77 research outputs found

    Telomerase activator1: a zinc-finger protein that acts synergistically with auxin to control telomerase expression in Arabidopsis thaliana

    Get PDF
    Telomerase is the key enzyme synthesizing telomeric DNA in most eukaryotic organisms. In mammals, telomerase expression is abundant in the germline cells but is undetectable in most other differentiated organs. Intensive studies of telomerase have focused on human cancerous cells, where over 90% of all cancerous tissues examined have telomerase activity. In wild-type Arabidopsis, telomerase expression is abundant in reproductive organs and dedifferentiated tissues such as flowers, siliques and calli but barely detectable in vegetative tissues (both rosette and cauline leaves). In this study, a biochemical screen strategy was developed for isolation of telomerase activating mutants in Arabidopsis thaliana. Through screening of Arabidopsis activation-tagged lines by a PCR-based TRAP assay, two tac (for telomerase activator) mutants were isolated. RT-PCR analysis of AtTERT expression revealed that different mechanisms are involved in alternating telomerase activity in tac1 and tac2. We cloned and characterized the TAC1 gene. TAC1 encodes a single zinc finger protein and acts synergistically with auxin to induce telomerase expression without altering cell cycles. Telomere length was unperturbed in the mutant, but other phenotypes, such as altered root development and the ability of cells to grow in culture without exogenous auxin, indicated that TAC1 not only is part of the previously reported link between auxin and telomerase expression, but also potentiates other classic responses to this phytohormone. DNA microarrays were used to analyze the expression profile of the tac1 mutant and revealed that several drought-induced genes were up-regulated 3 to 10 fold in the tac1-1D mutant. RT-PCR analysis further confirmed this up-regulation for five of these genes. Investigation of root growth also indicated that tac1-1D roots were ~20% longer relative to wild-type. Further experiments demonstrated that over-expression of TAC1 does confer drought tolerance, but not salt tolerance. In addition, our preliminary result showed that treatment with a low concentration of IAA could induce drought tolerance in wild-type Arabidopsis. Although plants with constitutive expression of telomerase have no practical utility, the ability of TAC1 to confer drought tolerance could have significant agricultural applications

    CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts

    Get PDF
    CDC5 is a MYB-related protein that exists in plants, animals, and fungi. In Arabidopsis, CDC5 regulates both growth and immunity through unknown mechanisms. Here, we show that CDC5 from Arabidopsis positively regulates the accumulation of microRNAs (miRNAs), which control many biological processes including development and adaptations to environments in plants. CDC5 interacts with both the promoters of genes encoding miRNAs (MIR) and the DNA-dependent RNA polymerase II. As a consequence, lack of CDC5 reduces the occupancy of polymerase II at MIR promoters, as well as MIR promoter activities. In addition, CDC5 is associated with the DICER–LIKE1 complex, which generates miRNAs from their primary transcripts and is required for efficient miRNA production. These results suggest that CDC5 may have dual roles in miRNA biogenesis: functioning as a positive transcription factor of MIR and/or acting as a component of the DICER–LIKE1 complex to enhance primary miRNA processing

    Methylation protects microRNAs from an AGO1- associated activity that uridylates 5′ RNA fragments generated by AGO1 cleavage

    Get PDF
    In plants, methylation catalyzed by HEN1 (small RNA methyl transferase) prevents microRNAs (miRNAs) from degradation triggered by uridylation. Howmethylation antagonizes uridylation of miRNAs in vivo is not well understood. In addition, 5′ RNA fragments (5′ fragments) produced by miRNA-mediated RNA cleavage can be uridylated in plants and animals. However, the biological significance of this modification is unknown, and enzymes uridylating 5′ fragments remain to be identified. Here, we report that in Arabidopsis, HEN1 suppressor 1 (HESO1, a miRNA nucleotidyl transferase) uridylates 5′ fragments to trigger their degradation.We also show that Argonaute 1 (AGO1), the effector protein of miRNAs, interacts with HESO1 through its Piwi/Argonaute/Zwille and PIWI domains, which bind the 3′ end of miRNA and cleave the target mRNAs, respectively. Furthermore, HESO1 is able to uridylate AGO1-bound miRNAs in vitro. miRNA uridylation in vivo requires a functional AGO1 in hen1, in which miRNA methylation is impaired, demonstrating that HESO1 can recognize its substrates in the AGO1 complex. On the basis of these results, we propose that methylation is required to protect miRNAs from AGO1-associated HESO1 activity that normally uridylates 5′ fragments

    Experimental and theoretical analysis of microstructural evolution and deformation behaviors of CuW composites during equal channel angular pressing

    Get PDF
    CuW composites were synthesized using an equal channel angular pressing (ECAP) technique. Microstructural evolution during sintering process was investigated using both optical microscopy and transmission electron microscopy (TEM), and their deformation mechanisms were studied using finite element analysis (FEA). Results showed severe plastic deformation of the CuW composites and effective refinement of W grains after the ECAP process. TEM observation revealed that the ECAP process resulted in lamellar bands with high densities dislocations inside the composites. Effects of extrusion temperature and extrusion angles on stress-strain relationship and sizes of deformation zones after the ECAP process were investigated both theoretically and experimentally. When the extrusion angle was 90°, a maximum equivalent stress of ~1001 MPa was obtained when the extrusion test was done at room temperature of 22 °C, and this value was lower than compression strength of the CuW composites (1105.43 MPa). The maximum equivalent strains were varied between 0.5 and 0.7. However, when the extrusion temperature was increased to 550 °C and further to 900 °C, the maximum equivalent stresses were decreased sharply, with readings of 311 MPa and 68 MPa, respectively. When the extrusion angle was increased to 135°, the maximum equivalent stresses were found to be 716.9 MPa, 208 MPa, and 32 MPa for the samples extruded at temperatures of 22 °C, 550 °C and 900 °C, respectively. Simultaneously, the maximum equivalent strains were decreased to 0.2–0.4. Furthermore, results showed that the maximum equivalent stress was located on the sample's external surface and the stress values were gradually decreased from the surface to the center of samples, and the magnitudes of plastic deformation zones at the surface were much larger than those at the central part of the sintered samples. FEA simulation results were in good agreements with experimentally measured ones

    Synergistic and Independent Actions of Multiple Terminal Nucleotidyl Transferases in the 3’ Tailing of Small RNAs in Arabidopsis

    Get PDF
    All types of small RNAs in plants, piwi-interacting RNAs (piRNAs) in animals and a subset of siRNAs in Drosophila and C. elegans are subject to HEN1 mediated 3’ terminal 2’-Omethylation. This modification plays a pivotal role in protecting small RNAs from 3’ uridylation, trimming and degradation. In Arabidopsis, HESO1 is a major enzyme that uridylates small RNAs to trigger their degradation. However, U-tail is still present in null hen1 heso1 mutants, suggesting the existence of (an) enzymatic activities redundant with HESO1. Here, we report that UTP: RNA uridylyltransferase (URT1) is a functional paralog of HESO1. URT1 interacts with AGO1 and plays a predominant role in miRNA uridylation when HESO1 is absent. Uridylation of miRNA is globally abolished in a hen1 heso1 urt1 triple mutant, accompanied by an extensive increase of 3’-to-5’ trimming. In contrast, disruption of URT1 appears not to affect the heterochromatic siRNA uridylation. This indicates the involvement of additional nucleotidyl transferases in the siRNA pathway. Analysis of miRNA tailings in the hen1 heso1 urt1 triple mutant also reveals the existence of previously unknown enzymatic activities that can add non-uridine nucleotides. Importantly, we show HESO1 may also act redundantly with URT1 in miRNA uridylation when HEN1 is fully competent. Taken together, our data not only reveal a synergistic action of HESO1 and URT1 in the 3’ uridylation of miRNAs, but also independent activities of multiple terminal nucleotidyl transferases in the 3’ tailing of small RNAs and an antagonistic relationship between uridylation and trimming. Our results may provide further insight into the mechanisms of small RNA 3’ end modification and stability control

    Arabidopsis Transcriptome Analysis Reveals Key Roles of Melatonin in Plant Defense Systems

    Get PDF
    Melatonin is a ubiquitous molecule and exists across kingdoms including plant species. Studies on melatonin in plants have mainly focused on its physiological influence on growth and development, and on its biosynthesis. Much less attention has been drawn to its affect on genome-wide gene expression. To comprehensively investigate the role(s) of melatonin at the genomics level, we utilized mRNA-seq technology to analyze Arabidopsis plants subjected to a 16-hour 100 pM (low) and 1 mM (high) melatonin treatment. The expression profiles were analyzed to identify differentially expressed genes. 100 pM melatonin treatment significantly affected the expression of only 81 genes with 51 down-regulated and 30 up-regulated. However, 1 mM melatonin significantly altered 1308 genes with 566 up-regulated and 742 down-regulated. Not all genes altered by low melatonin were affected by high melatonin, indicating different roles of melatonin in regulation of plant growth and development under low and high concentrations. Furthermore, a large number of genes altered by melatonin were involved in plant stress defense. Transcript levels for many stress receptors, kinases, and stress-associated calcium signals were up-regulated. The majority of transcription factors identified were also involved in plant stress defense. Additionally, most identified genes in ABA, ET, SA and JA pathways were up-regulated, while genes pertaining to auxin responses and signaling, peroxidases, and those associated with cell wall synthesis and modifications were mostly down-regulated. Our results indicate critical roles of melatonin in plant defense against various environmental stresses, and provide a framework for functional analysis of genes in melatonin-mediated signaling pathways

    Consensus under Misaligned Orientations

    Full text link
    This paper presents a consensus algorithm under misaligned orientations, which is defined as (i) misalignment to global coordinate frame of local coordinate frames, (ii) biases in control direction or sensing direction, or (iii) misaligned virtual global coordinate frames. After providing a mathematical formulation, we provide some sufficient conditions for consensus or for divergence. Besides the stability analysis, we also conduct some analysis for convergence characteristics in terms of locations of eigenvalues. Through a number of numerical simulations, we would attempt to understand the behaviors of misaligned consensus dynamics.Comment: 23 pages, 9 figure

    Microstructure evolution and enhanced properties of Cu–Cr–Zr alloys through synergistic effects of alloying, heat treatment and low-energy cyclic impact

    Get PDF
    In this paper, CuCr–Zr alloys prepared by vacuum melting with adding La and Ni elementswere heat-treated and aged, followed by plastic deformation using low-energy cyclic impact tests, to simultaneously improve their mechanical and electrical properties. Results showed that the grain size of the casted Cu–Cr–Zr alloys was significantly reduced after the solid-solution aging and plastic deformation process. There were a lot of dispersed Cr and Cu5Zr precipitates formed in the alloys, and the numbers of dislocations were significantly increased. Accordingly, the hardness was increased from 78 to 232 HV, and the tensile strength was increased from 225 to 691 MPa. Electrical conductivity has not been significantly affected after these processes. The enhancement of overall performance is mainly attributed to the combined effects of solid-solution hardening, fine grain hardening, and precipitation/dislocation strengthening

    Atomically precise M15 (M = Au/Ag/Cu) alloy nanoclusters: Structural analysis, optical and electrocatalytic CO2 reduction properties

    Get PDF
    Herein, the overall structure of a nanocluster coprotected by phosphine and mercaptan ligands [Au7Ag8(SPh)6((p-OMePh)3P)8]NO3 (Au7Ag8) was reported. For comparison, a previously reported nanocluster with the same structure, but a different metal composition, [Au13Cu2(TBBT)6((p-ClPh)3P)8]SbF6 (Au13Cu2), was synthesized. In addition, their optical and electrocatalytic CO2 reduction properties were comprehensively compared. The results reveal that the photoluminescence quantum yield (PLQY) of the Ag-doped Au7Ag8 nanocluster is 1.62%, which is seven times greater than that of the Cu-doped Au13Cu2 nanocluster (PLQY = 0.23%). Furthermore, the Au13Cu2 nanocluster demonstrates significantly enhanced catalytic selectivity for CO, with a CO Faradaic efficiency ranging from 79.7% to 90.4%, compared with that of the Au7Ag8 nanocluster (CO Faradaic efficiency: 67.2%–77.7%) within a potential range of 0.5 to −1.1 V. From structural analyses, the superior CO selectivity of Au13Cu2 is attributed to the copper dopant
    corecore