10	6	1	12
pep46	pep47	pep38	pep39		pep625	pep626	pep627	pep647	pep643	pep1761	pep1760	pep1814	pep1681	pep1575	pep1469	pep851	pep583	pep1474	pep1166	pep1165	pep1163	pep1083	pep1637	pep426	pep423	pep424	pep427	pep2217	pep726
Unknown	Unknown	Unknawn	Unknawn	Lipid metabolism		Lipid metabolism	Lipid metabolism	Energy	Energy	Mitochondria biogenesis	mitochondria biogenesis	mitochondria biogenesis	cellular communication / signal transduction	Lipid metabolism	C-compound and carbohydrate metabolism	Energy	Energy	netabolism of vitamins, cofactors, and prosthetic group:	unknown	unknown	unknown	Lipid metabolism	protein fate	cell rescue, defense and virulence	C-compound and carbohydrate metabolism				
EIS1	EIS1	EIS1	EIS1	ERG6		ERG6	ERG6	ETR1, MRF1, MRF1	ETR1, MRF1, MRF1	FCJ1, AIM28, FMP13	FCJ1, AIM28, FMP13	FZ01	GPB2	GPD2, GPD3	GPM1	GUT2	GUT2	HEM15	HER1	HER1	HER1	HFD1	HSP10, CPN10	HSP60, MIF4	HSP60, MIF4	HSP60, MIF4	HSP60, MIF4	HSP78	HXK1, HKA
YMR031C	YMR031C	YMR031C	YMR031C	YML008C		YML008C	YML008C	YBR026C	YBR026C	YKR016W	YKR016W	YBR179C	YAL056W	YOL059W	YKL152C	YIL155C	YIL155C	YOR176W	YOR227W	YOR227W	YOR227W	YMR110C	YOR020C	YLR259C	YLR259C	YLR259C	YLR259C	YDR258C	YFR053C

YEL034W	HYP2, TIF51A	protein synthesis	pep1645	6	S2*	29
YPR006C	ICL2	C-compound and carbohydrate metabolism	pep1981	4	T82 or S83 or S87 or S88**	
YER078C	ICP55	protein fate	pep2197	6	S216 ou S219	
YNL037C	IDH1	Energy	pep1726	8	S343 ou S344 ou S345	
YOR136W	IDH2	Energy	pep836	6	S113	29
YOR136W	IDH2	Energy	pep835	12	S360 ou T355 ou S359	
YER086W	ILV1	amino acid metabolism	pep2836	8	S498	
YMR108W	ILV2, SMR1	amino acid metabolism	pep515	6	T466	
YMR108W	ILV2, SMR1	amino acid metabolism	pep516	10	T277 ou S270 ou S278	
YMR108W	ILV2, SMR1	amino acid metabolism	pep518	6	S386	
YMR108W	ILV2, SMR1	amino acid metabolism	pep513	12	S47*	
YMR108W	ILV2, SMR1	amino acid metabolism	pep517	5	S52**	
YJR016C	ILV3	amino acid metabolism	pep1511	12	S554	29
YLR355C	ILV5	amino acid metabolism	pep479	12	S360	29
YLR355C	ILV5	amino acid metabolism	pep480	12	S317	
YLR355C	ILV5	amino acid metabolism	pep481	11	S215 ou S216	
YLR355C	ILV5	amino acid metabolism	pep482	11	S205	
YCL009C	ILV6	amino acid metabolism	pep1776	10	S26	
YDL181W	INH1	Energy	pep1217-1	11	S38	
YDL181W	INH1	Energy	pep1217-2	6	S33*	
YBR140C	IRA1	cellular communication / signal transduction	pep1954	4	S497**	29
YIL125W	KGD1, OGD1	Energy	pep570	12	S910	29
YIL125W	KGD1, OGD1	Energy	pep568	12	S988 ou S995	
YIL125W	KGD1, OGD1	Energy	pep569	12	T453 ou S457	
YIL125W	KGD1, OGD1	Energy	pep571	6	S530	
YDR148C	KGD2	Energy	pep1482	8	S186	
YDR148C	KGD2	Energy	pep1483	7	S227	
YNL071W	LAT1, ODP2, PDA2	Energy	pep267	12	S368	
YNL071W	LAT1, ODP2, PDA2	Energy	pep271	12	T133 ou S134 ou T135	
YNL071W	LAT1, ODP2, PDA2	Energy	pep273	12	S165	
YNL071W	LAT1, ODP2, PDA2	Energy	pep279	11	S190	
YOR142W	LSC1	Energy	pep338	12	S184 ou T186	21
YOR142W	LSC1	Energy	pep339	12	S285 ou S292	

29	29		29							29						29		29							21; 29						
S263	S102	S193	T14 ou S16 ou S26 ou S27	S77	S40 ou S41	S59	S107 ou S108	T146*	S23*	S237 ou S243	S468 ou S470 ou S471 ou S475	S100	S37**	S213	S240 ou T242 ou S244	S618**	S27 or S29 or T31**	S376	T26	S225	S372 ou S377	S25	S35	S12 ou T13	S289 ou T295	S127	S234	S195	S66	S146	S51
12	12	3	12	8	12	12	6	12	6	12	11	12	7	10	8	4	8	8	12	12	10	11	11	12	6	10	6	7	7	12	8
pep195	pep197	pep196	pep64	pep65	pep67	pep74	pep718	pep712	pep715	pep1434	pep2185	pep1398	pep1399	pep973	pep975	pep2108	pep993	pep995	pep2045	pep2029	pep1028	pep1200	pep1203	pep2006	pep1682	pep2071	pep2488	pep2412	pep2342	pep1806	pep2402
Energy	Energy	Energy	cell rescue, defense and virulence	amino acid metabolism	amino acid metabolism	amino acid metabolism	protein fate	protein fate	Energy	Energy	Energy	Energy	unknown	Mitochondria biogenesis	mitochondria biogenesis	cell cycle and DNA processing	cell cycle and DNA processing	protein fate	amino acid metabolism	amino acid metabolism	mitochondria biogenesis	cell rescue, defense and virulence	protein synthesis	mitochondria biogenesis							
LSC2	LSC2	LSC2	LSP1	LSP1	LSP1	LSP1	LYS12, LYS10, LYS11	LYS12, LYS10, LYS11	LYS12, LYS10, LYS11	MAS1, MIF1	MAS2, MIF2	MCR1	MCR1	MDH1	MDH1	MDS3	MDV1, FIS2, GAG3, NET2	MDV1, FIS2, GAG3, NET2	MGM101, MGM9	MHR1, XTC1	MIA40, TIM40	MMF1	MMF1	MOS1	MRH1	MRP1	MRP7, MRPL2	MRPL24, MRPL14	MRPL33	MRPL49	MSS51
YGR244C	YGR244C	YGR244C	YPL004C	YPL004C	YPL004C	YPL004C	YIL094C	YIL094C	YIL094C	YLR163C	YHR024C	YKL150W	YKL150W	YKL085W	YKL085W	YGL197W	YJL112W	YJL112W	YJR144W	YDR296W	YKL195W	YIL051C	YIL051C	YCL057C-A	YDR033W	YDR347W	YNL005C	YMR193W	YMR286W	YJL096W	YLR203C
YPR155C	NCA2	mitochondria biogenesis	pep1646	11	S29	29																									
---------	-------------------	--	-----------	----	-----------------------	------------																									
YMR145C	NDE1, NDH1	Energy	pep2176	6	S265																										
YML120C	ND11	Energy	pep1322-1	11	S27																										
YML120C	NDI1	Energy	pep1322-2	8	S33																										
YKL120W	OAC1, PMT, PMT1	transport	pep2090	6	S57 ou S59																										
YIL136W	OM45	unknown	pep154	12	T207*	29																									
YIL136W	OM45	unknown	pep155	11	S94																										
YIL136W	OM45	unknown	pep156	11	S324																										
YIL136W	OM45	unknown	pep157	8	S37 ou S48																										
YIL136W	OM45	unknawn	pep160	11	S78																										
YJL104W	PAM16, TIM16	protein fate	pep1921	6	S135 ou S147																										
YER178W	PDA1	Energy	pep0	12	(Y309 ou) S313	11; 21; 29																									
YER178W	PDA1	Energy	pep2	12	S166																										
YBR221C	PDB1	Energy	pep1330	11	S140																										
YBR221C	PDB1	Energy	pep1332	8	T352																										
YBR221C	PDB1	Energy	pep1331	11	T338*																										
YPR002W	PDH1	C-compound and carbohydrate metabolism	pep1180	8	S496 ou S497																										
YPR002W	PDH1	C-compound and carbohydrate metabolism	pep1179	8	S250**																										
YPR002W	PDH1	C-compound and carbohydrate metabolism	pep1181	4	T51**																										
YOR153W	PDR5	transport	pep821	5	S58**	29																									
YGR086C	PIL1	cell rescue, defense and virulence	pep60	12	S45	29																									
YGR086C	PIL1	cell rescue, defense and virulence	pep63	12	T14 ou S16 ou S26	29																									
YGR086C	PIL1	cell rescue, defense and virulence	pep68	12	S41	29																									
YGR086C	PIL1	cell rescue, defense and virulence	pep69	11	S163	29																									
YGR086C	PIL1	cell rescue, defense and virulence	pep66	12	S230 ou T233	21; 29																									
YGR086C	PIL1	cell rescue, defense and virulence	pep71	12	S138																										
YBL022C	PIM1, LON	protein fate	pep2081	10	S902*																										
YGL008C	PMA1	Energy	pep747	6	S17																										
YNL055C	POR1, OMP2, VDAC1	transport	pep201	12	S2 ou Y6 ou S7 ou S10	29																									
YNL055C	POR1, OMP2, VDAC1	transport	pep204	8	S109	21; 29																									
YNL055C	POR1, OMP2, VDAC1	transport	pep202	12	S230																										
YNL055C	POR1, OMP2, VDAC1	transport	pep203	11	S238 ou S240																										

				_	_			_		_	_	_	_		_			_		_						
	29						29		29										29				29	29		29
S101 ou T103 S55 S215*	S56**	ß	S	S334	S134	S24*	S193	S145 ou S149	T225 ou S232	S206	S192	S152*	S68	S524*	S449**	T30 ou T28	T21ou T23*	T24*	S204 ou S201	S201 +S204*	T210 ou S211 ou S214	S164 ou T166 ou S169	S145 ou T147 ou T149 ou S150 ou S153	S145	S612	S26
11 10	ø	12	12	11	12	12	12	8	12	1	6	12	11	12	4	12	6	6	12	6	10	11	12	6	11	12
pep206 pep211 pep205	pep1972	pep1092-1	pep1092-2	pep654	pep1536	pep2091-2	pep2000	pep2461	pep280	pep281	pep2543	pep1522	pep2221	pep1467	pep1468	pep720-3	pep720-1	pep720-2	pep1078	pep1079	pep1120	pep1121	pep903	pep906	pep904	pep933-1
transport transport transport	Protein fate	Energy	Energy	Energy	cell cycle and DNA processing	Energy	protein synthesis	protein fate	unknown	unknown	protein fate	unknown	mitochondria biogenesis	Energy	Energy	Energy	Energy	Energy	cellular communication / signal transduction	cellular communication / signal transduction	amino acid metabolism	amino acid metabolism	biogenesis of cellular components	biogenesis of cellular components	biogenesis of cellular components	cell rescue, defense and virulence
POR1, OMP2, VDAC1 POR1, OMP2, VDAC1 POR1, OMP2, VDAC1	PUP2	QCR10	QCR10	QCR2, COR2, UCR2	RIM1	RIP1	RSM10	RSP5, MDP1, NP11	RTN1	RTN1	VI37, MAS37, PET3027, TOM	SCM4	SCO1	SDH1, SDHA	SDH1, SDHA	SDH2, SDH, SDHB	SDH2, SDH, SDHB	SDH2, SDH, SDHB	SEC4, SRO6	SEC4, SRO6	SHM1, SHMT1	SHM1, SHMT1	SLM1	SLM1	SLM1	SOD1
YNL055C YNL055C YNL055C	YGR253C	YHR001W-A	YHR001W-A	YPR191W	YCR028C-A	YEL024W	YDR041W	YER125W	YDR233C	YDR233C	YMR060C	YGR049W	YBR037C	YKL148C	YKL148C	YLL041C	YLL041C	YLL041C	YFL005W	YFL005W	YBR263W	YBR263W	YIL105C	YIL105C	YIL105C	YJR104C

																													_
29	29										29			29								21	29		29	29			
S39	S99	(T492 ou) S495	S450 ou T457	S177	T64*	S61**	S221**	S52 ou T54	S201 ou S207 ou S208 ou T209	T199**	S908**	T177**	S31	S174	T232	S78*	T228 + (T230 or T232)**	S596**	S76**	S96**	T296*	S185**	S599*	S131**	S485 ou S493	S523 ou S527	S507	S123	S71**
11	10	11	8	12	12	5	5	6	12	7	4	3	7	12	7	6	5	5	8	4	8	7	12	в	12	12	6	8	9
pep933-2	pep934	pep1915	pep409	pep406	pep407	pep411	pep1940	pep1258	pep322	pep324	pep1662	pep1663	pep1987	pep235	pep236	pep239	pep233	pep238	pep1797	pep1796	pep1596	pep182	pep1731	pep2377	pep434	pep437	pep436	pep2518	pep2463
cell rescue, defense and virulence	cell rescue, defense and virulence	protein fate	protein fate	protein fate	protein fate	Protein fate	unknown	metabolism of vitamins, cofactors and prosthetic group	Energy	Energy	protein synthesis	protein synthesis	protein fate	Protein fate	Protein fate	Protein fate	protein synthesis	unknown	transport	cell rescue, defense and virulence	protein fate	protein fate	protein fate		unknown				
SOD1	SOD1	SSA2	SSC1	SSC1	SSC1	SSC1	SUR7	TCD2	TDH1	TDH1	TIF4631	TIF4631	TOM22	TOM70	TOM70	TOM70	TOM70	TOM70	TOM71	TOM71	TUF1	UIP4	VPS1	WWM1	YCK1	YCK1	YCK1	YDR061W	YLH47
YJR104C	YJR104C	YLL024C	YJR045C	YJR045C	YJR045C	YJR045C	YML052W	YKL027W	YJL052W	YJL052W	YGR162W	YGR162W	YNL131W	YNL121C	YNL121C	YNL121C	YNL121C	YNL121C	YHR117W	YHR117W	YOR187W	YPL186C	YKR001C	YFL010C	YHR135C	YHR135C	YHR135C	YDR061W	YPR125W

		29		29	21; 29	21; 29	21; 29		29		
S11	S56 or S57 or S59	S174 ou S172	S399**	S89*	S40	S25	T49*	T10*	S403**	S163**	S519**
8	12	6	3	12	10	12	12	12	4	9	9
pep2191	pep729	pep1481	pep1550	pep13	pep31	bep6	pep12	pep4	pep733	pep736	pep737
protein synthesis	unknown	transport	unknown	cell rescue, defense and virulence	unknown	unknown	unknown				
YMR31	YOR020W-A	YPT1	YSP2	ZE01	ZE01	ZE01	ZE01	ZE01	ZRG8	ZRG8	ZRG8
YFR049W	YOR020W-A	YFL038C	YDR326C	YOL109W	YOL109W	YOL109W	YOL109W	YOL109W	YER033C	YER033C	YER033C

V. Heat map des 39 résidus quantifiés dans les trois conditions et dont le niveau de phosphorylation varie significativement selon le substrat

Correspond au supplemental data S10 de l'article :

« Supplemental data S10: Significant changes of phosphorylation level for phosphorylation sites quantified in the three growth conditions

Heatmap of the 39 quantified phosphorylation sites displaying different phosphorylation level in the three growth conditions. For every residue, blocks on the heatmap range from green (lowest abundance) to red (highest abundance). Phosphorylation sites are associated to a metabolic pathway.

They are classified in five clusters depending on the way their expression varies in the three growth conditions."

VI. Caractéristiques des 49 sites de phosphorylations de la chaîne respiratoire

EIM= espace inter-membranaire

Le groupe de variation de l'abondance de chaque protéine est indiquée.

Le profil de variation du niveau de phosphorylation est indiqué pour chaque résidu.

n.s= non significatif : la protéine ou le site de phosphorylation ne varie pas significativement selon le substrat.

nd = non détecté : correspond aux cas où le site de phosphorylation n'a pas pu être localisé sur la structure du complexe

	Caractéristiques	de la protéine	Caractéristique du site de	e phosphorylaiton	localisation du résidu phosphorylée sur la structure				
Protéine	Compartiment mitochondrial	Variation selon le substrat	Site de phosphorylation	Variation selon le substrat	Externe/interne	Interface			
Nde1p	EIM	C2	S265	n.s	n.d	n.d			
Ndi1p	Matrice	C3	S27	n.s	n.d	n.d			
Ndi1p	Matrice	C3	\$33	n.s	n.d	n.d			
Sdh1p	Matrice	C3	S449	LAC+	Interne	Proche FAD			
Sdh1p	Matrice	C3	S524	GLU-	Externe	-			
Sdh2p	Matrice	C3	T21 ou T23	GLU-	n.d	n.d			
Sdh2p	Matrice	C3	T24	GLU-	n.d	n.d			
Sdh2p	Matrice	C3	T30 ou T28	n.s	n.d	n.d			
Rip1p	Membrane interne	C2	S24	LAC-	n.d	n.d			
Cor1p	Matrice	C2	S247	GLU-	Externe	Proche Qcr8			
Cor1n	Matrice	C2	T172	GLU-	Externe	-			
correp		02		020					
Cor1p	Matrice	C2	S94 ou S95 ou S98	n.s	Interne	-			
Cor1p	Matrice	C2	S135	n.s	Externe	-			
Cor1p	Matrice	C2	T24	n.s	n.d	n.d			
Cor2p	Matrice	C2	S334	n.s	Externe	Proche Cor1p			
Qcr10p	Membrane interne	C2	S5	n.s	n.d	n.d			
Qcr10p	Membrane interne	C2	S8	n.s	n.d	n.d			
Cyc7p	EIM	n.q.	S57	LAC-	n.d	n.d			
Cox4p	Matrice	C2	T58	GLU-	Externe	Proche dimere			
Cox5ap	Matrice	C3	S92	n.s	Externe	Proche Cox3			
Cox5ap	Matrice	C3	S93	n.s	Externe	Proche cox3			
Cox12p	EIM	C2	S7	n.s	Externe	Proche Cox2p			
Cox6p	Membrane interne	n.s.	S147	n.s	n.d	n.d			
Cox20p	Membrane interne	n.q.	S142	n.s	n.d	n.d			
Atp1p	Matrice	C2	S178	n.s	Externe	Proche Atp2, à l'interface catalytique			
Atp1p	Matrice	C2	T38 ou S37	n.s	Interne	Proche OSCP			
Atp1p	Matrice	C2	S57	n.s	Externe	Proche OSCP			
Atp1p	Matrice	C2	T43	n.s	Externe	Proche OSCP			
Atp1p	Matrice	C2	S47	n.s	Externe	Proche OSCP			
Atp2p	Matrice	C2	T40	GAL-	Externe	-			
Atp2p	Matrice	C2	T43	GLU-	Externe	-			
Atn2n	Matrice	C2	S35	GAL-	n.d	n.d			
Atn2n	Matrice	C2	\$30	ns	Externe	_			
Atp2p	Matrice	C2	5200	n.s	Interne	Proche Ato1 et Ato3			
Atp2p	Matrice	C3	5233	11.5 n e	Externe	-			
Atn15n	Matrico	ne	752	11.0 n e	Externo	Proche Atn?n			
Atp15p	Matrico	11.5.	1J2 Q2/	GUL	Externe	тоспе Ацрэр			
Atn14n	Matrice	11.5.	620 au 620	GLU-	Externe	Procho Atn2n			
AtoEn	Matrice	C3	523 UU 530 SAR	11.5 n e	nd	n d			
Ацрэр	Matrice	03	546	11.5	1.0	11.0			
Atp4p	Membrane interne	n.s.	S217	GLU-	n.d	n.d			
Atp7p	Membrane Interne	n.s.	5109	n.s	n.đ	n.d			
Atp7p	Membrane interne	n.s.	S112	n.s	n.a	n.a			
Atp7p	Mombrane interne	n.s.	S31	n.s	n.a	n.a			
Ach / h			- 520	11.5	n.u	11.0			
Atp14p	Membrane interne	C2	T92	n.s	n.d	n.d			
Atp17p	Membrane interne	C3	\$23	n.s	n.d	n.d			
inn1p	non specifié	03	538	n.s	n.a	n.a			
inh1p	non specifié	C3	\$33	GLU-	n.d	n.d			

VII. Localisation des sites de phosphorylation sur la structure des complexes respiratoires

<u>Complexe II</u>

• Sdh1p_S449 et Sdh1p_S524

Sc SDH1 Ec DHSA Ser449 Ser404 Ser524 Ala479

PDB 10RZ

Complexe III

• Cor1p_S247

Ser247 = Ser246 sans la Met initiatrice

PDB 3CXH (levure)

• Cor1p_T172

Thr172 = Thr171 sans la Met initiatrice Résidu loin des autres sous-unités (d> 7Á)

PDB 3CXH (levure)

• Cor1p_S94 ou S95 ou S98

Ser94 = Ser93 sans la Met initiatrice Ser95 = Ser94 sans la Met initiatrice Ser98 = Ser97 sans la Met initiatrice

PDB 3CXH (levure)

• Cor1p_S135

Ser135 = Ser134 sans la Met initiatrice

PDB 3CXH (levure)

• Cor2p_\$334

Ser334 = Ser307 sans la préséquence

Complexe IV

• Cox4p_T58

Cox4-Thr58 Invisible sur modèle levure fait par analogie

Sc-Cox4-Thr58 avec préséquence = Bt CoxVb-Thr40 avec préséquence = Bt CoxVb-Thr8 sans préséquence

Sc= Saccharomyces cerevisiae

Bt= Bos Taurus

PDB 10CC (bœuf)

• Cox5ap_S92 et Cox5ap_S93

modélisation de la structure de levure par Francis Haraux réalisée à partir de la structure de la cytochrome c oxidase de cœur de bœuf (pdb 1occ) et par homologie des séquences

• Cox12p_H10 (pour faire une hypothèse sur S7)

modélisation de la structure de levure par Francis Haraux réalisée à partir de la structure de la cytochrome c oxidase de cœur de bœuf (pdb 10cc) et par homologie des séquences

<u>Complexe V</u>

• Atp1p_S178

3.95Å < d (αSer143 <u>βAsp196</u>) < 4.29Å

PDB 2WPD (levure)

3.18Å < d (αSer143 _ βArg199) < 3.58Å

Atp1p_T38 ou S37 •

Thr38:

Non visible sur la structure levure cristallisée sans OSCP

Sc - Atp1p - Thr38 (avec préséquence) = Sc - Atp1p - Thr3 (sans préséquence)

= Bt – Atp1p – Gln1 (sans préséquence)

Ser37: Non visible sur la structure levure cristallisée sans OSCP

Sc - Atp1p - Ser37 (avec préséquence) = Sc - Atp1p - Ser2 (sans préséquence) Pas d'homologie avec Bos taurus

PDB 2WSS (bœuf)

• Atp1p_S57

Ser57:

Non visible sur la structure levure cristallisée sans OSCP

Sc - Atp1p - Ser57 (avec préséquence) = Sc - Atp1p - Ser22 (sans préséquence) = Bt - Atp1p - Asp20 (sans préséquence)

PDB 2WSS (bœuf)

• Atp1p_T43

Thr43:

Non visible sur la structure levure cristallisée sans OSCP

Sc - Atp1p – Thr43 (avec préséquence) = Sc - Atp1p – Thr8 (sans préséquence) = Bt - Atp1p – Thr5 (sans préséquence)

PDB 2WSS (bœuf)

• Atp1p_S47

Ser47:

Non visible sur la structure levure cristallisée sans OSCP

Sc - Atp1p - Ser47 (avec préséquence) = Sc - Atp1p - Ser12 (sans préséquence) = Bt - Atp1p - Ser9 (sans préséquence)

PDB 2WSS (bœuf)

• Atp2p_T40

Thr40 = Thr7 sans la préséquence

PDB 2WPD (levure)

• Atp2p_T43

Thr43 = Thr10 sans la préséquence

PDB 2WPD (levure)

• Atp2p_S39

PDB 2WPD (levure)

• Atp2p_S299

Ser299 = Ser266 sans la préséquence

PDB 2WPD (levure)

• Atp3p_S226

Ser226 = Ser193 sans la préséquence

PDB 2WPD (levure)

• Atp15p_T52

Thr52 = Thr51 sans la Met initiatrice

PDB 2WPD (levure)

• Atp15p_\$34

Ser 34 = Ser33 sans la Met initiatrice

PDB 2WPD (levure)

• Atp16p_S29 ou S30

Ser29 ou Ser30

ATP16 Ser7 Ser8 ATP3 Ser193

PDB 2WPD (levure)

Résumé :

La phosphorylation oxydative est un processus majeur du métabolisme énergétique qui est catalysée par les enzymes de la chaîne respiratoire (OXPHOS), localisées dans la membrane interne des mitochondries. Sa dérégulation est souvent associée à des pathologies, par exemple aux maladies mitochondriales et neurodégénératives. La régulation de la phosphorylation oxydative par la phosphorylation reste encore peu comprise et peu étudiée.

Pourtant, la phosphorylation est une des modifications post-traductionnelles les plus répandues dans la cellule, régulant de nombreux aspects de la vie cellulaire et dont l'altération est associée à des pathologies au niveau cellulaire (Alzheimer, Parkinson, cancer). Concernant la phosphorylation oxydative, il est à noter que quelques sites de phosphorylation des complexes respiratoires, en particulier du complexe IV, ont été montrés comme ayant un effet sur leur stabilité et/ou leur activité. Toutefois la connaissance du phosphoprotéome mitochondrial n'est pas suffisamment documentée à ce jour pour identifier les différents rôles que pourraient jouer la phosphorylation au niveau de la mitochondrie et en particulier, de la chaîne respiratoire.

Dans la première partie de la thèse, nous nous sommes intéressés à l'analyse du phosphoprotéome mitochondrial de *Saccharomyces cerevisiae* dans trois conditions de culture : respiratoire (YLAC), respiro-fermentaire (YPGaIA) et fermentaire (YPGA). Nous avons quantifiés près de 300 sites de phosphorylation dans la mitochondrie, dont 90 ont un niveau de phosphorylation variable selon le substrat. Les données que nous avons obtenues constituent une base pour l'analyse de la phosphorylation mitochondriale et de la compréhension de son mécanisme. Les sites de phosphorylation. La localisation des résidus phosphorylés sur la structure des complexes respiratoires nous a permis d'émettre des hypothèses sur le rôle de ces résidus. Afin de normaliser la quantité des résidus phosphorylés dans les trois conditions de culture, nous avons aussi quantifié le protéome mitochondrial dans les trois conditions de culture. Ceci nous a permis d'argumenter en faveur d'un métabolisme respiro-fermentaire en YPGaIA, question encore largement discutée à ce jour. Enfin, cette première étude quantitative du protéome et phosphorylation. Elle peut notamment apporter des informations applicables à l'étude du cancer : en effet, les cellules saines ont un métabolisme respiratoires du fétude du cancer : en effet, les cellules saines ont un métabolisme respiratoires, dérégulées, ont un métabolisme fermentaire.

La seconde partie de la thèse concerne l'analyse du rôle de deux sous-unités du complexe IV de la chaîne respiratoire : les sous-unités Cox12p et Cox13p, encore peu étudiées à ce jour. De plus, deux sites de phosphorylation ont été identifiés sur la sous-unité Cox12p. Dans un premier temps, nous nous sommes intéressés au rôle de ces sous-unités, notamment au niveau de l'assemblage et de l'activité du complexe IV, en analysant des mutants $\Delta cox12$, $\Delta cox13$ et $\Delta cox12\Delta cox13$. Dans un deuxième temps, nous nous sommes intéressés au rôle des deux sites de phosphorylation de Cox12p : Ser7 et ser82. Nous avons généré les mutants phosphomimétiques de ces deux résidus et étudié leurs effets sur la stabilité et/ou l'activité du complexe IV. Cette seconde étude nous a notamment permis d'identifier un rôle de Cox12p sur la stabilité du complexe et un rôle de Cox13p dans sa dimérisation. La phosphorylation de Cox12p au niveau de la Ser7 semble aussi déstabiliser le complexe IV. De plus, la phosphorylation de la Ser7 et de la Ser82 semblent influencer l'interaction du cytochrome c avec le complexe IV. Cette hypothèse reste à vérifier mais est pertinente du fait de la proximité de Cox12p avec Cox2p, qui porte le lieu de fixation du cytochrome c.

Abstract :

Mitochondria are the powerhouses of cells, providing energy in the form of adenosine triphosphate (ATP). The synthesis of ATP is achieved by oxidative phosphorylation (OXPHOS), a process catalyzed by the respiratory chain, which is located in the inner membrane of mitochondria. Deregulation of OXPHOS is often associated to diseases. Deregulation is particularly observed in mitochondrial diseases and neurodegenerative diseases, but regulation of respiration by phosphorylation is still poorly understood.

However, phosphorylation is one of the most frequent post-translational modifications in the cell, modulating most processes, and defects at a cellular level are observed in some diseases (Alzheimer, Parkinson, cancer). Moreover, some phosphorylation sites have been identified in the respiratory complexes, particularly in the complex IV; some of them have an effect on the stability and/or activity of the complex, but we still lack a comprehensive study about mitochondrial phosphoproteome. Such analysis would be necessary to extend the role of phosphorylation in the regulation of mitochondrial functions in general, and in the regulation of the respiratory chain in particular.

In the first part of this thesis, we focused on the analysis of the mitochondrial phosphoproteome of *Saccharomyces cerevisiae*. We studied the mitochondrial phosphoproteome in three growth conditions: in the respiratory condition (YLAC), in the fermentable condition (YPGA) and in an intermediate one (YPGaIA). We quantified around 300 mitochondrial phosphorylation sites in which 90 displayed a different level of phosphorylation according to the substrate. This study is a first step towards understanding mitochondrial phosphorylation and its mechanism. Phosphorylation sites with varying levels of phosphorylation according to their conditions are mostly located on proteins involved in energy metabolism. We localized the phosphosites on the structure of the respiratory complexes when it was possible. This allowed us to make hypotheses on the role of these residues.

In order to normalize the quantity of phosphorylation sites in the three growth conditions, we also studied the mitochondrial proteome in the three conditions. These results helped us to understand the energetic metabolism of galactose, which is surely intermediate between respiration and fementation, a question still debated nowadays.

Finally this proteomic and phosphoproteomic study is a step forward in the comprehension of regulation of mitochondria by phosphorylation. These results can be used as a model to study cancer cells because they display a deregulation in the energetic metabolism: normal cells display respiratory metabolism whereas cancer cells exhibit fermentable metabolism.

The second part of this thesis was the study of two subunits of complex IV of the respiratory chain: Cox12p and Cox13p, which had been poorly studied. Moreover, two phosphorylation sites had been identified in the subunit Cox12p. First we were interested in the role of these two proteins, thus we compared the mitochondria of mutants $\Delta cox12$, $\Delta cox13$ et $\Delta cox12\Delta cox13$ with wild-type mitochondria. We particularly focused on the assembly and the activity of complex IV. Secondly, we analyzed the role of the two phosphosites of Cox12p: Ser7 and Ser82. We generated phosphomimetic mutants of these two residues and observed their effects on the stability and/or activity of complex IV.

All of these results allowed us to identify a role of Cox12p in the stability of complex IV and a role of Cox13p in the dimerization of complex IV. Phosphorylation of Ser7 of Cox12p seemed to destabilize the complex. Moreover phosphorylation of both Ser7 and Ser82 of Cox12p seemed to modify the interaction between cytochrome c and complex IV; this hypothesis remains to be tested but is relevant according to the proximity between Cox12p and the subunit Cox2p, where the cytochrome c interacts.