223 research outputs found
IFN-gamma mediates the rejection of haematopoietic stem cells in IFN-gammaR1-deficient hosts.
International audienceBACKGROUND: Interferon-gamma receptor 1 (IFN-gammaR1) deficiency is a life-threatening inherited disorder, conferring predisposition to mycobacterial diseases. Haematopoietic stem cell transplantation (HSCT) is the only curative treatment available, but is hampered by a very high rate of graft rejection, even with intra-familial HLA-identical transplants. This high rejection rate is not seen in any other congenital disorders and remains unexplained. We studied the underlying mechanism in a mouse model of HSCT for IFN-gammaR1 deficiency. METHODS AND FINDINGS: We demonstrated that HSCT with cells from a syngenic C57BL/6 Ifngr1+/+ donor engrafted well and restored anti-mycobacterial immunity in naive, non-infected C57BL/6 Ifngr1-/- recipients. However, Ifngr1-/- mice previously infected with Mycobacterium bovis bacillus Calmette-Guérin (BCG) rejected HSCT. Like infected IFN-gammaR1-deficient humans, infected Ifngr1-/- mice displayed very high serum IFN-gamma levels before HSCT. The administration of a recombinant IFN-gamma-expressing AAV vector to Ifngr1-/- naive recipients also resulted in HSCT graft rejection. Transplantation was successful in Ifngr1-/- x Ifng-/- double-mutant mice, even after BCG infection. Finally, efficient antibody-mediated IFN-gamma depletion in infected Ifngr1-/- mice in vivo allowed subsequent engraftment. CONCLUSIONS: High serum IFN-gamma concentration is both necessary and sufficient for graft rejection in IFN-gammaR1-deficient mice, inhibiting the development of heterologous, IFN-gammaR1-expressing, haematopoietic cell lineages. These results confirm that IFN-gamma is an anti-haematopoietic cytokine in vivo. They also pave the way for HSCT management in IFN-gammaR1-deficient patients through IFN-gamma depletion from the blood. They further raise the possibility that depleting IFN-gamma may improve engraftment in other settings, such as HSCT from a haplo-identical or unrelated donor
High density of ‘spiky’ excrescences covering the surface of an erythrocyte infected with Plasmodium malariae
10.1111/j.1365-2141.2010.08261.xBritish Journal of Haematology15111-BJHE
Fast Tracks and Roadblocks for Zika Vaccines
In early 2014, a relatively obscure virus, the Zika virus, made headlines worldwide following an increase in the number of congenital malformations. Since then, research on Zika virus, treatment and vaccines have progressed swiftly with various drugs being repurposed and vaccines heading into clinical trials. Nonetheless, the need for a vaccine is crucial in order to eradicate this re-emerging arthropod-borne virus which remained silent since its first discovery in 1947. In this review, we focused on how the inconspicuous virus managed to spread, the key immunological factors required for a vaccine and the various vaccine platforms that are currently being studied
Tissue-Resident CD169+ Macrophages Form a Crucial Front Line against Plasmodium Infection
SummaryTissue macrophages exhibit diverse functions, ranging from the maintenance of tissue homeostasis, including clearance of senescent erythrocytes and cell debris, to modulation of inflammation and immunity. Their contribution to the control of blood-stage malaria remains unclear. Here, we show that in the absence of tissue-resident CD169+ macrophages, Plasmodium berghei ANKA (PbA) infection results in significantly increased parasite sequestration, leading to vascular occlusion and leakage and augmented tissue deposition of the malarial pigment hemozoin. This leads to widespread tissue damage culminating in multiple organ inflammation. Thus, the capacity of CD169+ macrophages to contain the parasite burden and its sequestration into different tissues and to limit infection-induced inflammation is crucial to mitigating Plasmodium infection and pathogenesis
Virus infection drives IL-2 antibody complexes into pro-inflammatory agonists in mice
The use of IL-2/JES6-1 Ab complex (IL-2 Ab Cx) has been considered as a potential therapeutic for inflammatory diseases due to its selective expansion of regulatory T cells (Tregs) in mice. Here, IL-2 Ab Cx was explored as a therapeutic agent to reduce joint inflammation induced by chikungunya virus, an alphavirus causing debilitating joint disease globally. Virus-infected mice treated with IL-2 Ab Cx exhibited exacerbated joint inflammation due to infiltration of highly activated CD4(+) effector T cells (Teffs). Virus infection led to upregulation of CD25 on the Teffs, rendering them sensitive towards IL2 Ab Cx. Ready responsiveness of Teffs to IL-2 was further demonstrated in healthy human donors, suggesting that the use of IL-2 Ab Cx in humans is not suitable. Changes in IL-2 sensitivity during active virus infection could change the responsive pattern towards the IL-2 Ab Cx, resulting in the expansion of pro-inflammatory rather than anti-inflammatory responses
Effective and cheap removal of leukocytes and platelets from Plasmodium vivax infected blood
<p>Abstract</p> <p>Background</p> <p>Investigations of <it>Plasmodium vivax </it>are restricted to samples collected from infected persons or primates, because this parasite cannot be maintained in <it>in vitro </it>cultures. Contamination of <it>P. vivax </it>isolates with host leukocytes and platelets is detrimental to a range of <it>ex vivo </it>and molecular investigations. Easy-to-produce CF11 cellulose filters have recently provided us with an inexpensive method for the removal of leukocytes and platelets. This contrasted with previous reports of unacceptably high levels of infected red blood cell (IRBC) retention by CF11. The aims of this study were to compare the ability of CF11 cellulose filters and the commercial filter Plasmodipur at removing leukocyte and platelet, and to investigate the retention of <it>P. vivax </it>IRBCs by CF11 cellulose filtration.</p> <p>Methods and Results</p> <p>Side-by-side comparison of six leukocyte removal methods using blood samples from five healthy donor showed that CF11 filtration reduced the mean initial leukocyte counts from 9.4 × 10<sup>3 </sup>per μl [95%CI 5.2–13.5] to 0.01 × 10<sup>3 </sup>[95%CI 0.01–0.03]. The CF11 was particularly effective at removing neutrophils. CF11 treatment also reduced initial platelet counts from 211.6 × 10<sup>3 </sup>per μl [95%CI 107.5–315.7] to 0.8 × 10<sup>3 </sup>per μl [95%CI -0.7–2.2]. Analysis of 30 <it>P. vivax </it>blood samples before and after CF11 filtration showed only a minor loss in parasitaemia (≤ 7.1% of initial counts). Stage specific retention of <it>P. vivax </it>IRBCs was not observed.</p> <p>Conclusion</p> <p>CF11 filtration is the most cost and time efficient method for the production of leukocyte- and platelet-free <it>P. vivax</it>-infected erythrocytes from field isolates.</p
Co-infection with Chikungunya virus alters trafficking of pathogenic CD8(+) T cells into the brain and prevents Plasmodium-induced neuropathology
Arboviral diseases have risen significantly over the last 40 years, increasing the risk of co‐infection with other endemic disease such as malaria. However, nothing is known about the impact arboviruses have on the host response toward heterologous pathogens during co‐infection. Here, we investigate the effects of Chikungunya virus (CHIKV ) co‐infection on the susceptibility and severity of malaria infection. Using the Plasmodium berghei ANKA (PbA) experimental cerebral malaria (ECM ) model, we show that concurrent co‐infection induced the most prominent changes in ECM manifestation. Concurrent co‐infection protected mice from ECM mortality without affecting parasite development in the blood. This protection was mediated by the alteration of parasite‐specific CD8+ T‐cell trafficking through an IFN γ‐mediated mechanism. Co‐infection with CHIKV induced higher splenic IFN γ levels that lead to high local levels of CXCL 9 and CXCL 10. This induced retention of CXCR 3‐expressing pathogenic CD8+ T cells in the spleen and prevented their migration to the brain. This then averts all downstream pathogenic events such as parasite sequestration in the brain and disruption of blood–brain barrier that prevents ECM ‐induced mortality in co‐infected mice
The relevance of non-human primate and rodent malaria models for humans
At the 2010 Keystone Symposium on "Malaria: new approaches to understanding Host-Parasite interactions", an extra scientific session to discuss animal models in malaria research was convened at the request of participants. This was prompted by the concern of investigators that skepticism in the malaria community about the use and relevance of animal models, particularly rodent models of severe malaria, has impacted on funding decisions and publication of research using animal models. Several speakers took the opportunity to demonstrate the similarities between findings in rodent models and human severe disease, as well as points of difference. The variety of malaria presentations in the different experimental models parallels the wide diversity of human malaria disease and, therefore, might be viewed as a strength. Many of the key features of human malaria can be replicated in a variety of nonhuman primate models, which are very under-utilized. The importance of animal models in the discovery of new anti-malarial drugs was emphasized. The major conclusions of the session were that experimental and human studies should be more closely linked so that they inform each other, and that there should be wider access to relevant clinical material
- …